Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Kasiuliene, A.
    et al.
    Carabante, I.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Kumpiene, J.
    Hydrothermal carbonisation of peat-based spent sorbents loaded with metal(loid)s2019In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 26, no 23, p. 23730-23738Article in journal (Refereed)
    Abstract [en]

    Hydrothermal carbonisation (HTC) is a wet and relatively low-temperature process where, under autogenous pressures, biomass undergoes a chain of reactions leading to the defragmentation of organic matter. As well as its other uses (e.g. for producing low-cost carbon-based nano-compounds), HTC is utilised for the treatment of wet wastes, such as manure and biosludge. This study aimed to determine if hydrothermal carbonisation is a feasible treatment method for spent sorbents that are highly enriched with arsenic, chromium, copper, and zinc. The chemical properties of hydrochar and process liquid were evaluated after HTC treatment, where peat-based spent sorbents were carbonised at 230 °C for 3 h. Analysis of Fourier transform-infrared spectra revealed that during HTC, the oxygenated bonds of ethers, esters, and carboxylic groups were cleaved, and low-molecular-weight organic fragments were dissolved in the process liquid. A large fraction of arsenic (up to 62%), copper (up to 25%), and zinc (up to 36%) were transferred from the solids into the process water. Leaching of these elements from the hydrochars increased significantly in comparison with the spent sorbents.

  • 2.
    Kasiuliene, Alfreda
    et al.
    Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, SE-97187 Lulea, Sweden..
    Carabante, Ivan
    Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, SE-97187 Lulea, Sweden..
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. Royal Inst Technol, Dept Sustainable Dev Environm Sci & Engn, Tekn Ringen 76, SE-10044 Stockholm, Sweden..
    Kumpiene, Jurate
    Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, SE-97187 Lulea, Sweden..
    Treatment of metal (loid) contaminated solutions using iron-peat as sorbent: is landfilling a suitable management option for the spent sorbent?2019In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 26, no 21, p. 21425-21436Article in journal (Refereed)
    Abstract [en]

    This study firstly aimed to investigate the potential of simultaneous metal (loid) removal from metal (oid) solution through adsorption on iron-peat, where the sorbent was made from peat and Fe by-products. Up-flow columns filled with the prepared sorbent were used to treat water contaminated with As, Cu, Cr, and Zn. Peat effectively adsorbed Cr, Cu, and Zn, whereas approximately 50% of inlet As was detected in the eluent. Iron-sand was effective only for adsorbing As, but Cr, Cu, and Zn were poorly adsorbed. Only iron-peat showed the simultaneous removal of all tested metal (loid)s. Metal (loid) leaching from the spent sorbent at reducing conditions as means to assess the behaviour of the spent sorbent if landfilled was also evaluated. For this purpose, a standardised batch leaching test and leaching experiment at reducing conditions were conducted using the spent sorbent. It was found that oxidising conditions, which prevailed during the standardised batch leaching test, could have led to an underestimation of redox-sensitive As leaching. Substantially higher amounts of As were leached out from the spent sorbents at reducing atmosphere compared with oxidising one. Furthermore, reducing environment caused As(V) to be reduced into the more-toxic As (III).

  • 3.
    Zuo, Minyu
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Renman, Gunno
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Gustafsson, Jon Petter
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. Swedish University of Agricultural Sciences, Sweden.
    Klysubun, Wantana
    Dual slag filters for enhanced phosphorus removal from domestic waste water: performance and mechanisms2018In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 25, no 8, p. 7391-7400Article in journal (Refereed)
    Abstract [en]

    The phosphorus (P) removal of five combinations of dual filters consisting of blast furnace slag (BFS), argon oxygen decarburisation slag (AOD) and electric arc furnace slag (EAF) was evaluated in column experiments with domestic waste water. The columns were fed with waste water for 24 days. The column with only EAF had the best P removal performance (above 93% throughout the experiment). The speciation of the bound P was evaluated by P K-edge X-ray absorption near-edge structure (XANES) spectroscopy. In all five columns, the main P species of the slag packed in the outlet chamber was amorphous calcium phosphate (ACP). In samples from the inlet chambers, the contributions from crystalline Ca phosphates, P adsorbed on gibbsite and P adsorbed on ferrihydrite were usually much greater, suggesting a shift of P removal mechanism as the waste water travelled from the inlet to the outlet. The results provide strong evidence that P was predominantly removed by the slags through the formation of ACP. However, as the pH decreased with time due to the progressively lower dissolution of alkaline silicate minerals from the slag, the ACP was rendered unstable and hence redissolved, changing the P speciation. It is suggested that this process strongly affected the lifespan of the slag filters. Of the slags examined, EAF slag had the best P removal characteristics and BFS the worst, which probably reflected different dissolution rates of alkaline silicates in the slags.

  • 4.
    Zuo, Minyu
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Renman, Gunno
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Gustafsson, Jon Petter
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. Swedish University of Agricultural Sciences, Uppsala.
    Klysubun, Wantana
    Dual slag filters for enhanced phosphorus removal from domestic wastewater: performance and mechanismsIn: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499Article in journal (Refereed)
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf