Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    von Holst, Hans
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering. Karolinska Institutet, Sweden .
    Li, Xiaogai
    KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering.
    Decompressive craniectomy (DC) at the non-injured side of the brain has the potential to improve patient outcome as measured with computational simulation2014In: Acta Neurochirurgica, ISSN 0001-6268, E-ISSN 0942-0940, Vol. 156, no 10, p. 1961-1967Article in journal (Refereed)
    Abstract [en]

    Decompressive craniectomy (DC) is efficient in reducing the intracranial pressure in several complicated disorders such as traumatic brain injury (TBI) and stroke. The neurosurgical procedure has indeed reduced the number of deaths. However, parallel with the reduced fatal cases, the number of vegetative patients has increased significantly. Mechanical stretching in axonal fibers has been suggested to contribute to the unfavorable outcome. Thus, there is a need for improving treatment procedures that allow both reduced fatal and vegetative outcomes. The hypothesis is that by performing the DC at the non-injured side of the head, stretching of axonal fibers at the injured brain tissue can be reduced, thereby having the potential to improve patient outcome. Six patients, one with TBI and five with stroke, were treated with DC and where each patient's pre- and postoperative computerized tomography (CT) were analyzed and transferred to a finite element (FE) model of the human head and brain to simulate DC both at the injured and non-injured sides of the head. Poroelastic material was used to simulate brain tissue. The computational simulation showed slightly to substantially increased axonal strain levels over 40 % on the injured side where the actual DC had been performed in the six patients. However, when the simulation DC was performed on the opposite, non-injured side, there was a substantial reduction in axonal strain levels at the injured side of brain tissue. Also, at the opposite, non-injured side, the axonal strain level was substantially lower in the brain tissue. The reduced axonal strain level could be verified by analyzing a number of coronal sections in each patient. Further analysis of axial slices showed that falx may tentatively explain part of the different axonal strain levels between the DC performances at injured and opposite, non-injured sides of the head. By using a FE method it is possible to optimize the DC procedure to a non-injured area of the head thereby having the potential to reduce axonal stretching at the injured brain tissue. The postoperative DC stretching of axonal fibers may be influenced by different anatomical structures including falx. It is suggested that including computational FE simulation images may offer guidance to reduce axonal strain level tailoring the anatomical location of DC performance in each patient.

  • 2.
    von Holst, Hans
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering. Section of Neurosurgery, Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden .
    Li, Xiaogai
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Neuronic Engineering.
    Higher impact energy in traumatic brain injury interferes with noncovalent and covalent bonds resulting in cytotoxic brain tissue edema as measured with computational simulation2015In: Acta Neurochirurgica, ISSN 0001-6268, E-ISSN 0942-0940, Vol. 157, no 4, p. 639-648Article in journal (Refereed)
    Abstract [en]

    Cytotoxic brain tissue edema is a complicated secondary consequence of ischemic injury following cerebral diseases such as traumatic brain injury and stroke. To some extent the pathophysiological mechanisms are known, but far from completely. In this study, a hypothesis is proposed in which protein unfolding and perturbation of nucleotide structures participate in the development of cytotoxic edema following traumatic brain injury (TBI). An advanced computational simulation model of the human head was used to simulate TBI. The consequences of kinetic energy transfer following an external dynamic impact were analyzed including the intracranial pressure (ICP), strain level, and their potential influences on the noncovalent and covalent bonds in folded protein structures. The result shows that although most of the transferred kinetic energy is absorbed in the skin and three bone layers, there is a substantial amount of energy reaching the gray and white matter. The kinetic energy from an external dynamic impact has the theoretical potential to interfere not only with noncovalent but also covalent bonds when high enough. The induced mechanical strain and pressure may further interfere with the proteins, which accumulate water molecules into the interior of the hydrophobic structures of unfolded proteins. Simultaneously, the noncovalent energy-rich bonds in nucleotide adenosine-triphosphates may be perturbed as well. Based on the analysis of the numerical simulation data, the kinetic energy from an external dynamic impact has the theoretical potential to interfere not only with noncovalent, but also with covalent bonds when high enough. The subsequent attraction of increased water molecules into the unfolded protein structures and disruption of adenosine-triphosphate bonds could to some extent explain the etiology to cytotoxic edema.

  • 3.
    von Holst, Hans
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Li, Xiaogai
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Increased strain levels and water content in brain tissue after decompressive craniotomy2012In: Acta Neurochirurgica, ISSN 0001-6268, E-ISSN 0942-0940, Vol. 154, no 9, p. 1583-1593Article in journal (Refereed)
    Abstract [en]

    At present there is a debate on the effectiveness of the decompressive craniotomy (DC). Stretching of axons was speculated to contribute to the unfavourable outcome for the patients. The quantification of strain level could provide more insight into the potential damage to the axons. The aim of the present study was to evaluate the strain level and water content (WC) of the brain tissue for both the pre- and post-craniotomy period. The stretching of brain tissue was quantified retrospectively based on the computerised tomography (CT) images of six patients before and after DC by a non-linear image registration method. WC was related to specific gravity (SG), which in turn was related to the Hounsfield unit (HU) value in the CT images by a photoelectric correction according to the chemical composition of brain tissue. For all the six patients, the strain level showed a substantial increase in the brain tissue close to the treated side of DC compared with that found at the pre-craniotomy period and ranged from 24 to 55 % at the post-craniotomy period. Increase of strain level was also observed at the brain tissue opposite to the treated side, however, to a much lesser extent. The mean area of craniotomy was found to be 91.1 +/- 12.7 cm(2). The brain tissue volume increased from 27 to 127 ml, corresponding to 1.65 % and 8.13 % after DC in all six patients. Also, the increased volume seemed to correlate with increased strain level. Specifically, the overall WC of brain tissue for two patients evaluated presented a significant increase after the treatment compared with the condition seen before the treatment. Furthermore, the Glasgow Coma Scale (GCS) improved in four patients after the craniotomy, while two patients died. The GCS did not seem to correlate with the strain level. We present a new numerical method to quantify the stretching or strain level of brain tissue and WC following DC. The significant increase in strain level and WC in the post-craniotomy period may cause electrophysiological changes in the axons, resulting in loss of neuronal function. Hence, this new numerical method provides more insight of the consequences following DC and may be used to better define the most optimal size and area of the craniotomy in reducing the strain level development.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf