Please wait ... |

Refine search result

CiteExportLink to result list
http://kth.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22journalId%22%3A%227648%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt483_recordPermLink",{id:"formSmash:upper:j_idt483:recordPermLink",widgetVar:"widget_formSmash_upper_j_idt483_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt483_j_idt485",{id:"formSmash:upper:j_idt483:j_idt485",widgetVar:"widget_formSmash_upper_j_idt483_j_idt485",target:"formSmash:upper:j_idt483:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt501",{id:"formSmash:upper:j_idt501",widgetVar:"widget_formSmash_upper_j_idt501",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt501",e:"change",f:"formSmash",p:"formSmash:upper:j_idt501",u:"formSmash:upper:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt512",{id:"formSmash:upper:j_idt512",widgetVar:"widget_formSmash_upper_j_idt512",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt512",e:"change",f:"formSmash",p:"formSmash:upper:j_idt512",u:"formSmash:upper:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt522",{id:"formSmash:upper:j_idt522",widgetVar:"widget_formSmash_upper_j_idt522"});});

- html
- text
- asciidoc
- rtf

Rows per page

- 5
- 10
- 20
- 50
- 100
- 250

Sort

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

Select

The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.

1. Abdulle, Assyr et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt588",{id:"formSmash:items:resultList:0:j_idt588",widgetVar:"widget_formSmash_items_resultList_0_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Henning, PatrickKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Localized orthogonal decomposition method for the wave equation with a continuum of scales2017In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 86, no 304, p. 549-587Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:0:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_0_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This paper is devoted to numerical approximations for the wave equation with a multiscale character. Our approach is formulated in the framework of the Localized Orthogonal Decomposition (LOD) interpreted as a numerical homogenization with an L2-projection. We derive explicit convergence rates of the method in the L∞(L2)-, W1,∞(L2)-and L∞(H1)-norms without any assumptions on higher order space regularity or scale-separation. The order of the convergence rates depends on further graded assumptions on the initial data. We also prove the convergence of the method in the framework of G-convergence without any structural assumptions on the initial data, i.e. without assuming that it is well-prepared. This rigorously justifies the method. Finally, the performance of the method is demonstrated in numerical experiments.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:0:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 2. Ariel, Gil PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt585",{id:"formSmash:items:resultList:1:j_idt585",widgetVar:"widget_formSmash_items_resultList_1_j_idt585",onLabel:"Ariel, Gil ",offLabel:"Ariel, Gil ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt588",{id:"formSmash:items:resultList:1:j_idt588",widgetVar:"widget_formSmash_items_resultList_1_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Engquist, BjörnDepartment of Mathematics, The University of Texas at Austin, Austin, USA.Tsai, RichardDepartment of Mathematics, The University of Texas at Austin, Austin, USA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A multiscale method for stiff ordinary differential equations with resonance2009In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 78, no 266, p. 929-956Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:1:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_1_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); A multiscale method for computing the effective behavior of a class of stiff and highly oscillatory ordinary differential equations (ODEs) is presented. The oscillations may be in resonance with one another and thereby generate hidden slow dynamics. The proposed method relies on correctly tracking a set of slow variables whose dynamics is closed up to perturbation, and is sufficient to approximate any variable and functional that are slow under the dynamics of the ODE. This set of variables is detected numerically as a preprocessing step in the numerical methods. Error and complexity estimates are obtained. The advantages of the method is demonstrated with a few examples, including a commonly studied problem of Fermi, Pasta, and Ulam.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:1:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 3. Björn, Anders et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt588",{id:"formSmash:items:resultList:2:j_idt588",widgetVar:"widget_formSmash_items_resultList_2_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Riesel, HansKTH, Superseded Departments, Numerical Analysis and Computer Science, NADA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Factors of generalized fermat numbers1998In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 67, no 221, p. 441-446Article in journal (Refereed)4. Björn, Anders et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt588",{id:"formSmash:items:resultList:3:j_idt588",widgetVar:"widget_formSmash_items_resultList_3_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Riesel, HansKTH, School of Computer Science and Communication (CSC), Numerical Analysis and Computer Science, NADA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Factors of generalized fermat numbers (vol 67, pg 441, 1998)2005In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 74, no 252, p. 2099-2099Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:3:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_3_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We note that three factors are missing from Table 1 in Factors of generalized Fermat numbers by A. Bjorn and H. Riesel published in Math. Comp. 67 (1998), 441-446.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:3:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 5. Björn, Anders et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt588",{id:"formSmash:items:resultList:4:j_idt588",widgetVar:"widget_formSmash_items_resultList_4_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Riesel, HansKTH, School of Computer Science and Communication (CSC), Numerical Analysis and Computer Science, NADA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); FACTORS OF GENERALIZED FERMAT NUMBERS (vol 67, pg 441, 1998): Table errata 22011In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 80, no 275, p. 1865-1866Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:4:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_4_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We note that one more factor is missing from Table 1 in Bjorn-Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), 441 446, in addition to the three already reported upon in Bjorn-Riesel, Table errata to "Factors of generalized Fermat numbers", Math. Comp. 74 (2005), p. 2099.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:4:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 6. Brenan, K.E. et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt588",{id:"formSmash:items:resultList:5:j_idt588",widgetVar:"widget_formSmash_items_resultList_5_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Engquist, BjörnKTH, School of Computer Science and Communication (CSC), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Backward differentiation approximations of nonlinear differential/algebraic systems1988In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 51, no 84, p. 659-676Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:5:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_5_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Finite-difference approximations of dynamical systems modeled by nonlinear, semiexplicit, differential/algebraic equations are analyzed. Convergence for the backward differentiation method is proved for index two and index three problems when the numerical initial values obey certain constraints. The appropriate asymptotic convergence rates and the leading error terms are determined.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:5:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 7. Engquist, Björn PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt585",{id:"formSmash:items:resultList:6:j_idt585",widgetVar:"widget_formSmash_items_resultList_6_j_idt585",onLabel:"Engquist, Björn ",offLabel:"Engquist, Björn ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt588",{id:"formSmash:items:resultList:6:j_idt588",widgetVar:"widget_formSmash_items_resultList_6_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Computer Science and Communication (CSC), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Gustafsson, BPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Steady state computations for wave propagation problems1987In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 49, p. 39-64Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:6:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_6_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The behavior of difference approximations of hyperbolic partial differential equations as time t → ∞ is studied. The rate of convergence to steady state is analyzed theoretically and expe imentally for the advection equation and the linearized Euler equations. The choice of difference formulas and boundary conditions strongly influences the rate of convergence in practical steady state calculations. In particular it is shown that upwind difference methods and characteristic boundary conditions have very attractive convergence properties

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:6:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 8. Engquist, Björn PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt585",{id:"formSmash:items:resultList:7:j_idt585",widgetVar:"widget_formSmash_items_resultList_7_j_idt585",onLabel:"Engquist, Björn ",offLabel:"Engquist, Björn ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt588",{id:"formSmash:items:resultList:7:j_idt588",widgetVar:"widget_formSmash_items_resultList_7_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Computer Science and Communication (CSC), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Lötstedt, PSjögreen, BPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Nonlinear filters for efficient shock computation1989In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 52, no 186, p. 509-537Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:7:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_7_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); A new type of methods for the numerical approximation of hyperbolic conservation laws with discontinuous solution is introduced. The methods are based on standard finite difference schemes. The difference solution is processed with a nonlinear conservation form filter at every time level to eliminate spurious oscillations near shocks. It is proved that the filter can control the total variation of the solution and also produce sharp discrete shocks. The method is simpler and faster than many other high resolution schemes for shock calculations. Numerical examples in one and two space dimensions are presented.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:7:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 9. Engquist, Björn PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt585",{id:"formSmash:items:resultList:8:j_idt585",widgetVar:"widget_formSmash_items_resultList_8_j_idt585",onLabel:"Engquist, Björn ",offLabel:"Engquist, Björn ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt588",{id:"formSmash:items:resultList:8:j_idt588",widgetVar:"widget_formSmash_items_resultList_8_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Computer Science and Communication (CSC), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Majda, APrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Absorbing boundary conditions for the numerical simulation of waves1997In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 1, p. 629-651Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:8:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_8_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In practical calculations, it is often essential to introduce artificial boundaries to limit the area of computation. Here we develop a systematic method for obtaining a hierarchy of local boundary conditions at these artifical boundaries. These boundary conditions not only guarantee stable difference approximations, but also minimize the (unphysical) artificial reflections that occur at the boundaries.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:8:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 10. Engquist, Björn PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt585",{id:"formSmash:items:resultList:9:j_idt585",widgetVar:"widget_formSmash_items_resultList_9_j_idt585",onLabel:"Engquist, Björn ",offLabel:"Engquist, Björn ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt588",{id:"formSmash:items:resultList:9:j_idt588",widgetVar:"widget_formSmash_items_resultList_9_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Computer Science and Communication (CSC), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Osher, SPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Stable and entropy satisfying approximations for transonic flow calculations1980In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 34, no 149, p. 45-75Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:9:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_9_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Finite difference approximations for the small disturbance equation of transonic flow are developed and analyzed. New schemes of the Cole-Murman type are presented fpr which nonlinear stability is proved. The Cole-Murman scheme may have entropy violating expansion shocks as solutions. In the new schemes the switch between the subsonic and supersonic domains is designed such that these nonphysical shocks are guaranteed not to occur. Results from numercial calculations are given which illustrate these conclusions

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:9:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 11. Engquist, Björn PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt585",{id:"formSmash:items:resultList:10:j_idt585",widgetVar:"widget_formSmash_items_resultList_10_j_idt585",onLabel:"Engquist, Björn ",offLabel:"Engquist, Björn ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt588",{id:"formSmash:items:resultList:10:j_idt588",widgetVar:"widget_formSmash_items_resultList_10_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Computer Science and Communication (CSC), Numerical Analysis and Computer Science, NADA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tsai, Y. H.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Heterogeneous multiscale methods for stiff ordinary differential equations2005In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 74, no 252, p. 1707-1742Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:10:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_10_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The heterogeneous multiscale methods (HMM) is a general framework for the numerical approximation of multiscale problems. It is here developed for ordinary differential equations containing different time scales. Stability and convergence results for the proposed HMM methods are presented together with numerical tests. The analysis covers some existing methods and the new algorithms that are based on higher-order estimates of the effective force by kernels satisfying certain moment conditions and regularity properties. These new methods have superior computational complexity compared to traditional methods for stiff problems with oscillatory solutions.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:10:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 12. Gallouët, Thierry PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt585",{id:"formSmash:items:resultList:11:j_idt585",widgetVar:"widget_formSmash_items_resultList_11_j_idt585",onLabel:"Gallouët, Thierry ",offLabel:"Gallouët, Thierry ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt588",{id:"formSmash:items:resultList:11:j_idt588",widgetVar:"widget_formSmash_items_resultList_11_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Université de Provence.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Larcher, AurélienKTH, School of Computer Science and Communication (CSC), Numerical Analysis, NA (closed 2012-06-30).Latché, Jean-ClaudeInstitut de Sûreté et de Radioprotection Nucléaire.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Convergence of a finite volume scheme for the convection-diffusion equation with L1 data2012In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 81, no 279, p. 1429-1454Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:11:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_11_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper, we prove the convergence of a finite-volume schemefor the time-dependent convection–diffusion equation with an L1 right-handside. To this purpose, we first prove estimates for the discrete solution andfor its discrete time and space derivatives. Then we show the convergence of asequence of discrete solutions obtained with more and more refined discretiza-tions, possibly up to the extraction of a subsequence, to a function which metsthe regularity requirements of the weak formulation of the problem; to thispurpose, we prove a compactness result, which may be seen as a discrete ana-logue to Aubin-Simon’s lemma. Finally, such a limit is shown to be indeed aweak solution.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:11:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 13. Hanke, Michael PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt585",{id:"formSmash:items:resultList:12:j_idt585",widgetVar:"widget_formSmash_items_resultList_12_j_idt585",onLabel:"Hanke, Michael ",offLabel:"Hanke, Michael ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt588",{id:"formSmash:items:resultList:12:j_idt588",widgetVar:"widget_formSmash_items_resultList_12_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); März, RoswithaTischendorf, CarenWeinmüller, E.Wurm, S.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Least-Squares Collocation for Higher-Index Linear Differential-Algebraic Equations: Estimating the Instability Threshold2019In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 88, no 318, p. 1647-1683Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:12:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_12_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Differential-algebraic equations with higher-index give rise to essentially ill-posed problems. The overdetermined least-squares collocation for differential-algebraic equations which has been proposed recently is not much more computationally expensive than standard collocation methods for ordinary differential equations. This approach has displayed impressive convergence properties in numerical experiments, however, theoretically, till now convergence could be established merely for regular linear differential-algebraic equations with constant coefficients. We present now an estimate of the instability threshold which serves as the basic key for proving convergence for general regular linear differential-algebraic equations.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:12:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 14. Johnson, Claes et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt588",{id:"formSmash:items:resultList:13:j_idt588",widgetVar:"widget_formSmash_items_resultList_13_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Szepessy, AndersHansbo, PeterPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On the convergence of shock-capturing streamline diﬀusion ﬁnite element methods for hyperbolic conservation laws1990In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 54, no 189, p. 107-129Article in journal (Refereed)15. Kublik, Catherine PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt585",{id:"formSmash:items:resultList:14:j_idt585",widgetVar:"widget_formSmash_items_resultList_14_j_idt585",onLabel:"Kublik, Catherine ",offLabel:"Kublik, Catherine ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt588",{id:"formSmash:items:resultList:14:j_idt588",widgetVar:"widget_formSmash_items_resultList_14_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Univ Dayton, Dept Math, 300 Coll Pk, Dayton, OH 45469 USA..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tsai, Yen-Hsi RichardKTH, School of Engineering Sciences (SCI), Mathematics (Dept.). niv Texas Austin, Dept Math, 2515 Speedway, Austin, TX 78712 USA.;Univ Texas Austin, Inst Computat Engn & Sci, 2515 Speedway, Austin, TX 78712 USA..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); An extrapolative approach to integration over hypersurfaces in the level set framework2018In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 87, no 313, p. 2365-2392Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:14:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_14_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We provide a new approach for computing integrals over hypersurfaces in the level set framework. The method is based on the discretization (via simple Riemann sums) of the classical formulation used in the level set framework, with the choice of specific kernels supported on a tubular neighborhood around the interface to approximate the Dirac delta function. The novelty lies in the choice of kernels, specifically its number of vanishing moments, which enables accurate computations of integrals over a class of closed, continuous, piecewise smooth, curves or surfaces; e.g., curves in two dimensions that contain a finite number of corners. We prove that for smooth interfaces, if the kernel has enough vanishing moments (related to the dimension of the embedding space), the analytical integral formulation coincides exactly with the integral one wishes to calculate. For curves with corners and cusps, the formulation is not exact but we provide an analytical result relating the severity of the corner or cusp with the width of the tubular neighborhood. We show numerical examples demonstrating the capability of the approach, especially for integrating over piecewise smooth interfaces and for computing integrals where the integrand is only Lipschitz continuous or has an integrable singularity.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:14:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 16. Liu, Hailiang et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt588",{id:"formSmash:items:resultList:15:j_idt588",widgetVar:"widget_formSmash_items_resultList_15_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Runborg, OlofKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA. KTH, Centres, SeRC - Swedish e-Science Research Centre.Tanushev, Nicolay M.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Error estimates for Gaussian beam superpositions2013In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 82, no 282, p. 919-952Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:15:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_15_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Gaussian beams are asymptotically valid high frequency solutions to hyperbolic partial differential equations, concentrated on a single curve through the physical domain. They can also be extended to some dispersive wave equations, such as the Schrodinger equation. Superpositions of Gaussian beams provide a powerful tool to generate more general high frequency solutions that are not necessarily concentrated on a single curve. This work is concerned with the accuracy of Gaussian beam superpositions in terms of the wavelength epsilon. We present a systematic construction of Gaussian beam superpositions for all strictly hyperbolic and Schrodinger equations subject to highly oscillatory initial data of the form Ae(i Phi/) (epsilon). Through a careful estimate of an oscillatory integral operator, we prove that the k-th order Gaussian beam superposition converges to the original wave field at a rate proportional to epsilon(k/2) in the appropriate norm dictated by the well-posedness estimate. In particular, we prove that the Gaussian beam superposition converges at this rate for the acoustic wave equation in the standard, epsilon-scaled, energy norm and for the Schrodinger equation in the L-2 norm. The obtained results are valid for any number of spatial dimensions and are unaffected by the presence of caustics. We present a numerical study of convergence for the constant coefficient acoustic wave equation in R-2 to analyze the sharpness of the theoretical results.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:15:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 17. Möller, Niels PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt585",{id:"formSmash:items:resultList:16:j_idt585",widgetVar:"widget_formSmash_items_resultList_16_j_idt585",onLabel:"Möller, Niels ",offLabel:"Möller, Niels ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Electrical Engineering (EES), Automatic Control.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On Schonhage's algorithm and subquadratic integer GCD computation2008In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 77, no 261, p. 589-607Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:16:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_16_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We describe a new subquadratic left-to-right GCD algorithm, inspired by Schonhage's algorithm for reduction of binary quadratic forms, and compare it to the first subquadratic GCD algorithm discovered by Knuth and Schonhage, and to the binary recursive GCD algorithm of Stehle and Zimmer-mann. The new GCD algorithm runs slightly faster than earlier algorithms, and it is much simpler to implement. The key idea is to use a stop condition for HGCD that is based not on the size of the remainders, but on the size of the next difference. This subtle change is sufficient to eliminate the back-up steps that are necessary in all previous subquadratic left-to-right GCD algorithms. The subquadratic GCD algorithms all have the same asymptotic running time, O(n(log n)(2) log log n).

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:16:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 18. Sjögreen, Björn PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt585",{id:"formSmash:items:resultList:17:j_idt585",widgetVar:"widget_formSmash_items_resultList_17_j_idt585",onLabel:"Sjögreen, Björn ",offLabel:"Sjögreen, Björn ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt588",{id:"formSmash:items:resultList:17:j_idt588",widgetVar:"widget_formSmash_items_resultList_17_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Computer Science and Communication (CSC), Numerical Analysis and Computer Science, NADA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Gustavsson, KatarinaKTH, School of Computer Science and Communication (CSC), Numerical Analysis, NA.Gudmundsson, Reynir LeviKTH, School of Computer Science and Communication (CSC), Numerical Analysis and Computer Science, NADA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A model for peak formation in the two-phase equations2007In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 76, no 260, p. 1925-1940Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:17:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_17_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We present a hyperbolic-elliptic model problem related to the equations of two-phase fluid flow. The model problem is solved numerically, and properties of its solution are presented. The model equation is well-posed when linearized around a constant state, but there is a strong focusing effect, and very large solutions exist at certain times. We prove that the model problem has a smooth solution for bounded times.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:17:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 19. Szepessy, Anders PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Convergence of a shock-capturing streamline diffusion ﬁnite element method for a conservation law in two space dimensions1989In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, p. 527-545Article in journal (Refereed)20. Szepessy, Anders et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt588",{id:"formSmash:items:resultList:19:j_idt588",widgetVar:"widget_formSmash_items_resultList_19_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Johnson, ClaesPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On the convergence of a finite element method for a nonlinear hyperbolic conservation law1987In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 49, no 180, p. 427-444Article in journal (Refereed)21. Wang, Siyang PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt585",{id:"formSmash:items:resultList:20:j_idt585",widgetVar:"widget_formSmash_items_resultList_20_j_idt585",onLabel:"Wang, Siyang ",offLabel:"Wang, Siyang ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt588",{id:"formSmash:items:resultList:20:j_idt588",widgetVar:"widget_formSmash_items_resultList_20_j_idt588",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Dept Informat Technol, Div Sci Comp, Box 337, SE-75105 Uppsala, Sweden.;Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden.;Univ Gothenburg, SE-41296 Gothenburg, Sweden..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Nissen, AnnaKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA. Univ Bergen, Dept Math, POB 7803, N-5020 Bergen, Norway.Kreiss, GunillaDept Informat Technol, Div Sci Comp, Box 337, SE-75105 Uppsala, Sweden..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Convergence Of Finite Difference Methods For The Wave Equation in Two Space Dimensions2018In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 87, no 314, p. 2737-2763Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt623_0_j_idt624",{id:"formSmash:items:resultList:20:j_idt623:0:j_idt624",widgetVar:"widget_formSmash_items_resultList_20_j_idt623_0_j_idt624",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); When using a finite difference method to solve an initial-boundary-value problem, the truncation error is often of lower order at a few grid points near boundaries than in the interior. Normal mode analysis is a powerful tool to analyze the effect of the large truncation error near boundaries on the overall convergence rate, and has been used in many research works for different equations. However, existing work only concerns problems in one space dimension. In this paper, we extend the analysis to problems in two space dimensions. The two dimensional analysis is based on a diagonalization procedure that decomposes a two dimensional problem to many one dimensional problems of the same type. We present a general framework of analyzing convergence for such one dimensional problems, and explain how to obtain the result for the corresponding two dimensional problem. In particular, we consider two kinds of truncation errors in two space dimensions: the truncation error along an entire boundary, and the truncation error localized at a few grid points close to a corner of the computational domain. The accuracy analysis is in a general framework, here applied to the second order wave equation. Numerical experiments corroborate our accuracy analysis.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:20:j_idt623:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500});

CiteExportLink to result list
http://kth.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22journalId%22%3A%227648%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_lower_j_idt903_recordPermLink",{id:"formSmash:lower:j_idt903:recordPermLink",widgetVar:"widget_formSmash_lower_j_idt903_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt903_j_idt905",{id:"formSmash:lower:j_idt903:j_idt905",widgetVar:"widget_formSmash_lower_j_idt903_j_idt905",target:"formSmash:lower:j_idt903:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt921",{id:"formSmash:lower:j_idt921",widgetVar:"widget_formSmash_lower_j_idt921",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt921",e:"change",f:"formSmash",p:"formSmash:lower:j_idt921",u:"formSmash:lower:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt932",{id:"formSmash:lower:j_idt932",widgetVar:"widget_formSmash_lower_j_idt932",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt932",e:"change",f:"formSmash",p:"formSmash:lower:j_idt932",u:"formSmash:lower:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt942",{id:"formSmash:lower:j_idt942",widgetVar:"widget_formSmash_lower_j_idt942"});});

- html
- text
- asciidoc
- rtf