kth.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Agram, Nacira
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).
    Labed, Saloua
    Univ Mohamed Khider Biskra, Biskra, Algeria..
    Oksendal, Bernt
    Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway..
    Yakhlef, Samia
    Univ Mohamed Khider Biskra, Biskra, Algeria..
    Singular Control Of Stochastic Volterra Integral Equations2022Ingår i: Acta Mathematica Scientia, ISSN 0252-9602, E-ISSN 1003-3998, Vol. 42, nr 3, s. 1003-1017Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations, where the solution X-u,X-xi(t) =X(t) is given by X(t) = phi(t) + integral(t)(0) b (t, s, X(s), u(s)) ds + integral(t)(0) sigma (t, s, X(s), u(s)) dB(s) + integral(t )(0)h (t, s) d xi(s). Here dB(s) denotes the Brownian motion Ito type differential, xi denotes the singular control (singular in time t with respect to Lebesgue measure) and u denotes the regular control (absolutely continuous with respect to Lebesgue measure). Such systems may for example be used to model harvesting of populations with memory, where X(t) represents the population density at time t, and the singular control process xi represents the harvesting effort rate. The total income from the harvesting is represented by J(u, xi) = E[integral(T)(0) f(0)(t, X(t), u(t))dt + integral(T)(0) f(1)(t, X(t))d xi(t) + g(X(T))], for the given functions f(0), f(1) and g, where T > 0 is a constant denoting the terminal time of the harvesting. Note that it is important to allow the controls to be singular, because in some cases the optimal controls are of this type. Using Hida-Malliavin calculus, we prove sufficient conditions and necessary conditions of optimality of controls. As a consequence, we obtain a new type of backward stochastic Volterra integral equations with singular drift. Finally, to illustrate our results, we apply them to discuss optimal harvesting problems with possibly density dependent prices.

1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf