Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jonsson, B. Lars G.
    et al.
    KTH, Superseded Departments, Electromagnetic Theory.
    de Hoop, M. V.
    Wave field decomposition in anisotropic fluids: A spectral theory approach2001In: Acta Applicandae Mathematicae - An International Survey Journal on Applying Mathematics and Mathematical Applications, ISSN 0167-8019, E-ISSN 1572-9036, Vol. 67, no 2, p. 117-171Article in journal (Refereed)
    Abstract [en]

    An extension of directional wave field decomposition in acoustics from heterogenous isotropic media to generic heterogenous anisotropic media is established. We make a connection between the Dirichlet-to-Neumann map for a level plane, the solution to an algebraic Riccati operator equation, and a projector defined via a Dunford-Taylor type integral over the resolvent of a nonnormal, noncompact matrix operator with continuous spectrum. In the course of the analysis, the spectrum of the Laplace transformed acoustic system's matrix is analyzed and shown to separate into two nontrivial parts. The existence of a projector is established and using a generalized eigenvector procedure, we find the solution to the associated algebraic Riccati operator equation. The solution generates the decomposition of the wave field and is expressed in terms of the elements of a Dunford-Taylor type integral over the resolvent.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf