Endre søk
Begrens søket
1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Chaparian, Emad
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Tammisola, Outi
    An adaptive finite element method for elastoviscoplastic fluid flows2019Inngår i: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 271, artikkel-id UNSP 104148Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Elastoviscoplastic fluids are a class of yield-stress fluids that behave like neoHookean (or viscoelastic) solids when the imposed stress is less than the yield stress whereas after yielding, their behaviour is described by a viscoplastic fluid with an additional elastic history. This exceptional behaviour has been recently observed by many yield stress fluids in rheometric tests such as waxy crude oil, Carbopol gel, etc. Moreover, interesting phenomena have been evidenced experimentally such as the presence of a negative wake and a loss of fore-aft symmetry about a settling particle which are predominantly related to the elastic behaviour of yield-stress fluids (i.e., coupling of elasticity and plasticity). Here, we present a numerical scheme based on the so-called augmented Lagrangian method for numerical simulation of elastoviscoplastic fluid flows. The method is benchmarked by two rheometric flows: Poiseuille and circular Couette flows for which analytical solutions are derived. Moreover, anisotropic adaptive mesh procedure (which was previously introduced for viscoplastic fluid flows by Saramito and Roquet, Comput. Meth. Appl. Mech. Eng., vol. 190, 2001, pp. 5391-5412) is coupled to obtain a fine resolution of the yield surfaces. Finally, the presented method is applied to study more complex flows: elastoviscoplastic fluid flow in a wavy channel.

  • 2. Cunha, F. R.
    et al.
    Lima Albernaz, Daniel
    University of Brasília.
    Oscillatory motion of a spherical bubble in a non-Newtonian fluid2013Inngår i: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 191, s. 35-44Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The motion of a spherical bubble in a nonlinear viscoelastic media subjected to an acoustic pressure field is considered. The ambient fluid is composed of a Newtonian liquid in which additives at small volume fraction are diluted. The contribution of the additives with high aspect ratio brings strong anisotropy and is described by an extensional viscosity. The elastic effect is presented by the relaxation time of the additives. A lower convected Maxwell model is adopted to describe the viscoelastic properties, resulting in a modified Rayleigh-Plesset equation. The set of governing equations does not require a numerical solution for the space domain. Non-linear radial oscillations of a single bubble are obtained numerically using a fifth order Runge-Kutta scheme with adaptive time step. The results predict an extra anisotropy for a Deborah number regime De∼. 1, due to stretched additives, which contributes to bubble motion stabilization. Under this condition, the relaxation time is greater than the time scale of the flow, where no interaction between the elastic effect of the additives and the motion of the bubble is found. However, for De∼. 0.1 we observe an increase of vibrational modes on the frequency domain and higher bubble internal pressure, which may lead to collapse occurrence. The decrease in the volume fraction of the additives also shows significant variation of bubble oscillations as the elastic effect has a proportionally larger contribution than the anisotropic effect. Other results and considerations regarding relevant parameters are also discussed.

  • 3.
    De Vita, Francesco
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Rosti, Marco E.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Izbassarov, Daulet
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Duffo, L.
    Tammisola, Outi
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hormozi, S.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Elastoviscoplastic flows in porous media2018Inngår i: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 258, s. 10-21Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier–Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution [1]. In this model, the material behaves as a viscoelastic solid when unyielded, and as a viscoelastic Oldroyd-B fluid for stresses higher than the yield stress. The porous media is made of a symmetric array of cylinders, and we solve the flow in one periodic cell. We find that the solution is time-dependent even at low Reynolds numbers as we observe oscillations in time of the unyielded region especially at high Bingham numbers. The volume of the unyielded region slightly decreases with the Reynolds number and strongly increases with the Bingham number; up to 70% of the total volume is unyielded for the highest Bingham numbers considered here. The flow is mainly shear dominated in the yielded region, while shear and elongational flow are equally distributed in the unyielded region. We compute the relation between the pressure drop and the flow rate in the porous medium and present an empirical closure as function of the Bingham and Reynolds numbers. The apparent permeability, normalized with the case of Newtonian fluids, is shown to be greater than 1 at low Bingham numbers, corresponding to lower pressure drops due to the flow elasticity, and smaller than 1 for high Bingham numbers, indicating larger dissipation in the flow owing to the presence of the yielded regions. Finally we investigate the effect of the Weissenberg number on the distribution of the unyielded regions and on the pressure gradient.

  • 4. Djalili-Moghaddam, M.
    et al.
    Toll, Staffan
    Chalmers University of Technology, Sweden.
    A model for short-range interactions in fibre suspensions2005Inngår i: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 132, nr 1-3, s. 73-83Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper introduces a model for short-range fibre-fibre interaction and combines it with the Shaqfeh-Fredrickson result for long-range hydrodynamic interactions. The short-range interactions are assumed to be localised, such that the interaction forces may be taken to act at points on the fibre axes. Only interactions of viscous Newtonian character are explored in this work; the approach, however, may be used to treat more general nonlinear interactions, such as non-Newtonian vicous forces or friction. To simulate the orientation evolution, a convective discretisation technique combined with a modification of the Folgar-Tucker rotary diffusion model is proposed. The rotational parallel-plate geometry is analysed, and transient as well as steady state responses are computed. Experiments are performed on suspensions of polyamide fibres in silicon oil, using a rotational parallel-plate rheometer. It is demonstrated that the effect of fibre volume fraction and aspect ratio are well captured by this theory. Normal force as well as torque is adequately predicted. Other effects, however, such as shear thinning and effect of absolute particle size, are not predicted by the linear theory.

  • 5.
    Haque, Simon
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Lashgari, Iman
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Giannetti, Flavio
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Stability of fluids with shear-dependent viscosity in the lid-driven cavity2012Inngår i: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 173-174, s. 49-61Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The classical problem of the lid-driven cavity extended infinitely in the spanwise direction is considered for non-Newtonian shear-thinning and shear-thickening fluids, where the viscosity is modeled by the Carreau model. Linear stability is used to determine the critical Reynolds number at which the two-dimensional base-flow becomes unstable to three-dimensional spanwise-periodic disturbances. We consider a square cavity, characterized by steady unstable modes, and a shallow cavity of aspect ratio 0.25, where oscillating modes are the first to become unstable for Newtonian fluids. In both cases, the critical Reynolds number first decreases with decreasing power-index n (from shear-thickening to shear-thinning fluids) and then increase again for highly pseudoplastic fluids. In the latter case, this is explained by the thinner boundary layers at the cavity walls and less intense vorticity inside the domain. Interestingly, oscillating modes are found at critical conditions for shear-thickening fluids in a square cavity while the shallow cavity supports a new instability of lower frequency for large enough shear-thinning. Analysis of kinetic energy budgets and structural sensitivity are employed to investigate the physical mechanisms behind the instability.

  • 6.
    Pietrzyk, Kyle
    et al.
    Santa Clara Univ, Dept Mech Engn, Santa Clara, CA 95053 USA..
    Nganguia, Herve
    Indiana Univ Penn, Dept Math & Comp Sci, Indiana, PA 15705 USA..
    Datt, Charu
    Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1Z4, Canada..
    Zhu, Lailai
    KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Elfring, Gwynn J.
    Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1Z4, Canada..
    Pak, On Shun
    Santa Clara Univ, Dept Mech Engn, Santa Clara, CA 95053 USA..
    Flow around a squirmer in a shear-thinning fluid2019Inngår i: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 268, s. 101-110Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Many biological fluids display shear-thinning rheology, where the viscosity decreases with an increasing shear rate. To better understand how this non-Newtonian rheology affects the motion of biological and artificial micro swimmers, recent efforts have begun to seek answers to fundamental questions about active bodies in shear-thinning fluids. Previous analyses based on a squirmer model have revealed non-trivial variations of propulsion characteristics in a shear-thinning fluid via the reciprocal theorem. However, the reciprocal theorem approach does not provide knowledge about the flow surrounding the squirmer. In this work, we fill in this missing information by calculating the non-Newtonian correction to the flow analytically in the asymptotic limit of small Carreau number. In particular, we investigate the local effect due to viscosity reduction and the non-local effect due to induced changes in the flow; we then quantify their relative importance to locomotion in a shear-thinning fluid. Our results demonstrate cases where the non-local effect can be more significant than the local effect. These findings suggest that caution should be exercised when developing physical intuition from the local viscosity distribution alone around a swimmer in a shear-thinning fluid.

  • 7.
    Rosti, Marco E.
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Suspensions of deformable particles in a Couette flow2018Inngår i: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 262, s. 3-11Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We consider suspensions of deformable particles in a Newtonian fluid by means of fully Eulerian numerical simulations with a one-continuum formulation. We study the rheology of the visco-elastic suspension in plane Couette flow in the limit of vanishing inertia and examine the dependency of the effective viscosity mu on the solid volume-fraction Phi, the capillary number Ca, and the solid to fluid viscosity ratio K. The suspension viscosity decreases with deformation and applied shear (shear-thinning) while still increasing with volume fraction. We show that mu collapses to an universal function, mu(Phi(e)), with an effective volume fraction Phi(e), lower than the nominal one owing to the particle deformation. This universal function is well described by the Eilers fit, which well approximate the rheology of suspension of rigid spheres at all O. We provide a closure for the effective volume fraction Phi(e) as function of volume fraction Phi and capillary number Ca and demonstrate it also applies to data in literature for suspensions of capsules and red-blood cells. In addition, we show that the normal stress differences exhibit a non-linear behavior, with a similar trend as in polymer and filament suspensions. The total stress budgets reveals that the particle-induced stress contribution increases with the volume fraction Phi and decreases with deformability.

  • 8.
    Weihong, Yang
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap.
    Do-Quang, Minh
    KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Amberg, Gustav
    KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Impact of viscoelastic droplets2017Inngår i: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 243, s. 38-46Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We conduct numerical experiments on viscoelastic droplets hitting a flat solid surface. The results present time-resolved non-Newtonian stresses acting in the droplet. Comparing with the simulation of the impact of a Newtonian droplet, the effects of viscoelasticity on droplet behaviors such as splashing, the maximum spreading diameter and deformation are analyzed. With detailed information on the contact line region, we demonstrate how the contact line behaves according to the transition of the fluid property from elasticity dominated to shear-thinning dominated when a droplet expands and contracts on the substrate. The propose of this work is to discuss whether and how the elasticity in an impinging droplet takes effect.

1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf