Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmad, Nawaz
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Sanchez-Vila, Xavier
    Bottacin-Busolin, Andrea
    The role of advection and dispersion in the rock matrix on the transport of leaking CO2-saturated brine along a fractured zone2016In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 98, p. 132-146Article in journal (Refereed)
    Abstract [en]

    CO2 that is injected into a geological storage reservoir can leak in dissolved form because of brine displacement from the reservoir, which is caused by large-scale groundwater motion. Simulations of the reactive transport of leaking CO2aq along a conducting fracture in a clay-rich caprock are conducted to analyze the effect of various physical and geochemical processes. Whilst several modeling transport studies along rock fractures have considered diffusion as the only transport process in the surrounding rock matrix (diffusive transport), this study analyzes the combined role of advection and dispersion in the rock matrix in addition to diffusion (advection-dominated transport) on the migration of CO2aq along a leakage pathway and its conversion in geochemical reactions. A sensitivity analysis is performed to quantify the effect of fluid velocity and dispersivity. Variations in the porosity and permeability of the medium are found in response to calcite dissolution and precipitation along the leakage pathway. We observe that advection and dispersion in the rock matrix play a significant role in the overall transport process. For the parameters that were used in this study, advection-dominated transport increased the leakage of CO2aq from the reservoir by nearly 305%, caused faster transport and increased the mass conversion of CO2aq in geochemical reactions along the transport pathway by approximately 12.20% compared to diffusive transport.

  • 2. Andricevic, Roko
    et al.
    Srzic, Veljko
    Gotovac, Hrvoje
    Risk characterization for toxic chemicals transported in aquifers2012In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 36, p. 86-97Article in journal (Refereed)
    Abstract [en]

    The risk characterization resulting from the introduction of toxic chemicals in a subsurface flow field is presented. The concept of concentration threshold is used to quantify the risk associated with non-carcinogenic chemicals introduced to the population by ingestion of groundwater as the exposure pathway. The risk assessment methodology presented uses the expected mass fraction (EMF) concept with exposure duration to identify the distribution of dosage over different concentrations during the plume migration over the well location. The numerical simulation of the subsurface transport by advection and local diffusion is used to produce the concentration plume that passes different locations of interest. The EMF obtained presents the probability of the expected mass above some concentration threshold found at the location of interest. The risk formulation is defined with the risk reliability (safety) and its complement, the risk exceedance (failure) value. The risk characterization is obtained as a probability for exceeding the human reference dose which is considered uncertain due to the necessary extrapolation between concentration used in toxicological studies and the concentration to which humans could be exposed in nature. The final risk assessment expression is derived in a closed form by coupling the expected mass fraction with the safe human threshold concentration probability density function (pdf) inferred from the toxicological studies. The results indicate the importance of estimating the probability of a concentration mass found at locations of interest together with its exposure duration. The exposure duration was revealed to be an important parameter that needs to be estimated depending on the human concentration threshold selected and the distance from the source. The results in terms of the risk safety and risk failure also indicate the dilution effect on the passing concentration plume in the subsurface as a function of the distance and orientation from the source. Inclusion of uncertainty in the selection of the human concentration threshold shows the important effect on the risk quantification.

  • 3.
    Bottacin-Busolin, Andrea
    et al.
    WET Engn Srl, I-31033 Castelfranco Veneto, TV, Italy.
    Marion, Andrea
    Univ Padua, Dept Hydraul Maritime Environm & Geotech Engn, I-35131 Padua, Italy.
    Musner, Tommaso
    Univ Padua, Dept Chem Proc Engn, I-35131 Padua, Italy.
    Tregnaghi, Matteo
    WET Engn Srl, I-31033 Castelfranco Veneto, TV, Italy.
    Zaramella, Mattia
    WET Engn Srl, I-31033 Castelfranco Veneto, TV, Italy.
    Evidence of distinct contaminant transport patterns in rivers using tracer tests and a multiple domain retention model2011In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 34, no 6, p. 737-746Article in journal (Refereed)
    Abstract [en]

    Solute transport in rivers is controlled by surface hydrodynamics and by mass exchanges with distinct retention zones. Surface and hyporheic retention processes can be accounted for separately in solute transport models with multiple storage compartments. In the simplest two component model, short term storage can be associated to in-channel transient retention, e.g. produced by riparian vegetation or surface dead zones, and the long-term storage can be associated to hyporheic exchange. The STIR (Solute Transport In Rivers) multiple domain transport model is applied here to tracer test data from three very different Mediterranean streams with distinctive characteristics in terms of flow discharge, vegetation and substrate material. The model is used with an exponential residence time distribution (RTD) to represent surface storage processes and two distinct modeling closures are tested to simulate hyporheic retention: a second exponential RTD and a power-law distribution approximating a known solution for bedform-induced hyporheic exchange. Each stream shows distinct retention patterns characterized by different timescales of the storage time distribution. Both modeling closures lead to very good approximations of the observed breakthrough curves in the two rivers with permeable bed exposed to the flow, where hyporheic flows are expected to occur. In the one case where the occurrence of hyporheic flows is inhibited by bottom vegetation, only the two exponential RTD model is acceptable and the time scales of the two components are of the same magnitude. The significant finding of this work is the recognition of a strong signature of the river properties on tracer data and the evidence of the ability of multiple-component models to describe individual stream responses. This evidence may open a new perspective in river contamination studies, where rivers could possibly be classified based on their ability to trap and release pollutants.

  • 4.
    Frampton, Andrew
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Cvetkovic, Vladimir
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Significance of injection modes and heterogeneity on spatial and temporal dispersion of advecting particles in two-dimensional discrete fracture networks2009In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 32, no 5, p. 649-658Article in journal (Refereed)
    Abstract [en]

    We investigate the impact of injection mode (flux and resident injection) and heterogeneity in hydraulic properties on dispersion of advecting particles in two-dimensional discrete fracture network models, using a Monte Carlo method. We find that the injection mode has a significant effect on dispersion: The resident injection mode exhibits anomalous features of transport whereas the flux injection mode tends to Gaussian transport; this observation is easily understood by considering phase diagrams where a limited number of particles entering low velocity fractures greatly increase macrodispersion. In spite of a sizeable portion of negative longitudinal velocities, it is shown that multiple crossings are negligible when quantifying longitudinal macrodispersion. A simple probabilistic expression of particle mass balance is shown to predict well the spatial distribution of advecting particles.

  • 5.
    Gotovac, Hrvoje
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Andricevic, Roko
    Univ. Split.
    Gotovac, Blaz
    Univ. Split.
    Multi-resolution adaptive modeling of groundwater flow and transport problems2007In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 30, p. 1105-1126Article in journal (Refereed)
    Abstract [en]

    Many groundwater flow and transport problems, especially those with sharp fronts, narrow transition zones, layers and fingers, require extensive computational resources. In this paper, we present a novel multi-resolution adaptive Fup approach to solve the above mentioned problems. Our numerical procedure is the Adaptive Fup Collocation Method (AFCM), based on Fup basis functions and designed through a method of lines (MOL). Fup basis functions are localized and infinitely differentiable functions with compact support and are related to more standard choices such as splines or wavelets. This method enables the adaptive multi-reso In tion approach to solve problems with different spatial and temporal scales with a desired level of accuracy using the entire family of Fup basis functions. In addition, the utilized collocation algorithm enables the mesh free approach with consistent velocity approximation and flux continuity due to properties of the Fup basis functions. The introduced numerical procedure was tested and verified by a few characteristic groundwater flow and transport problems, the Buckley-Leverett multiphase flow problem, the 1-D vertical density driven problem and the standard 2-D seawater intrusion benchmark-Henry problem. The results demonstrate that the method is robust and efficient particularly when describing sharp fronts and narrow transition zones changing in space and time.

  • 6.
    Gotovac, Hrvoje
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Cvetkovic, Vladimir
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Water Resources Engineering.
    Andricevic, Roko
    Adaptive Fup multi-resolution approach to flow and advective transport in highly heterogeneous porous media: Methodology, accuracy and convergence2009In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 32, no 6, p. 885-905Article in journal (Refereed)
    Abstract [en]

    In this paper, we present a new Monte-Carlo methodology referred to as Adaptive Fup Monte-Carlo Method (AFMCM) based on compactly supported Fup basis functions and a multi-resolution approach. We consider for illustration 2-D steady, linear and unidirectional flow and advective transport defined on a domain of size 64I(Y) * 32I(Y) with isotropic exponential correlation heterogeneity structure and sigma(2)(Y) up to 8. Accuracy and convergence issues are rigorously analyzed for each realization as well as for the ensemble. Log-conductivity is presented by continuous function at high resolution level (n(Y) = 4-32 points per integral scale) reproducing very accurately prescribed statistics. The flow problem is the most demanding Monte-Carlo step due to satisfying detailed log-conductivity properties. Presented methodology inherently gives continuous and mesh-free velocity fields, which enables the construction of a new efficient and accurate particle tracking algorithm. Results indicate that resolutions n(Y) = 8 and n(h) = 32 enable very accurate flow solutions in each realization with mass balance error less than 3% and accurate ensemble velocity statistics. Results show that the proposed AFMCM enables tracking of an unlimited number of injected particles and calculates required transport variables as continuous functions with desired relative accuracy (0.1%) in each realization. Furthermore, we show that the resolution n(Y) = 8 yields a quite accurate pdf of the transverse displacement and travel time. All required flow and transport variables require 500 Monte-Carlo realizations in order to stabilize fluctuations of the higher-order moments and the probability density functions.

  • 7. Hassan, A. E.
    et al.
    Andricevic, R.
    Cvetkovic, Vladimir
    KTH, Superseded Departments, Land and Water Resources Engineering.
    Computational issues in the determination of solute discharge moments and implications for comparison to analytical solutions2001In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 24, no 6, p. 607-619Article in journal (Refereed)
    Abstract [en]

    Solute discharge moments (mean and variance) are computed using numerical modeling of flow and advective transport in two-dimensional heterogeneous aquifers and are compared to theoretical results, The solute discharge quantifies the temporal evolution of the total contaminant mass crossing a certain compliance boundary. In addition to analyzing the solute discharge moments within a classical absolute dispersion framework, we also analyze relative dispersion formulation, whereby plume meandering (deviation from mean flow path caused by velocity variations at scales larger than plume size) is removed. This study addresses some important issues related to the computation of solute discharge moments from random walk particle tracking experiments, and highlights some of the important differences between absolute and relative dispersion frameworks. Relative dispersion formulation produces maximum uncertainty that coincides with the peak mean discharge. Absolute dispersion, however, results in earlier arrival of the uncertainty peak as compared to the first moment peak. Simulations show that the standard deviation of solute discharge in a relative dispersion framework requires increasingly large temporal sampling windows to smooth out some of the large fluctuations in breakthrough curves associated with advective transport. Using smoothing techniques in particle tracking to distribute the particle mass over a volume rather than at a point significantly reduces the noise in the numerical simulations and removes the need to use large temporal windows. Same effect can be obtained by adding a local dispersion process to the particle tracking experiments used to model advective transport. The effect of the temporal sampling window bears some relevance and important consequences for evaluating risk-related parameters. The expected value of peak solute discharge and its standard deviation are very sensitive to this sampling window and so will be the risk distribution relying on such numerical models.

  • 8.
    Kjellin, Johan
    et al.
    Swedish University of Agricultural Science.
    Wörman, Anders
    Swedish University of Agricultural Science.
    Johansson, Håkan
    Swedish University of Agricultural Science.
    Lindahl, Anna
    Swedish University of Agricultural Science.
    Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden2007In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 30, no 4, p. 838-850Article in journal (Refereed)
    Abstract [en]

    Treatment wetlands play an important role in reducing nutrient content and heavy metals in wastewater and run-off water. The treatment efficiency strongly depends on flow pattern and residence times of the water. Here, we study the impact of different factors on water flow patterns based on a tracer experiment with tritiated water in a 2.6 ha constructed wetland pond. A 2D flow and inert transport model was used to evaluate the relative importance of bottom topography, vegetation distribution, water exchange with stagnant zones and dispersion.

    Results from computer simulations and independent measurements of friction losses as well as wetland geometry showed that variations in bottom topography, formed by several deep zones, decreased the variance in water residence times to a minor extent. Heterogeneity in vegetation, on the other hand, significantly contributed to the spread in water residence times and explained the multiple peaks observed in the breakthrough curves. Analyses showed that in the Ekeby treatment wetland, basin shape explained about 10% of the variance in the observed residence times, whereas vegetation explained about 60-80%. To explain all variance secondary factors were needed, such as dispersion and water exchange with stagnant zones. These were shown to contribute to the spread of residence times and primarily to the long tail of the observed breakthrough curves.

  • 9. Salehin, M.
    et al.
    Packman, A. I.
    Wörman, Anders
    Comparison of transient storage in vegetated and unvegetated reaches of a small agricultural stream in Sweden: seasonal variation and anthropogenic manipulation2003In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 26, no 9, p. 951-964Article in journal (Refereed)
    Abstract [en]

    In this work, we compare solute transport and hyporheic exchange in vegetated and unvegetated reaches of Sava Brook, an agricultural stream in Sweden subject to extreme variations in channel vegetation and morphology due to both natural seasonal effects and anthropogenic manipulation. A solute injection experiment was conducted in September, 2001 (late summer), at which time there was extensive in-channel vegetation in upstream reaches but none in downstream reaches due to channel excavation by farmers. Experimental results are interpreted using both the advective storage path model and the transient storage model. Results from the vegetated and excavated reaches of the stream are compared both with each other and with the results of a previous experiment conducted in April, 1998 (early spring), when the stream was not excavated but there was only minimal vegetation present in the area due to natural seasonal effects. Results from the two injection experiments are compared by using scaled parameters that appropriately include the effects of stream velocity and depth on hyporheic exchange. This analysis indicates that the variation of solute storage time in all non-excavated agricultural reaches is attributable to differences in stream flow depth, velocity, and the hydraulic conductivity of the streambed sediments. Mixing in vegetated reaches is characterized by rapid exchange and considerable lag of the mean solute peak relative to the mean channel velocity. In addition, excavation altered the stream channel geometry so as to increase the storage time of solutes and reduce the effective exchange rate. This work indicates the need to consider the effect of specific processes when analyzing hyporheic exchange using tracer-injection methods, and supports the use of model frameworks with the potential to explicitly include different formulations for various hyporheic and dead zone transport processes.

  • 10. Schmadel, Noah M.
    et al.
    Neilson, Bethany T.
    Heavilin, Justin E.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Isolating parameter sensitivity in reach scale transient storage modeling2016In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 89, p. 24-31Article in journal (Refereed)
    Abstract [en]

    Parameter sensitivity analyses, although necessary to assess identifiability, may not lead to an increased understanding or accurate representation of transient storage processes when associated parameter sensitivities are muted. Reducing the number of uncertain calibration parameters through field-based measurements may allow for more realistic representations and improved predictive capabilities of reach scale stream solute transport. Using a two-zone transient storage model, we examined the spatial detail necessary to set parameters describing hydraulic characteristics and isolate the sensitivity of the parameters associated with transient storage processes. We represented uncertain parameter distributions as triangular fuzzy numbers and used closed form statistical moment solutions to express parameter sensitivity thus avoiding copious model simulations. These solutions also allowed for the direct incorporation of different levels of spatial information regarding hydraulic characteristics. To establish a baseline for comparison, we performed a sensitivity analysis considering all model parameters as uncertain. Next, we set hydraulic parameters as the reach averages, leaving the transient storage parameters as uncertain, and repeated the analysis. Lastly, we incorporated high resolution hydraulic information assessed from aerial imagery to examine whether more spatial detail was necessary to isolate the sensitivity of transient storage parameters. We found that a reach-average hydraulic representation, as opposed to using detailed spatial information, was sufficient to highlight transient storage parameter sensitivity and provide more information regarding the potential identifiability of these parameters.

  • 11. Severino, Gerardo
    et al.
    Cvetkovic, Vladimir
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Water Resources Engineering.
    Coppola, Antonio
    Spatial moments for colloid-enhanced radionuclide transport in heterogeneous aquifers2007In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 30, no 1, p. 101-112Article in journal (Refereed)
    Abstract [en]

    We consider colloid facilitated radionuclide transport by steady groundwater flow in a heterogeneous porous formation. Radionuclide binding on colloids and soil-matrix is assumed to be kinetically/equilibrium controlled. All reactive parameters are regarded as uniform, whereas the hydraulic log-conductivity is modelled as a stationary random space function (RSF). Colloid-enhanced radionuclide transport is studied by means of spatial moments pertaining to both the dissolved and colloid-bounded concentration. The general expressions of spatial moments for a colloid-bounded plume are presented for the first time, and are discussed in order to show the combined impact of sorption processes as well as aquifer heterogeneity upon the plume migration. For the general case, spatial moments are defined by the aid of two characteristic reaction functions which cannot be expressed analytically. By adopting the approximation for the longitudinal fluid trajectory covariance valid for a flow parallel to the formation bedding suggested by Dagan and Cvetkovic [Dagan G, Cvetkovic V. Spatial Moments of Kinetically Sorbing Plume in a Heterogeneous Aquifers. Water Resour Res 1993;29:4053], we obtain closed form solutions. For illustrative purposes, we consider the case when sorption/desorption between solution and moving colloids is a linear non-equilibrium process, whereas sorption onto the soil-matrix is a linear equilibrium process. Based on the flow and transport parameters pertaining to the alluvial aquifer at the Yucca Mountain Site (Nevada), we investigate the potential enhancing role of colloidal particles by comparing radionuclide spatial moments with and without colloids, and mainly investigate the sensitivity to the reverse rate parameter. The most potentially significant effects are obtained when radionuclide attachment to colloidal particles is irreversible. The simplicity of our results makes them suitable for quick assessments of the potential impact of colloids on contaminant transport in heterogeneous aquifers.

  • 12.
    Soltani, Safeyeh Sofie
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Cvetkovic, Vladimir
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Contaminant attenuation by shallow aquifer systems under steady flow2017In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 108, p. 157-169Article in journal (Refereed)
    Abstract [en]

    We present a framework for analyzing advection-dominated solute transport and transformation in aquifer systems of boreal catchments that are typically shallow and rest on crystalline bedrock. A methodology is presented for estimating tracer discharge based on particle trajectories from recharge to discharge locations and computing their first passage times assuming that the flow pattern is approximately steady-state. Transformation processes can be included by solving one-dimensional reactive transport with randomized water travel time as the independent variable; the distribution of the travel times incorporates morphological dispersion (due to catchment geometry/topography) as well as macro-dispersion (due to heterogeneity of underlying hydraulic properties). The implementation of the framework is illustrated for the well characterized coastal catchment of Forsmark (Sweden). We find that macro-dispersion has a notable effect on attenuation even though the morphological dispersion is significantly larger. Preferential flow on the catchment scale is found to be considerable with only 5% of the Eulerian velocities contributing to transport over the simulation period of 375 years. Natural attenuation is illustrated as a simple (linear decay) transformation process. Simulated natural attenuation can be estimated analytically reasonably well by using basic hydrological and structural information, the latter being the pathway length distribution and average aquifer depth to the bedrock.

  • 13.
    Vladimir, Cvetkovic
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Water Resources Engineering.
    Molin, Staffan
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Water Resources Engineering.
    Combining numerical simulations with time-domain random walk for pathogen risk assessment in groundwater2011In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 36, no SI, p. 98-107Article in journal (Refereed)
    Abstract [en]

    We present a methodology that combines numerical simulations of groundwater flow and advective transport in heterogeneous porous media with analytical retention models for computing the infection risk probability from pathogens in aquifers. The methodology is based on the analytical results presented in [1,2] for utilising the colloid filtration theory in a time-domain random walk framework. It is shown that in uniform flow, the results from the numerical simulations of advection yield comparable results as the analytical TDRW model for generating advection segments. It is shown that spatial variability of the attachment rate may be significant, however, it appears to affect risk in a different manner depending on if the flow is uniform or radially converging. In spite of the fact that numerous issues remain open regarding pathogen transport in aquifers on the field scale, the methodology presented here may be useful for screening purposes, and may also serve as a basis for future studies that would include greater complexity.

  • 14.
    Zou, Liangchao
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Jing, Lanru
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Cvetkovic, Vladimir
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Modeling of flow and mixing in 3D rough-walled rock fracture intersections2017In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 107, p. 1-9Article in journal (Refereed)
    Abstract [en]

    The processes of fluid flow and solute transport through rock fractures are of primary importance in environmental engineering and geosciences. This study presented numerical modeling results of fluid flow and solute transport in a 3D rock fracture-matrix system with an orthogonal intersection of two rough-walled rock fractures. The rough-walled fracture geometry models were built from laser-scanned data of a real rock surface, for a realistic representation of natural rock fracture surface roughness. The fluid flow in the two intersected fractures and solute transport in the fracture-matrix system were simulated by solving the Navier–Stokes equations (NSE) and transport equation in the entire system. The dependence of mixing on Péclet number (Pe) and flow directionality features were analyzed. The results directly visualized important channeling flow patterns that significantly enhanced the solute mixing process at the rough-walled fracture intersection. The illustrated channeling flow and associated impacts on mixing are particularly important in the prediction of solute transport in natural fractured rocks, especially when discrete fracture network (DFN) approach is applied.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf