Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Belda, Oscar
    et al.
    KTH, Superseded Departments, Chemistry.
    Moberg, Christina
    KTH, Superseded Departments, Chemistry.
    Molybdenum-catalyzed asymmetric allylic alkylations2004In: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 37, no 3, p. 159-167Article in journal (Refereed)
    Abstract [en]

    The highly regio- and enantioselective molybdenum-catalyzed allylic alkylation reaction has become a powerful synthetic tool during the past few years. This Account describes the achievements gained so far in the area, with special attention directed to the different chiral ligands that have been used for inducing chirality in the products, the range of allylic substrates and nucleophiles employed, mechanistic studies, and applications of the reaction in asymmetric syntheses.

  • 2.
    Duan, Lele
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Wang, Lei
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Li, Fusheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Li, Fei
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. State Key Lab of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology (DUT), Dalian, China.
    Highly Efficient Bioinspired Molecular Ru Water Oxidation Catalysts with Negatively Charged Backbone Ligands2015In: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 48, no 7, p. 2084-2096Article, review/survey (Refereed)
    Abstract [en]

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven-coordinate Ru-IV species was isolated as a reaction intermediate, shedding light on the reaction mechanisms of Ru-catalyzed water oxidation chemistry. Auxiliary ligands have dramatic effects on the water oxidation catalysis in terms of the reactivity and the reaction mechanism. For instance, Ru-bda (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts catalyze Ce-IV-driven water oxidation extremely fast via the radical coupling of two Ru-V=O species, while Ru-pda (H(2)pda = 1,10-phenanthroline-2,9-dicarboxylic acid) water oxidation catalysts catalyze the same reaction slowly via water nucleophilic attack on a Ru-V-O species. With a number of active Ru catalysts in hands, light driven water oxidation was accomplished using catalysts with low catalytic onset potentials. The structures of molecular catalysts could be readily tailored to introduce additional functional groups, which favors the fabrication of state-of-the-art Ru-based water oxidation devices, such as electrochemical water oxidation anodes and photo-electrochemical anodes. The development of efficient water oxidation catalysts has led to a step forward in the sustainable energy system.

  • 3. Larhed, M.
    et al.
    Moberg, Christina
    KTH, Superseded Departments, Chemistry.
    Hallberg, A.
    Microwave-accelerated homogeneous catalysis in organic chemistry2002In: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 35, no 9, p. 717-727Article, review/survey (Refereed)
    Abstract [en]

    The efficiency of microwave flash heating in accelerating organic transformations (reaction times reduced from days and hours to minutes and seconds) has recently-been proven in several different fields of organic chemistry. This specific account mainly summarizes our own experiences in developing rapid, robust, and selective microwave-assisted transition metal-catalyzed homogeneous reactions. Applications include selective Heck couplings, cross-couplings, and asymmetric substitutions. The science of green chemistry was developed to meet the increasing demand for environmentally benign chemical processes. We believe the combination of metal catalysis and microwave heating will be of importance in the search for green laboratory-scale synthesis.

  • 4. Liu, Li-Hong
    et al.
    Yan, Mingdi
    Portland State University.
    Perfluorophenyl Azides: New Applications in Surface Functionalization and Nanomaterial Synthesis2010In: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 43, no 11, p. 1434-1443Article, review/survey (Refereed)
    Abstract [en]

    A major challenge in materials science is the ongoing search for coupling agents that are readily synthesized, capable of versatile chemistry, able to easily functionalize materials and surfaces, and efficient in covalently linking organic and inorganic entities. A decade ago, we began a research program investigating perfluorophenylazides (PFPA) as the coupling agents in surface functionalization and nanomaterial synthesis. The p-substituted PFPAs are attractive heterobifunctional coupling agents because of their two distinct and synthetically distinguishable reactive centers: (i) the fluorinated phenylazide, which is capable of forming stable covalent adducts, and (ii) the functional group R, which can be tailored through synthesis. Two approaches have been undertaken for material synthesis and surface functionalization. The first method involves synthesizing PFPA bearing the first molecule or material with a functional linker R and then attaching the resulting PFPA to the second material by activating the azido group. In the second approach, the material surface is first functionalized with PFPA via functional center R, and coupling of the second molecule or material is achieved with the surface azido groups. In this Account, we review the design and protocols of the two approaches, providing examples in which PFPA derivatives were successfully used in material surface functionalization, ligand conjugation, and the synthesis of hybrid nanomaterials. The methods developed have proved to be general and versatile, and they are applicable to a wide range of materials (especially those that lack reactive functional groups or are difficult to derivatize) and to various substrates of polymers, oxides, carbon materials, and metal films. The coupling chemistry can be initiated by light, heat, and electrons. Patterned structures can be generated by selectively activating the areas of interest. Furthermore, the process is easy to perform, and light activation occurs in minutes, greatly facilitating the efficiency of the reaction. PFPAs indeed demonstrate many benefits as versatile surface coupling agents and offer opportunities for further exploration.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf