Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hoffman, Johan
    et al.
    KTH, School of Computer Science and Communication (CSC), High Performance Computing and Visualization (HPCViz).
    Jansson, Johan
    KTH, School of Computer Science and Communication (CSC), High Performance Computing and Visualization (HPCViz).
    Johnson, Claes
    KTH, School of Computer Science and Communication (CSC), High Performance Computing and Visualization (HPCViz).
    New Theory of Flight2016In: Journal of Mathematical Fluid Mechanics, ISSN 1422-6928, E-ISSN 1422-6952, Vol. 18, no 2, p. 219-241Article in journal (Refereed)
    Abstract [en]

    We present a new mathematical theory explaining the fluid mechanics of sub-sonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new the-ory is based on our new resolution of d’Alembert’s paradox showing that slightlyviscous bluff body flow can be viewed as zero-drag/lift potential flow modified by3d rotational slip separation arising from a specific separation instability of po-tential flow, into turbulent flow with nonzero drag/lift. For a wing this separationmechanism maintains the large lift of potential flow generated at the leading edgeat the price of small drag, resulting in a lift to drag quotient of size15

  • 2.
    Hoffman, Johan
    et al.
    KTH, School of Computer Science and Communication (CSC), Numerical Analysis, NA.
    Johnson, Claes
    KTH, School of Computer Science and Communication (CSC), Numerical Analysis, NA.
    Resolution of d'Alembert's Paradox2010In: Journal of Mathematical Fluid Mechanics, ISSN 1422-6928, E-ISSN 1422-6952, Vol. 12, no 3, p. 321-334Article in journal (Refereed)
    Abstract [en]

    We propose a resolution of d'Alembert's Paradox comparing observation of substantial drag/lift in fluids with very small viscosity such as air and water, with the mathematical prediction of zero drag/lift of stationary irrotational solutions of the incompressible inviscid Euler equations, referred to as potential flow. We present analytical and computational evidence that (i) potential flow cannot be observed because it is illposed or unstable to perturbations, (ii) computed viscosity solutions of the Euler equations with slip boundary conditions initiated as potential flow, develop into turbulent solutions which are wellposed with respect to drag/lift and which show substantial drag/lift, in accordance with observations.

  • 3.
    Åsén, Per-Olov
    et al.
    KTH, School of Computer Science and Communication (CSC), Numerical Analysis and Computer Science, NADA.
    Kreiss, Gunilla
    KTH, School of Computer Science and Communication (CSC), Numerical Analysis and Computer Science, NADA.
    On a Rigorous Resolvent Estimate for Plane Couette Flow2007In: Journal of Mathematical Fluid Mechanics, ISSN 1422-6928, E-ISSN 1422-6952, Vol. 9, no 2, p. 153-180Article in journal (Refereed)
    Abstract [en]

    We derive a rigorous bound of the solution of the resolvent equation for plane Couette flow in three space dimensions. We combine analytical techniques with numerical computations. Compared to earlier results, our analytical techniques cover a larger part of the parameter domain consisting of wave numbers in two space directions and the Reynolds number. Numerical computations are needed only in a compact subset of the parameter domain.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf