Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Denker, M
    et al.
    Roux, S
    Lindén, Henrik
    Norwegian Univ Life Sci, Dept Math Sci & Technol.
    Diesmann, M
    Riehle, A
    Grün, S
    The local field potential reflects surplus spike synchrony2011In: Cerebral Cortex, ISSN 1047-3211, E-ISSN 1460-2199, ISSN 1047-3211, Vol. 21, no 12, p. 2681-2695Article in journal (Refereed)
    Abstract [en]

     While oscillations of the local field potential (LFP) are commonly attributed to the synchronization of neuronal firing rate on the same time scale, their relationship to coincident spiking in the millisecond range is unknown. Here, we present experimental evidence to reconcile the notions of synchrony at the level of spiking and at the mesoscopic scale. We demonstrate that only in time intervals of significant spike synchrony that cannot be explained on the basis of firing rates, coincident spikes are better phase locked to the LFP than predicted by the locking of the individual spikes. This effect is enhanced in periods of large LFP amplitudes. A quantitative model explains the LFP dynamics by the orchestrated spiking activity in neuronal groups that contribute the observed surplus synchrony. From the correlation analysis, we infer that neurons participate in different constellations but contribute only a fraction of their spikes to temporally precise spike configurations. This finding provides direct evidence for the hypothesized relation that precise spike synchrony constitutes a major temporally and spatially organized component of the LFP.

  • 2. Ferri, Stefania
    et al.
    Pauwels, Karl
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Rizzolatti, Giacomo
    Orban, Guy
    Stereoscopically Observing Manipulative Actions2016In: Cerebral Cortex, ISSN 1047-3211, E-ISSN 1460-2199Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors “stimulus type” (action, static control, and dynamic control), “stereopsis” (present, absent) and “viewpoint” (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior.

  • 3. Keimpema, Erik
    et al.
    Zheng, Kang
    Barde, Swapnali Shantaram
    Berghuis, Paul
    Dobszay, Marton B.
    Schnell, Robert
    Mulder, Jan
    KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska Institute, Sweden.
    Luiten, Paul G. M.
    Xu, Zhiqing David
    Runesson, Johan
    Langel, Ulo
    Lu, Bai
    Hökfelt, Tomas
    Harkany, Tibor
    GABAergic Terminals Are a Source of Galanin to Modulate Cholinergic Neuron Development in the Neonatal Forebrain2014In: Cerebral Cortex, ISSN 1047-3211, E-ISSN 1460-2199, Vol. 24, no 12, p. 3277-3288Article in journal (Refereed)
    Abstract [en]

    The distribution and (patho-) physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with.-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain.

  • 4.
    Schnepel, Philipp
    et al.
    University of California Berkeley, USA.
    Kumar, Arvind
    Bernstein Center Freiburg, Germany and University of Freiburg, Germany.
    Zohar, Mihael
    University of Freiburg, Germany.
    Aertsen, Ad
    University of Freiburg, Germany.
    Boucsein, Clemens
    University of Freiburg, Germany.
    Physiology and impact of horizontal connections in rat neocortex2014In: Cerebral Cortex, ISSN 1047-3211, E-ISSN 1460-2199Article in journal (Refereed)
    Abstract [en]

    Cortical information processing at the cellular level has predominantly been studied in local networks, which are dominated by strong vertical connectivity between layers. However, recent studies suggest that the bulk of axons targeting pyramidal neurons most likely originate from outside this local range, emphasizing the importance of horizontal connections. We mapped a subset of these connections to L5B pyramidal neurons in rat somatosensory cortex with photostimulation, identifying intact projections up to a lateral distance of 2 mm. Our estimates of the spatial distribution of cells presynaptic to L5B pyramids support the idea that the majority is located outside the local volume. The synaptic physiology of horizontal connections does not differ markedly from that of local connections, whereas the layer and cell-type-dependent pattern of innervation does. Apart from L2/3, L6A provides a strong source of horizontal connections. Implementing our data into a spiking neuronal network model shows that more horizontal connections promote robust asynchronous ongoing activity states and reduce noise correlations in stimulus-induced activity.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf