kth.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Agram, Nacira
    et al.
    KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
    Labed, Saloua
    Univ Mohamed Khider Biskra, Biskra, Algeria..
    Oksendal, Bernt
    Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway..
    Yakhlef, Samia
    Univ Mohamed Khider Biskra, Biskra, Algeria..
    Singular Control Of Stochastic Volterra Integral Equations2022In: Acta Mathematica Scientia, ISSN 0252-9602, E-ISSN 1003-3998, Vol. 42, no 3, p. 1003-1017Article in journal (Refereed)
    Abstract [en]

    This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations, where the solution X-u,X-xi(t) =X(t) is given by X(t) = phi(t) + integral(t)(0) b (t, s, X(s), u(s)) ds + integral(t)(0) sigma (t, s, X(s), u(s)) dB(s) + integral(t )(0)h (t, s) d xi(s). Here dB(s) denotes the Brownian motion Ito type differential, xi denotes the singular control (singular in time t with respect to Lebesgue measure) and u denotes the regular control (absolutely continuous with respect to Lebesgue measure). Such systems may for example be used to model harvesting of populations with memory, where X(t) represents the population density at time t, and the singular control process xi represents the harvesting effort rate. The total income from the harvesting is represented by J(u, xi) = E[integral(T)(0) f(0)(t, X(t), u(t))dt + integral(T)(0) f(1)(t, X(t))d xi(t) + g(X(T))], for the given functions f(0), f(1) and g, where T > 0 is a constant denoting the terminal time of the harvesting. Note that it is important to allow the controls to be singular, because in some cases the optimal controls are of this type. Using Hida-Malliavin calculus, we prove sufficient conditions and necessary conditions of optimality of controls. As a consequence, we obtain a new type of backward stochastic Volterra integral equations with singular drift. Finally, to illustrate our results, we apply them to discuss optimal harvesting problems with possibly density dependent prices.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf