kth.sePublications
Change search
Refine search result
1234567 1 - 50 of 754
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aalto, Jonatan
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Neuman, Elisabeth
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Comparison of Punching Shear Design Provisions for Flat Slabs2017Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Abstract

    A new generation of EN 1992-1-1 (2004) also known as Eurocode 2 is under development

    and currently there is a set of proposed provisions regarding section 6.4

    about punching shear, PT1prEN 1992-1-1(2017). It was of interest to compare the

    proposal with the current punching shear design provisions.

    The aim of this master thesis was to compare the punching shear resistance obtained

    in accordance with both design codes. Furthermore the eect of some parameters

    on the resistance was to be compared. It was also of interest to evaluate the userfriendliness

    of the proposal.

    In order to meet the aim, a case study of a real  at slab with drop panels was performed

    together with a parametric study of a pure ctive  at slab. The parametric

    study was performed for inner, edge and corner columns in the cases prestressed,

    without and with shear reinforcement.

    It was concluded that the distance

    av from the column axis to the contra  exural

    location has a big in uence on the punching shear resistance. The factor

    ddg

    considering concrete type and aggregate properties also has a big impact on the resistance.

    The simplied estimation of

    av according to 6.4.3(2) in PT1prEN 1992-1-1

    (2017) may be inaccurate in some cases.

    The length

    b0 of the control perimeter has a larger eect on the resistance in EN

    1992-1-1 (2004) than in PT1prEN 1992-1-1 (2017).

    In PT1prEN 1992-1-1 (2017), studs located outside the second row has no impact

    on the resistance.

    The tensioning force in a prestressed  at slab has a larger in uence on the resistance

    in PT1prEN 1992-1-1 (2017) than in EN 1992-1-1 (2004). Furthermore,

    the reinforcement ratio is increased by the tendons, and thus aect the resistance in

    PT1prEN 1992-1-1 (2017).

    Clearer provisions for the denition of the support strip

    bs for corners and ends

    of walls are needed in PT1prEN 1992-1-1 (2017).

    It may be questionable if the reduction of the perimeter for a large supported area in

    accordance with 6.4.2(4) in PT1prEN 1992-1-1 (2017) underestimates the resistance

    v

    in some cases.

    Considering the work-load with PT1prEN 1992-1-1 (2017), more parameters are

    included. However, they may not require that much eort to obtain.

    Keywords: Punching shear, resistance, concrete,  at slab, design provisions, Eurocode

    2, case study, parametric study, shear reinforcement, prestressed

    vi

    Download full text (pdf)
    fulltext
    Download full text (pdf)
    fulltext
  • 2.
    Abbasiverki, Roghayeh
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Analysis of underground concrete pipelines subjected to seismic high-frequency loads2016Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Buried pipelines are tubular structures that are used for transportation of important liquid materials and gas in order to provide safety for human life. During an earthquake, imposed loads from soil deformations on concrete pipelines may cause severe damages, possibly causing disturbance in vital systems, such as cooling of nuclear power facilities. The high level of safety has caused a demand for reliable seismic analyses, also for structures built in the regions that have not traditionally been considered as highly seismically active. The focus in this study is on areas with seismic and geological conditions corresponding to those in Sweden and Northern Europe. Earthquakes in Sweden for regions with hard rock dominated by high-frequency ground vibrations, Propagation of such high-frequency waves through the rock mass and soil medium affect underground structures such as pipelines.

    The aim of this project is investigating parameters that affect response of buried pipelines due to high-frequency seismic excitations. The main focus of the study is on reinforced concrete pipelines. Steel pipelines are also studied for comparison purposes. The effects of water mass, burial depth, soil layer thickness and non-uniform ground thickness caused by inclined bedrock are studied. The results are compared to those obtained for low-frequency earthquakes and the relationship between strong ground motion parameters and pipelines response is investigated. It is shown that, especially for high frequency earthquake excitations, non-uniform ground thickness due to inclined bedrock significantly increase stresses in the pipelines. For the conditions studied, it is clear that high-frequency seismic excitation is less likely to cause damage to buried concrete pipelines. However, the main conclusion is that seismic analysis is motivated also for pipelines in high-frequency earthquake areas since local variation in the ground conditions can have a significant effect on the safety.

    Download full text (pdf)
    fulltext
  • 3.
    Abbasiverki, Roghayeh
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Initial study on seismic analyses of concrete and embankment dams in Sweden2017Report (Other academic)
    Download full text (pdf)
    fulltext
  • 4.
    Abbasiverki, Roghayeh
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Numerical modelling considerations for analysis of concrete hydraulic structures subjected to high-frequency seismic loads2023Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Concrete hydraulic structures are of great importance in today's society. When situated in areas with hard bedrock, these structures may become extra vulnerable to seismic excitations as these here are dominated by high-frequency vibrations which can have disastrous consequences for slender structures. The aim of this thesis was to investigate special considerations that must be made when conducting analyses of such hydraulic structures during high-frequency excitations. Underground and on the ground structures were investigated separately. Underground concrete pipelines and concrete buttress dams were selected for the study because their behaviour when exposed to seismic excitations is dominated by their stiffness. The most effective models and modelling methods for the seismic analyses of such structures were implemented and evaluated. Two-dimensional finite element (FE) models were developed for the dynamic analysis of underground concrete pipelines loaded by seismic waves propagating from bedrock through soil. The interaction between the bedrock and the surrounding soil was investigated with respect to rock geometry and soil properties. The surface of dam foundations is commonly irregular, resulting in nonuniform motions at the dam-foundation interface. The free-field modelling methods for concrete dam foundations were adapted in order to accurately describe the propagation of earthquake vibrations from the source to the ground surface. The implementation of a threedimensional FE model for concrete buttress dams was investigated. Two different methods for free-field modelling are presented, which can be implemented independently of the software used. The seismic loads are applied as effective earthquake forces at non-reflecting boundaries. In the first method, the free-field motions at the non-reflecting boundaries are determined by the so-called domain reduction method using the direct FE calculation. In the second method, the free-field motions are analytically determined based on the onedimensional wave propagation theory. The results are also compared with the massless foundation modelling approach, in which the topographical amplifications are neglected. It was demonstrated that a two-dimensional model can effectively account for pipeline behaviour. The most important aspect of the models is the ability to capture bending deformations, as segmented structures such as pipelines are vulnerable in this respect. Nonuniform bedrock reduces the safety of concrete pipeline, especially because of bending deformations in the pipe and joints. The massless method gave unreliable results for analyses of dams, especially for high-frequency excitations. The analytical method was also unreliable in estimating the non-linear behaviour of the dams. But, a new time domain deconvolution method was developed to transform the earthquake motion from the foundation surface to the corresponding input motion at depth. It wasfound that free-field modelling of foundations using the direct FE method can accurately capture the topographic amplifications of the seismic excitations. It was shown that a three-dimensional model is required for seismic evaluation of concrete buttress dams. The topographic amplification of high-frequency waves at the surface of canyons had a significant effect on the response of this type of dam. 

    Download full text (pdf)
    fulltext
  • 5.
    Abbasiverki, Roghayeh
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ahmed, Lamis
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Nordström, Erik
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures. Sweco.
    Analysis of load and response on large hydropower draft tube structures2019Report (Refereed)
    Abstract [en]

    In a reaction turbine, the runner outlet is connected to a diffuser which is called the draft tube. Large hydropower units with large effect and large discharge normally require large dimensions on the waterways. In some large-scale facilities, the total width of the draft tube is so large there is a need for a supporting centre wall in the draft tube. In the Swedish hydropower business, there are several cases where damages or cracks have been reported in the contact between the roof and the supporting centre wall. The most likely reason for cracking between wall and roof is when refilling the draft tube after it has been drained for inspection. A too quick refilling will give an upwards lifting force on the roof that can be larger than the capacity in the joint. There are still uncertainties regarding the risk for a long-term scenario where any operational pattern could give continued crack propagation.

    Vattenfall Hydropower has made an installation with pressure and strain sensors in one of their facilities with a centre wall supported draft tube and a cavity between the roof and the rock cavern. The aim of the project is to get a better understanding on the behaviour of the roof and centre wall during different operational events by evaluating measurements from the draft tube and investigating possible load cases that can create continued crack propagation during operation. In this regard, in this project, the measurements are analysed to discover the different operational patterns and the corresponding effect on applied pressure on draft tube central wall and roof and structure response. A simplified finite element model of the draft tube is demonstrated and the response from the structure due to extracted load patterns is compared with the measurements.

    One-year measurements of the unit operation indicated that unit operates over the whole range with many start/stops. Three major types of operation were: normal operation (working in daytime and downtime at night), continuous operation with no stop and start-stop events with sharp start/stop in the morning and afternoon. The analysis of pressure measurements indicated that the fluid motion in the straight diffuser is turbulent and possibly influenced by vortex formation under the runner. Therefore, the pressure on the right side of the central wall was higher than on the left side.

    The quality of the strain measurements showed to be of insufficient quality and lack of information regarding the set-up. This has given questions on the possibility to get reliable results in the evaluation. Nevertheless, an evaluation has been performed. The evaluation of strain measurements demonstrated higher strain values at the upstream side of the central wall and roof. Moreover, the strain on underside of the roof was higher than on the central wall. Sudden fluctuation during continuous operation and sequence of start/stop were the cases that in long-term may cause damage to the structure due to fatigue problems. The results from finite element model indicated high tensile strength at the upstream side of the straight diffuser, in contact between the roof and the central wall where a crack has been detected in the real structure.

    Download full text (pdf)
    fulltext
  • 6.
    Abbasiverki, Roghayeh
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Analysis of buried reinforced concrete pipelines subjected to seismic waves2014Conference paper (Refereed)
  • 7.
    Abbasiverki, Roghayeh
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Seismic response of large diameter buried concrete pipelines subjected to high frequency earthquake excitations2020In: Int. J. Structural Engineering, ISSN 1758-7328, Vol. 10, no 4, p. 307-329Article in journal (Refereed)
    Abstract [en]

    Buried pipelines are tubular structures that cross large areas with different geological conditions. During an earthquake, imposed loads from soil deformations on pipelines may cause drastic damages. In this study two dimensional finite element models of pipelines and surrounding soils are usedfor simulation of seismic waves that propagate from the bedrock through thesoil. The models describe both longitudinal and transverse cross-sections ofpipelines and the soil-pipe interaction is described as a nonlinear behaviour.The effects of uniform ground with different burial depth and soil layer thickness, soil stiffness and non-uniform ground on the seismic response of reinforced concrete pipelines is studied. Two earthquakes, with high and low frequency contents, are employed for the dynamic analysis. The results show asignificant effect on the response due to non-uniform ground caused by inclined bedrock, especially for high frequency earthquake excitations.

  • 8.
    Abbasiverki, Roghayeh
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Seismic response of buried concrete pipelines subjected to highfrequency earthquakesIn: Geotechnical and Geological Engineering, ISSN 0960-3182, E-ISSN 1573-1529Article in journal (Refereed)
    Abstract [en]

    Buried pipelines are tubular structures that cross large areas with different geological conditions. During an earthquake, imposed loads from soil deformations on concrete pipelines may cause severe damages. In this study, the use of two-dimensional finite element models of pipelines and surrounding soil for simulation of seismic waves that propagate from the bedrock through the soil are demonstrated. The models describe both longitudinal and transverse cross-sections of pipelines and the soil-pipe interaction is modelled as a nonlinear behaviour. The effects of uniform ground with different burial depths, soil layer thickness, soil stiffness and bedrock geometry on the seismic response of reinforced concrete pipelines is studied. Two earthquakes, with high and low frequency contents, are employed for the dynamic analysis. The results show that there is a much smaller risk of damage from high-frequency earthquakes, but that there is a significant effect on the response due to possible irregular ground with inclined bedrock.

  • 9.
    Abbasiverki, Roghayeh
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Malm, Richard
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Analysis of shallowly buried reinforced concrete pipelines subjected to earthquake loads2014In: Nordic Concrete Research, ISSN 0800-6377, no 51, p. 111-130Article in journal (Refereed)
    Abstract [en]

    Buried reinforced concrete pipelines are widelyused in e.g. water and wastewater systems. Failure of these infrastructures mayresult in drastic effects and recently they have been brought into focus asvital components in safety systems for nuclear power installations. The highlevel of safety has here lead to a demand for reliable earthquake risk analyses.In this paper, methods are compared and the use of seismic design loadsdemonstrated. FE analysis in 2D of soil-pipe interaction under seismic wavepropagation is performed. The performance of concrete pipes subjected toseismic waves with different frequency content is evaluated with respect todifferent soil condition but also water mass effect.

  • 10.
    Abbasiverki, Roghayeh
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Malm, Richard
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Implementation of free-field modelling of foundations for large dam structures exposed to high-frequency vibrationsIn: Article in journal (Refereed)
  • 11.
    Abbasiverki, Roghayeh
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Malm, Richard
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Nordström, Erik
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Nonlinear Behaviour of Concrete Buttress Dams under High-Frequency Excitations Taking into Account Topographical Amplifications2021In: Shock and Vibration, ISSN 1070-9622, E-ISSN 1875-9203, Vol. 2021, p. 1-22Article in journal (Refereed)
    Abstract [en]

    Concrete buttress dams could potentially be susceptible to high-frequency vibrations, especially in the cross-stream direction, due to their slender design. Previous studies have mainly focused on low-frequency vibrations in stream direction using a simplified foundation model with the massless method, which does not consider topographic amplifications. This paper therefore investigates the nonlinear behaviour of concrete buttress dams subjected to high-frequency excitations, considering cross-stream vibrations. For comparison, the effect of low-frequency excitations is also investigated. The influence of the irregular topography of the foundation surface on the amplification of seismic waves at the foundation surface and thus in the dam is considered by a rigorous method based on the domain-reduction method using the direct finite element method. The sensitivity of the calculated response of the dam to the free-field modelling approach is investigated by comparing the result with analyses using an analytical method based on one-dimensional wave propagation theory and a massless approach. Available deconvolution software is based on the one-dimensional shear wave propagation to transform the earthquake motion from the foundation surface to the corresponding input motion at depth. Here, a new deconvolution method for both shear and pressure wave propagation is developed based on an iterative time-domain procedure using a one-dimensional finite element column. The examples presented showed that topographic amplifications of high-frequency excitations have a significant impact on the response of this type of dam. Cross-stream vibrations reduced the safety of the dam due to the opening of the joints and the increasing stresses. The foundation modelling approach had a significant impact on the calculated response of the dam. The massless method produced unreliable results, especially for high-frequency excitations. The free-field modelling with the analytical method led to unreliable joint openings. It is therefore recommended to use an accurate approach for foundation modelling, especially in cases where nonlinearity is considered.

  • 12.
    Abdalnour, John
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Saliba, Milad
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Drop-weight impact tests on reinforced concrete beams2023Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This master's thesis aimed to investigate the behaviour of reinforced concrete beams under dynamic loading conditions, specifically focusing on understanding shear failure. The study was conducted with KTH Royal Institute of Technology, the Swedish Fortifications Agency, and Tyréns. The research built upon previous studies and aimed to contribute to understanding dynamically loaded concrete structures.The thesis included a literature study to explore the fundamental concepts of dynamics, impulse loading, and the response of RC structures under dynamic and static loading. The experimental part involved manufacturing and testing 27 reinforced concrete (RC) beams with varying amounts of transverse reinforcement and load positions, where 18 were tested dynamically, and the rest were tested statically. The findings contribute to understanding structural response and failure mechanisms in such beams, considering three main factors: load position, shear reinforcement, and loading characteristics. In addition, essential data, such as reaction forces, beam displacements, and crack patterns, were measured using load cells, accelerometers, and high-speed cameras.The findings of the study revealed several important insights. The load's position significantly affected the beams' acceleration, with further load positions activating both shear and flexural modes simultaneously. Beams with different shear reinforcement configurations exhibited similar behaviour and the presence of weaker cross-sections due to insufficient bonding between steel and concrete. The study also demonstrated that dynamic loading increased the beams' load capacity compared to static loading, attributed to the strain rate effect and inertia forces. The crack patterns and residual eigenfrequency differed between dynamic and static loading conditions, with dynamic loading resulting in less extensive cracking and reduced residual stiffness.The use of a fiberboard provided cushioning effects, as its removal during testing resulted in a shorted load duration and the formation of the cracks in the beams. In addition, anchoring the flexural reinforcement significantly increased the stiffness of the beams, leading to an earlier rebound and a more robust impact response.

    Download full text (pdf)
    fulltext
  • 13.
    Abdi, Mohammed
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ntzimanis, Dimitirios
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Numerical simulations of pore pressure on concrete buttress dams2022Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Uplift pressure is one of the most dominant forces on a dam structure. Difference in head water and tail water creates a hydraulic gradient resulting an upward oriented pressure called uplift pressure, which reduces the dam safety against sliding. However, there are great uncertainties determining the actual magnitude and distribution of the uplift pressure. Therefore, finite element methods were used in order to study the pore pressure in greater extent to increase the knowledge about the field measurements. 

     

    In this MSc report, the pore pressure in the rock foundation at monolith M42 in Storfinnforsen hydropower dam has been investigated. The aim of the project is to study the realistic pore pressure distributions and its magnitude underneath the dam. The aim is also to compare and find correlation between the numerical results and field measurements as well as the analytical results based on guidelines for dam safety. 

     

    Pore pressure in rock foundations can be influenced by many factors such as, the presence of drainage, grout curtain and rock fractures. Therefore, several numerical models have been developed containing different combinations based on these factors. Numerical results were then compared to both field measurements and analytical results. Furthermore, the uplift pressure from the best calibrated model and models representing critical states of the dam are used to calculate stability safety factor against sliding. The finite element program Abaqus is used to perform all the numerical pore pressure analyses. Field measurements is obtained from two pore pressure sensors installed underneath the dam and analytical results are calculated based on guidelines for dam safety. Based on the results from the case study, comparison of the numerical pore pressure with the field measurements showed that the drains have the largest impact on the pore pressure compared to the parameters. Models without drains have showed significantly larger pore pressure than the field measurements. When drains are in operation, considering empty drains underestimate the pore pressure while water filled drains slightly overestimated the pore pressure. 

     

    The influence of grout curtain varies if the effect of drains are included or not. Considering fractured rock foundation, the grout curtain showed large reduction of the pore pressure in the analyses without drains. If drains are in operation, this reduction becomes quite small. Moreover, all the numerical analyses showed that the uplift pressure in the rock fracture are lower than what is defined in the design guideline (RIDAS, 2020). 

    Download full text (pdf)
    fulltext
  • 14.
    Aghili, Ali
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ribac, Haris
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Prediction of early age and time dependent deformations in a massive concrete structure2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The heat development that occurs due to the hydration of cement is important to consider during casting of massive concrete structures. By using computer programs that are based on finite element methods (FEM), simulations can be performed on the heat- and strength development. In this project, a FE program called ConTeSt has been used in order to predict the temperature- and strain development in a massive concrete wall. If the potential risks in a concrete structure are evaluated before casting, economical savings, including a better casting plan could be obtained. The structure under investigation was a concrete wall behind one of the spillways in the hydro power dam of Storfinnforsen. Due to a re-construction of the wall, an opportunity occurred to develop a measurement plan of the casting and perform simulations on the wall.

    A sensitivity analysis was performed in order to investigate the effects on the temperature- and strain development, by varying the cement content, ambient temperature, wind speed and degree of restraint in translation. The results showed, that a higher cement content increased the rate of hydration and hence the temperature in the concrete. Higher wind speeds contributed to more cooling of the concrete which, in some cases, resulted in cracking due to contraction of the material. Cracking due to contraction also occurred when the ambient temperature was decreased. The ambient temperature did not have a significant impact on the rate of hydration, but instead the impact was larger from the initial temperature of the fresh concrete. A higher initial temperature of the fresh concrete increased the rate of hydration, which increased the temperature in the material. The degree of restraint could only be varied in translation in ConTeSt and hence the effect on the strain development was not that significant.

    A crack risk analysis was performed where the developed tensile stresses were compared with the tensile strength of the concrete. The same factors were varied as in the sensitivity analysis. The results showed that the tensile strength was exceeded for most of the cases and thus that the crack risk was high.

    The required equipment, in order to perform the measurements on site, consisted of 7 strain gauges of the module KM-100B from TML Tokyo Sokki Kenkyujo, 2 data loggers of the module Spider-8 from HBM, at least a 25 m ø9 mm 5-core shielded cable and a computer with the software Catman Easy.

    Download full text (pdf)
    fulltext
  • 15.
    Ahlsten, Anton
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Karlsdotter, Ellen
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Numeriska simuleringar av betongplattor på mark med gradientkrympning och sprickfördelande armering2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [sv]

    Betongplattor på mark är en ofta använd grundläggningsmetod. Trots detta är sprickbildning ett vanligt problem där kraven på maximala sprickvidder ofta inte uppfylls. De sprickor som bildas i plattorna uppkommer bl.a. till följd av dess uttorkning, och då olika fuktförhållanden råder på var sida om plattan utvecklas en krympning som varierar med en gradient över tvärsnittet. Vid dimensionering av armeringen för denna inre last och sprickbildningen den orsakar, finns endast otillräckliga analysermetoder att tillgå i normer. Att analysera det tvång som uppstår vid krympningen är mycket svårt, speciellt då betongen spricker och lastfallet blir statiskt obestämt.

    I detta arbete undersöks sprickbildningen i krympande betongplattor på mark så att noggrannare dimensionering av den sprickfördelande armeringen skall kunna utföras. Analyserna har utförts med numeriska simuleringar i FEM-programmet Atena 2D där ett antal olika plattor med varierande betongklass, armeringsinnehåll och platthöjd undersökts. Arbetet omfattar en jämförelse av de erforderliga sprickfördelande armeringsinnehållen samt de analytiskt beräknade sprickvidder som erhålls dels enligt huvuddokumentet för Eurokod 2 och dels enligt huvuddokumentet och den tyska nationella bilagan. Armeringen har då dimensionerats utifrån en spänningsfördelning som varierar linjärt över tvärsnittet, på samma sätt som krympningen varierar. Studien behandlar även en jämförande undersökning av sprickutvecklingen vid inre respektive yttre last för att påvisa skillnader i sprickbeteendet.

    De numeriska simuleringarna visade att en ökad sprickfördelande förmåga och en minskning av sprickvidder erhålls då armeringsinnehållet i en platta ökas. Av de undersökta plattorna nås armeringens flytspänning inte i något fall, vilket tyder på att mängden armering kan minskas ytterligare utan att s.k. single cracks uppstår. Även vid underarmering, då armeringen minskas till 64 % av vad Eurokods huvuddokument anger, behålls den sprickfördelande funktionen. Undersökningarna visade att den sprickbildning som sker av den inre lasten vid krympning är beroende av uppsprickningen, till skillnad från sprickbildning vid yttre last. Den jämförande studien över armeringsinnehåll enligt Eurokod 2 visar att dimensionering enligt tyska nationella bilagan under verkan av inre last ger en reducerad erforderlig armeringsarea med 20 % i förhållande till huvuddokumentet. De analytiska beräkningarna över sprickvidder tyder på att beräkningsmetoden enligt Eurokod 2 ger större sprickvidder än den som beräknats enligt den tyska nationella bilagan.

    Download full text (pdf)
    Ahlsten_Karlsdotter_exjobb
  • 16.
    Ahmed, Lamis
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Laboratorieprovningar av stötbelastade betongprismor vid tidig ålder2015In: Tidskriften Betong, ISSN 1101-9190, no 5, p. 51-54Article in journal (Other academic)
  • 17.
    Ahmed, Lamis
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Laboratory simulation of blasting induced bond failure between rock and shotcrete2012Report (Refereed)
    Download full text (pdf)
    fulltext
  • 18.
    Ahmed, Lamis
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Modelleringsverktyg hittar sprickor2015In: Tidskriften Betong, ISSN 1103-4270, no 5, p. 51-54Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 19.
    Ahmed, Lamis
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Models for analysis of shotcrete on rock exposed to blasting2012Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    In underground construction and tunnelling, the strive for a more time-efficient construction process naturally focuses on the possibilities of reducing the times of waiting between stages of construction. The ability to project shotcrete (sprayed concrete) on a rock surface at an early stage after blasting is vital to the safety during construction and function of e.g. a tunnel. A complication arises when the need for further blasting affects the hardening of newly applied shotcrete. If concrete, cast or sprayed, is exposed to vibrations at an early age while still in the process of hardening, damage that threatens the function of the hard concrete may occur. There is little, or no, established knowledge on the subject and there are no guidelines for practical use.

    It is concluded from previous investigations that shotcrete can withstand high particle velocity vibrations without being seriously damaged. Shotcrete without reinforcement can survive vibration levels as high as 0.5−1 m/s while sections with loss of bond and ejected rock will occur for vibration velocities higher than 1 m/s. The performance of young and hardened shotcrete exposed to high magnitudes of vibration is here investigated to identify safe distances and shotcrete ages for underground and tunnelling construction, using numerical analyses and comparison with measurements and observations. The work focuses on finding correlations between numerical results, measurement results and observations obtained during tunnelling. The outcome will be guidelines for practical use.

    The project involves development of sophisticated dynamic finite element models for which the collected information and data will be used as input, accomplished by using the finite ele­ment program Abaqus. The models were evaluated and refined through comparisons between calculated and measured data. First, existing simple engineering models were compared and evaluated through calculations and comparisons with existing data. The first model tested is a structural dynamic model that consists of masses and spring elements. The second is a model built up with finite beam elements interconnected with springs. The third is a one-dimensional elastic stress wave model. The stress response in the shotcrete closest to the rock when exposed to P-waves striking perpendicularly to the shotcrete-rock interface was simulated. Results from a non-destructive laboratory experiment were also used to provide test data for the models. The experiment studied P-wave propagation along a concrete bar, with proper­ties similar to rock. Cement based mortar with properties that resembles shotcrete was applied on one end of the bar with a hammer impacting the other. The shape of the stress waves travelling towards the shotcrete was registered using accelerometers positioned along the bar.

    Due to the inhomogeneous nature of the rock, the stress waves from the blasting attenuate on the way from the point of explosion towards the shotcrete on the rock surface. Material damping for the rock mass is therefore accounted for, estimated from previous in-situ measurements. The vibration resistance of the shotcrete-rock support system depends on the material properties of the shotcrete and here were age-dependent properties varied to investigate the behaviour of young shotcrete subjected to blast loading. The numerical simulations require insertion of realistic material data for shotcrete and rock, such as density and modulus of elasticity.

    The calculated results were in good correspondence with observations and measurements in-situ, and with the previous numerical modelling results. Compared to the engineering models, using a sophisticated finite element program facilitate modelling of more complex geometries and also provide more detailed results. It was demonstrated that wave propagation through rock towards shotcrete can be modelled using two dimensional elastic finite elements in a dynamic analysis. The models must include the properties of the rock and the accuracy of the material parameters used will greatly affect the results. It will be possible to describe the propagation of the waves through the rock mass, from the centre of the explosion to the reflection at the shotcrete-rock interface. It is acceptable to use elastic material formulations until the material strengths are exceeded, i.e. until the strains are outside the elastic range, which thus indicates material failure. The higher complexity of this type of model, compared to the engineering models, will make it possible to model more sophisticated geometries. Examples of preliminary recommendations for practical use are given and it is demonstrated how the developed models and suggested analytical technique can be used to obtain further detailed limit values.

    Download full text (pdf)
    fulltext
  • 20.
    Ahmed, Lamis
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Models for analysis of young cast and sprayed concrete subjected to impact-type loads2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The strive for a time-efficient construction process naturally put focus on the possibility of reducing the time of waiting between stages of construction, thereby minimizing the construction cost. If recently placed concrete, cast or sprayed, is exposed to impact vibrations at an early age while still in the process of hardening, damage that threatens the function of the hard concrete may occur. A waiting time when the concrete remains undisturbed, or a safe distance to the vibration source, is therefore needed. However, there is little, or no, fully proven knowledge of the length of this distance or time and there are no established guidelines for practical use. Therefore, conservative vibration limits are used for young and hardening concrete exposed to vibrations from e.g. blasting.

    As a first step in the dynamic analysis of a structure, the dynamic loads should always be identified and characterized. Here it is concluded that impact-type loads are the most dangerous of possible dynamic loads on young and hardening concrete. Shotcrete (sprayed concrete) on hard rock exposed to blasting and cast laboratory specimens subjected to direct mechanical impact loads have been investigated using finite element models based on the same analysis principles. Stress wave propagation is described in the same way whether it is through hard rock towards a shotcrete lining or through an element of young concrete. However, the failure modes differ for the two cases where shotcrete usually is damaged through loss of bond, partly or over larger sections that may result in shotcrete downfall. Cracking in shotcrete due to vibrations only is unusual and has not been observed during previous in situ tests. The study of shotcrete is included to demonstrate the need of specialized guidelines for cases other than for mass concrete, i.e. structural elements or concrete volumes with large dimensions in all directions.

    Within this project, work on evaluating and proposing analytical models are made in several steps, first with a focus on describing the behaviour of shotcrete on hard rock. It is demonstrated that wave propagation through rock towards shotcrete can be described using two-dimensional elastic finite element models in a dynamic analysis. The models must include the material properties of the rock and the accuracy of these parameters will greatly affect the results. It is possible to follow the propagation of stress waves through the rock mass, from the centre of blasting to the reflection at the shotcrete-rock interface. It is acceptable to use elastic material formulations until the strains are outside the elastic range, which thus indicates imminent material failure. The higher complexity of this type of model, compared with mechanical models using mass and spring elements, makes it possible to analyse more sophisticated geometries. Comparisons are made between numerical results and measurements from experiments in mining tunnels with ejected rock mass and shotcrete bond failure, and with measurements made during blasting for tunnel construction where rock and shotcrete remained intact. The calculated results are in good correspondence with the in situ observations and measurements, and with previous numerical modelling results. Examples of preliminary recommendations for practical use are given and it is demonstrated how the developed models and suggested analytical technique can be used for further detailed investigations.

    The modelling concept has also been used for analysis of impact loaded beams and concrete prisms modelled with 3D solid elements. As a first analysis step, an elastic material model was used to validate laboratory experiments with hammer-loaded concrete beams. The laboratory beam remained un-cracked during the experiments, and thus it was possible to achieve a good agreement using a linear elastic material model for fully hardened concrete. The model was further developed to enable modelling of cracked specimens. For verification of the numerical results, earlier laboratory experiments with hammer impacted smaller prisms of young concrete were chosen. A comparison between results showed that the laboratory tests can be reproduced numerically and those free vibration modes and natural frequencies of the test prisms contributed to the strain concentrations that gave cracking at high loads. Furthermore, it was investigated how a test prism modified with notches at the middle section would behave during laboratory testing. Calculated results showed that all cracking would be concentrated to one crack with a width equal to the sum of the multiple cracks that develop in un-notched prisms. In laboratory testing, the modified prism will provide a more reliable indication of when the critical load level is reached.

    This project has been interdisciplinary, combining structural dynamics, finite element modelling, concrete material technology, construction technology and rock support technology. It is a continuation from previous investigations of the effect on young shotcrete from blasting vibrations but this perspective has been widened to also include young, cast concrete. The outcome is a recommendation for how dynamic analysis of young concrete, cast and sprayed, can be carried out with an accurate description of the effect from impact-type loads. The type of numerical models presented and evaluated will provide an important tool for the work towards guidelines for practical use in civil engineering and concrete construction work. Some recommendations on safe distances and concrete ages are given, for newly cast concrete elements or mass concrete and for newly sprayed shotcrete on hard rock.

    Download full text (pdf)
    Thesis
  • 21.
    Ahmed, Lamis
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Vulnerability of shotcrete on tunnel walls during construction blasting2018Conference paper (Refereed)
  • 22.
    Ahmed, Lamis
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ökad kunskap om sprutbetong ger hållbara tunnlar2012In: Tidskriften Betong, ISSN 1101-9190, no 6, p. 50-52Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 23.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    A comparison of models for shotcrete in dynamically loaded rock tunnels2010In: Shotcrete: Elements of a System, Informa UK Limited , 2010, p. 11-20Chapter in book (Other academic)
    Abstract [en]

    During blasting in tunnels and mines, the shotcrete-rock interaction is influenced by propagating stress waves. Shotcrete support in hard rock tunnels is here studied through numerical analysis and comparisons with previous numerical results, measurements and observations in situ. The stress response in the shotcrete closest to the rock when exposed to P-waves striking perpendicularly to the shotcrete-rock interface is simulated. The first model tested is an elastic stress wave model, which is onedimensional with the shotcrete assumed linearly elastic. The second is a structural dynamic model that consists of masses and spring elements. The third model is a finite element model implemented using the Abaqus/Explicit program. Two methods are used for the application of incident disturbing stress waves: as boundary conditions and as inertia loads. Results from these three types of models are compared and evaluated as a first step before a future extension to more detailed analyses using 3D models. 

  • 24.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    A comparison of models for shotcrete in dynamically loaded rock tunnels2010In: Shotcrete: Elements of a system / [ed] E. Stefan Bernard, Taylor & Francis Group, 2010, p. 1-10Conference paper (Refereed)
    Abstract [en]

    During blasting in tunnels and mines, the shotcrete-rock interaction is influenced by propagating stress waves. Shotcrete support in hard rock tunnels is here studied through numerical analysis and comparisons with previous numerical results, measurements and observations in situ. The stress response in the shotcrete closest to the rock when exposed to P-waves striking perpendicularly to the shotcrete-rock interface is simulated. The first model tested is an elastic stress wave model, which is onedimensional with the shotcrete assumed linearly elastic. The second is a structural dynamic model that consists of masses and spring elements. The third model is a finite element model implemented using the Abaqus/Explicit program. Two methods are used for the application of incident disturbing stress waves: as boundary conditions and as inertia loads. Results from these three types of models are compared and evaluated as a first step before a future extension to more detailed analyses using 3D models.

  • 25.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Behaviour of sprayed concrete on hard rock exposed to vibration from blasting operations2014Conference paper (Refereed)
  • 26.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Direct shear strength of high-strength fibre concrete2010In: Magazine of Concrete Research, ISSN 0024-9831, E-ISSN 1751-763X, Vol. 62, no 5, p. 379-390Article in journal (Refereed)
    Abstract [en]

    An experimental and theoretical study of the shear behaviour of steel-fibre-reinforced concrete is presented. Twenty-seven direct shear push-off tests were carried out on high-strength concrete, with and without steel fibre reinforcement. The test series contained uncracked and precracked specimens for the study of the slipping response and the shear stress that can be transferred across an open crack. The test variables were the fibre content and the reinforcement ratio. The test results were compared with information provided by the available codes and other, previous results. The test results indicated that incorporation of steel fibres and bars in concrete members subjected to shear leads to an improved mechanical behaviour before failure. Based on the presented experimental results, an equation governing the direct shear strength is proposed and verified against test results from other test series.

  • 27.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Dynamic measurements for determination of Poisson’sratio of young concrete2017Conference paper (Refereed)
  • 28.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Experimental and numerical investigation of stress wave propagation in shotcrete2011In: Nordic concrete research: Research projects 2011 / [ed] D.H. Bager, 2011, p. 59-62Conference paper (Refereed)
  • 29.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Laboratory investigation of stress waves in young shotcrete on rock2012In: Magazine of Concrete Research, ISSN 0024-9831, E-ISSN 1751-763X, Vol. 64, no 10, p. 899-908Article in journal (Refereed)
    Abstract [en]

    To study the behaviour of shotcrete under dynamic load, a non-destructive laboratory experiment was set up with P-wave propagation along a concrete bar, with properties similar to rock. Cement-based mortar with properties that resemble shotcrete was applied to one end of the bar with a hammer impacting the other. The shape of the stress waves travelling towards the shotcrete was registered using accelerometers positioned along the bar. Finite-element modelling was used to verify the test results, which showed that the laboratory model with an impacting hammer could be used to initiate the same type of stress waves that result from blasting in good-quality rock. Previously recommended maximum allowed peak particle vibration velocities were verified.

  • 30.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Structural dynamic and stress wave models for analysis of shotcrete on rock exposed to blasting2012In: Engineering structures, ISSN 0141-0296, E-ISSN 1873-7323, Vol. 35, no 1, p. 11-17Article in journal (Refereed)
    Abstract [en]

    During blasting in tunnels and mines, the interaction between shotcrete (sprayed concrete) and rock is influenced by propagating stress waves. Shotcrete support in hard rock tunnels is studied here through numerical analysis using three different modelling approaches. The stress response in the shotcrete closest to the rock when exposed to P-waves striking perpendicularly to the shotcrete–rock interface is simulated. The first model tested is a structural dynamic model that consists of masses and spring elements. The second is a model built up with finite element beam elements interconnected with springs. The third is a one-dimensional elastic stress wave model. The models give comparable results, although the definition of the dynamic loads is different. The analysis results can be used to estimate whether the shotcrete will fail or not for a prescribed distance to detonating explosives inside the rock.

  • 31.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Vibration vulnerability of shotcrete on tunnel walls during construction blasting2014In: Tunnelling and Underground Space Technology, ISSN 0886-7798, E-ISSN 1878-4364, Vol. 42, p. 105-111Article in journal (Refereed)
    Abstract [en]

    The effect on shotcrete from blasting operations during tunnelling is studied, with focus on young and hardening shotcrete. A finite element model specially adapted for analysis of the shotcrete behaviour is tested, it is able to describe stress wave propagation in two dimensions which is important for cases where shear stresses are dominant. The modelling results are compared with in situ measurements and observations, from construction blasting during tunnelling through hard rock. The comparison shows that the model gives realistic results and can be used to investigate the vulnerability of shotcrete, aiming at compiling recommendations and guidelines for practical use. The given recommendations emphasize that blasting should be avoided during the first 12 h after shotcreting and that distance and shotcrete thickness are important factors for how much additional time of waiting is possibly needed.

  • 32.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Malm, Richard
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Numerical modelling and evaluation of laboratory tests with impact loaded young concrete prisms2016In: Materials and Structures, ISSN 1359-5997, E-ISSN 1871-6873, ISSN 1359-5997, Vol. 49, no 11, p. 4691-4704Article in journal (Refereed)
    Abstract [en]

    Numerical modelling in combination with in situ measurements, observations and laboratory testing will be important to future establishment of reliable guidelines for efficient civil and engineering work involving concrete casting close to e.g. blasting operations. Results from laboratory tests with impact loaded young concrete prisms are here evaluated using a 3D finite element model. Solid elements are used and a non-linear material model implemented, capable of describing cracking during stress wave propagation. The position of cracks and measured particle vibration velocities are calculated and compared with laboratory test results. The damaging effect of impact vibrations is evaluated using crack width and fracture energy as damage criteria. Alternative geometry for the test prisms, with a notched section, is analysed. This will give one wide crack at the centre of the prism instead of two or three cracks distributed over its length which will make future laboratory test more efficient and reliable. Recommended damage limits at concrete ages of 4, 6, 8 and 12 h are given, based on numerical calculations for concrete strength class C25 and C50.

    Download (pdf)
    Summary
  • 33.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Guarin, Alvaro
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Crack propagation under water pressure2018Report (Refereed)
    Abstract [en]

    Cracks in concrete structures such as a concrete dam can be exposed to water pressure, for example, uplift pressure. The water pressure can be significant and may result in cracks propagating through the structures and thus it may result in reduced service life. However, the knowledge of water pressure within the cracks is relatively limited and is often neglected or just roughly estimated. The influence of crack opening rate on the uplift pressure distribution in the crack and the pressure variation during opening or sudden crack closure are questions needed to investigate. As an attempt to answer those questions, a pilot study presented here describes the possibilities and limitations of the proposed experimental setup; and technology (penetrability meter and tomography) as an examination method for water pressure in propagation concrete cracks. The test specimens examined here are exclusively cylinders cast of concrete with or without an initial crack.

    The penetrability meter can be used to apply water pressure and to visualize the crack opening, X-Ray computed tomography test, was performed. KTH Civil and Architectural Engineering department has organized the laboratory resources.

    The examples reported in this work show that the technology and equipment have great potential for future work on crack propagation, however, sample design and preparation, as well as testing need further development.

  • 34.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Malm, Richard
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Finite element simulation of shotcrete exposed to underground explosions2012In: Nordic Concrete Research, ISSN 0800-6377, no 45, p. 59-74Article in journal (Refereed)
    Abstract [en]

    An elastic finite element model is used tosimulate theinducedstress waves from blasting, propagating in rock towards shotcrete on a tunnel wall. Due to the inhomogeneous nature of the rock, the stress wavesattenuate onitsway from the point of explosiontowardsthe shotcrete on the rock surface. Material damping for the rock-mass is estimated from in-situ measurements. The vibration resistance of the shotcrete-rock support system depends on the material properties of the shotcrete. Age-dependent material properties are varied to investigate the behaviour of young shotcrete subjected to blast loading. Finally, finite element analysis results are presented and verified through comparison with other numerical models, measurements and observations.

  • 35.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Silfwerbrand, Johan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Dynamic Measurements for Determining Poisson’s Ratio of Young Concrete2018In: Nordic Concrete Research, ISSN 0800-6377, no 58, p. 95-105Article in journal (Refereed)
    Abstract [en]

    Knowledge of the elastic properties of concrete at early age is often a pre-requisite for numerical calculations. This paper discusses the use of a laboratory technique for determining Poisson’s ratio at early concrete age. A non-destructive test set-up using the impact resonance method has been tested and evaluated. With the method, it has been possible to obtain results already at 7 hours of concrete age. Poisson's ratio is found to decrease sharply during the first 24 hours to reach a value of 0.08 and then increase to approximately 0.15 after seven days.

  • 36.
    Ahmed, Lamis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Sjölander, Andreas
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Evaluation and analysis of laboratory tests of bolts-anchored, steel-fiber-reinforced shotcrete linings2017In: Proceedings of the World Tunnel Congress 2017, International Tunnelling Association, 2017Conference paper (Refereed)
    Abstract [en]

    Results from laboratory tests on statically loaded bolt-anchored, steel-fibre-reinforced shotcrete linings in interaction with rock are here evaluated using a 2D finite element model. Calculations are made to determine the state of stress in the rock-shotcrete interface near the rock joints. Plane-stress elements are used with a non-linear material model, capable of describing cracking and de-bonding during loading. The simulated crack position and force-displacement curves are compared with laboratory test results. Since most construction work in underground hard rock involves the use of explosives for excavation work, dynamic load cases are also analysed and compared to results from previous research on vibration resistance of shotcrete. 

    Download (pdf)
    summary
  • 37.
    Ahmed, Samih
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Minchot, Guayente
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Post-tensioned stress ribbon systems in long-span roofs: Case study: Västerås Travel Center2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The stress ribbon system has numerous advantages, that includes but are not limitedto: increasing overall stiffness, control deflections and reduction of materialsconsumption, which in turn, reduces the load and the cost. Nevertheless, its use isusually limited to bridges, in particular, pedestrian bridges; this can be attributedto the insufficient space that buildings’ usually have for end supports, or/and backstayedcables, that can accommodate the expected high pull-out forces occuring atthe cables’ ends.

    In this work, the roof of Västerås Travel Center, which will become one of the longestcable suspended roofs in the world, was chosen as a case study. The aim was toinvestigate the optimal technique to model the post-tensioned stress ribbon systemfor the roof structure using SAP2000, and to assess any possible reduction in thepull-out forces, deflections and concrete stresses. Subsequently, a conventional cablesuspended roof was simulated, using SAP2000, and compared to the post-tensionstress ribbon system in order to examine the potential of the latter. Moreover,the effects of temperature loads and support movements on the final design loadswere examined. Based on the study, a few practical recommendations concerningthe construction method and the iterative design process, required to meet thearchitectural geometrical demands, are stated by the authors.

    The results showed that the post-tensioned stress ribbon system reduces the concretestresses, overall deflections, and more importantly, reduces the pull-out forces by upto 16%, which substantially reduces the design forces for the support structures.The magnitude of these reductions was found to be highly correlated to the appliedprestressing force, making the size of the prestressing force a key factor in the design.

    Download full text (pdf)
    Post-tensioned stress ribbon systems in long-span roofs
  • 38.
    Ahmed, Samih
    et al.
    Tyréns AB.
    Minchot, Guayente
    Tyréns AB.
    Eriksson, Anders
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    King, Fritz
    Tyréns AB.
    Hallgren, Mikael
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Post-Tensioned Stress Ribbon Systems in Long Span Roofs2019In: 20th Congress of IABSE, New York City 2019: The Evolving Metropolis - Report2019, International Association for Bridge and Structural Engineering , 2019, p. 534-540Conference paper (Refereed)
    Abstract [en]

    Cable systems have numerous advantages, such as: large column-free areas, and reduced materials consumption, which reduces the load and the cost. Nevertheless, they are rarely used in long span roofs due to large deflections, and the insufficient space for end supports, or/and back-stayed cables. This work suggests the use of post-tension stress ribbon system in long span roofs in order to reduce the pull-out forces, deflections and concrete stresses compared to a conventional cable system. A comparison is carried out through meticulous and accurate finite element simulations, using SAP2000, implemented for the new +200m roof of Västerås Travel Center (Sweden), which will become one of the longest cable suspended roofs in the world, if not the longest. Results confirm the suitability and superiority of stress ribbon systems as it reduces concrete stresses, deflections, pull-out forces and vertical reactions. These reductions are found highly correlated to the applied prestressing forces.

  • 39.
    Akbar, Sidra
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Carlie, Mathias
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Long-term deformation of balanced cantilever bridges due to non-uniform creep and shrinkage2021Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Balanced cantilever bridges have historically experienced excessive deformations. Previous researchsuggeststhat the cause may be due to differential thickness in the box girder cross-section and underestimation of creep and shrinkage.In this project, the long-term deformationof balanced cantilever bridges due tonon-uniformcreep and shrinkage have been investigated. The non-uniformcreep and shrinkage arecaused by variations in drying rates for the different parts of the box-girder cross-sections.A finite element model was createdintheprogram Abaqusas a case study of the Alvik bridge.The finite element model was used to evaluate the difference betweennon-uniform and uniform creep and shrinkage with Eurocode 2.Further, a comparison between Eurocode 2 and Bažant’sB4 modelwas conductedfor non-uniform creep and shrinkage. The comparison aimedto evaluate the difference between industry and research specific calculation models, forthe effect of creep and shrinkage on deformations.A parameter study was alsoconducted to discern theeffect of parameters: ballast load, water-cementratio and conditions related to drying of concrete (relative humidity and perimeter exposed to air).Acomparison withthe deformationmeasurementsof theAlvik bridge was conductedto validate the resultsfrom the model.The results showed that there was a significant difference in the calculateddeformationof the bridge during the first ten years between analyses based onnon-uniform and uniformdistribution of creepand shrinkage,respectively.The non-uniformanalysis gave largerdeformations.However, only minor differences between the two approachescould be detected in the final deformation after 120 years. The main reason for the differences in the early behaviour is primarily caused by the differences in shrinkage rate between the top and bottom flanges. In these analyses, the top flange was assumed tonotdry out from the top. Thereby, the shrinkage rate of the top flange caused by one-way drying was similar to the bottom flange that was assumed to be exposed for two-waydrying.TheB4 model gave larger deformations compared to Eurocode2.This may be due to difference in the definition ofperimeter and surface. Eurocode 2 considers the perimeter exposed to air. The B4 model instead considers the entire surface area of the part.TheB4 model and Eurocode 2 show similar results asthe measurements. However, the B4 model gaveresults more consistent with the measurements.In the parameter study,lowerrelative humidity gave smaller deformations, since concrete shrinksquicker in dry ambient air.Varying the water-cement ratiodid not affect the deformationsnoticeably.Higher ballastheight gave significantly larger deformations. The height of the ballast was an uncertainfactor due to varying heights in the structural drawings of the case study. Accurate height of ballast is therefore important.

    Download full text (pdf)
    fulltext
  • 40.
    Akfidan, Johny
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Sadek, Rafed
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Dimensionering och utförande av bottenplattor utsatta för upptryck2012Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [sv]

    När en konstruktion byggs på det viset att dess bottenplatta hamnar under grundvattenytan, skapas ett grundvattentryck upp mot bottenplattan och konstruktionen, som kan åstadkomma stora problem. Grundvattnet, som tryckts undan av konstruktionen, vill nå upp till sin ursprungliga nivå och därmed trycka med sig konstruktionen upp. Detta fenomen kallas hydraulisk bottenupptryckning. Fenomenet kan motverkas på olika sätt, där rapporten beaktar två olika sätt att motverka hydraulisk bottenupptryckning på: genom en bottenplatta som är tyngre än grundvattentrycket eller förankra bottenplattan mot ett fast underlag.

    Genom att uppmärksamma och sammanställa projekt (huvudsakligen konstruerade av Tyréns) som tagit hänsyn till ovan nämnda fenomen vid dimensioneringen av bottenplattan, har en rapport skapats. Denna rapport ska finnas för att åstadkomma kunskapsåterföring av de problem som uppstått i projekten och deras lösningar.

    Utöver att skapa en rapport där de berörda projekten sammanställs ska en bottenplatta optimeras, huvudsakligen med hänseende till bottenplattans tjocklek och dess bärförmåga mot genomstansning för olika förankringstyper. Optimeringen ska ske i enlighet med, huvudsakligen Eurokod 2 kapitlen 6.4 och 7.3. Det har bestämts att tre tjocklekar på bottenplattan ska beaktas, och dessa är 400, 550 och 800 mm. Genom diskussioner med våra handledare, sakkunnig personal på Tyréns och representanter inom branschen, valdes ett antal förankringstyper som skulle jämföras. För att kunna jämföra kombinationerna av de olika tjocklekarna på bottenplattan och de olika förankringstyperna, har Tyréns projekt Biomedicum med dess förutsättningar, utnyttjats som referensobjekt.

    Att ta fram de inre krafterna i bottenplattan via handberäkningar är mycket komplicerat och tidskrävande för att rymmas inom ramen för denna studie. Därför används programmet FEM Plate (Strusoft) för att ta fram dessa krafter. De inre krafter som tas fram från FEM Plate utnyttjas sedan för att med hjälp av handberäkningar, i enlighet Eurokod 2, dimensionera Biomedicums bottenplatta enligt de moment som krävs.

    Jämförelsen av de olika kombinationerna visar på att bottenplattan 400 mm med förankringstypen stålkärna av diameter 80 mm från Inexa Profil är den optimala lösningen för Biomedicums bottenplatta. Denna förankringstyp (för bottenplattan 400 mm) är den enda som får en tillräcklig bärförmåga mot genomstansning av bottenplattan, endast med åtgärden skjuvarmering runtomkring förankringen.

    En föreslagen lösning på hur förankringstypen bör monteras i bottenplattan har tagits fram. Diskussioner med sakkunnig personal från Minova (tillverkare av MAI-förankringen) har lett till övertygelsen om att föreslagen lösning fungerar utan några kapacitetsförsämringar på förankringen. En modellering av bottenplattan 400 mm med föreslagen lösning på MAIförankringen och efterföljande handberäkningar, visar att lösningen optimerar bottenplattan än mer. föreslagen lösning på monteringen i bottenplattan bör dessutom kunna tillämpas på de andra förankringstyperna, men har endast beaktats för MAI-förankringen.

    Eftersom fokus endast är på att den optimala bottenplattan är 400 mm och ingen hänsyn tas till kostnaderna, är föreslagen lösning på MAI-staget den optimala lösningen. Det är den enda förankringen som har en tillräcklig bärförmåga mot genomstansning för bottenplattan 400 mm, utan några som helst extra åtgärder.

    En bottenplatta med vot under förankringen bör undvikas, eftersom förtjockningen av bottenplattan under förankringen kräver mycket extra tid i utförande. Därför rekommenderas det att en jämntjock bottenplatta dimensioneras med eventuell skjuvarmering, om bottenplattans bärförmåga mot genomstansning inte är tillräcklig utan skjuvarmering.

    Den optimering som tagits fram är en generalisering av Biomedicums bottenplatta. Detta leder till att de modeller och beräkningar som gjorts, enkelt kan implementeras på andra bottenplattor med samma problem genom att justera indata.

    Download full text (pdf)
    fulltext
  • 41.
    Al Baghdady, Shayma
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Khan, Linnea
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Designing Roller compacted concrete (RCC) dams2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Concrete is the most common building material in the world and it consists of aggregates,cement and water that harden over time, it is also known as a composite material. The use ofconcrete is very versatile due to its resistance to wind and water and its ability to withstandhigh temperature. These qualities make concrete a suitable building material for largestructures such as dams.A dam is a huge construction that needs massive amount of concrete to build it with and thatleads to high cost, so alternative methods should be considered to minimize the cost ofconstructing the dams. One method is building the dams with Roller Compacted Concrete(RCC), which by definition is a composite construction material with no-slump consistency inits unhardened state and it has achieved its name from the construction method. The definitionfor a no-slump consistency is a freshly mixed concrete with a slump less than 6 mm. TheRCC is placed with the help of paving equipment and then it is compacted by vibrating rollerequipment. The RCC ingredients are the same as for the conventional concrete but it hasdifferent ratios in the materials that are blended to produce the concrete. It differs when itcomes to aggregates because both similar aggregates used in conventional concrete oraggregates that do not fulfill the normal standards can be used in the RCC mixtures. Thismeans, for example that aggregates found on the construction site can be used for the RCC.Compared to when constructing a conventional concrete dam, which is usually built in largeblocks, the RCC dam are usually built in thin, horizontal lifts, which allows rapidconstruction. This reduces the amount of formwork, but also the demand for man-hours areless due to the usage of machines for spreading and compacting, ultimately making it acheaper method. Building with RCC has become very popular around the world because of itsadvantages and new methods have been developed over the past two decades, adapted to theexperience gained after each project. All RCC dams that has been built, usually faceschallenges both during and after construction, and it includes everything from temperaturevariations, cracks to leakage.The main purpose of this master thesis is to create a guideline for how to design and constructdams with RCC and the idea is to be able to use it as a basis for future dams. Therequirements of Eurocode 2 and RIDAS are the basis of the criteria that the dam must fulfilland information of what is expected of the RCC is presented in this thesis. Furthermore anexample for design of an existing embankment dam to an RCC dam has been presented in thisthesis. The embankment dam needs to be rebuilt in order to increase the safety of the dam andthe goal of the case study was to determine the dimensions of the new RCC dam.

    Download full text (pdf)
    fulltext
  • 42.
    Al-Bazarkan, Abdulla
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Alahmad, Hussain
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Loading tests on composite concrete columns: A comparison between composite columns made of permanent 3DPC formwork filled with SCC and columns made of homogenous SCC2023Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In order to achieve increased sustainability when casting concrete structures this thesis investigates the possibility of utilizing 3D-printing to construct formwork and digitalize construction. By digitizing construction less workers are needed and therefore less capital. The main aim of this thesis is to examine the load-carrying capacity of composite columns made of a permanent 3D-printed concrete formwork filled with SCC and comparing their strength with that of homogenous columns made of SCC. Another aim of this thesis is to examine the formwork pressure and lastly to examine the bond strength between the two concrete materials. The cylindrical columns were reinforced and cast in Tumba, Stockholm at ConcretePrint. Another rectangular temporary formwork was also constructed to measure the formwork pressure. The measured formwork pressure is compared to a calculated theoretical pressure. The load-carrying capacity was examined with the help of a hydraulic press at RISE in Borås. Bond strength was also tested at RISE in Borås by drilling out cores of the composite columns. Results prove that formwork pressure is not an issue for these types of columns. The results also show that the composite columns are stronger when wholly loaded over their cross section while they perform similarly when a concentrated centrally placed load is applied. When subjected to a concentrated centrally placed load it is thought that an eccentricity occurs and therefore lowers the load-carrying capacity in both the homogeneous and composite columns. Further, bond strength between the composite materials had such values that the bond is not thought to be a limiting factor either. While no conclusive conclusion can be drawn due to the limited number of columns, the results are promising and further research is recommended. Such research could for example be durability studies which will be treated in a special report by KTH and possibly a study regarding the economic benefit.

     

    Download full text (pdf)
    fulltext
  • 43.
    Albrektsson, Joakim
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures. SP Technical Research Institute of Sweden.
    Durability of fire exposed concrete: Experimental Studies Focusing on Sti„ffness & Transport Properties2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Road and rail tunnels are important parts of the modern infrastructure. High strength concrete (HSC) is commonly used for tunnels and other civil engineering structures, since it allows high load carrying capacity and long service life. In general, Swedish road and rail tunnels should be designed for a service life of 120 years. However, HSC has shown to be sensitive to severe fires in the moist tunnel environment, i.e., fire spalling may occur. Extensive research shows that addition of polypropylene (PP) fibres in the fresh concrete mix significantly reduces the risk of fire spalling. The durability of a concrete structure is mainly governed by the transport properties. Further, experimental studies aimed at understanding the protective mechanism of PP fibres indicate that fluid transport increases in connection with the melting temperature of such fibres. This might reduce the durability of fire exposed concrete with addition of PP fibres. This study aims to investigate whether the use of PP fibres has any significant effect on the durability of moderate fire exposed concrete structures.

    The experimental study focused on transport properties related to durability and stiffness reduction of fire exposed civil engineering concrete with and without addition of PP fibres. The study consists of three parts; (i) unilateral fire exposure in accordance with the standard time-temperature curve (Std) and a slow heating curve (SH), (ii) uniformly heating of non-restrained samples to 250oC, and (iii) moderate unilateral fire exposure, 350oC, of restrained samples. Changes in material properties caused by the fire exposure were studied by means of ultrasonic pulse velocity, full field-strain measurements during uniaxial compression core tests, polarization and fluorescence microscopy (PFM), water absorption and non-steady state chloride migration.

    The study shows that fire exposure influences different properties of importance for load carrying capacity and durability. To get a clear image of the fire damage one has to combine different test methods during damage assessments. Transport properties of concrete both with and without addition of PP fibres were considerably affected even at moderate fire exposure. Hence, the service life might be reduced. All series with addition of PP fibres exhibited higher water absorption compared to the series without PP fibres. The practical importance of this might, however, be small since also the water absorption of concrete without PP fibres was considerably affected for the fire scenarios considered in this study. Behind the fire exposed surface, i.e., between 30 and 60 mm, no change in water absorption was observed for concrete without PP fibres. However, higher water absorption of the series with addition of PP fibres was observed.

    Indicative fire tests aimed to evaluate the resistance to fire spalling during a subsequent severe fire was also conducted. The concretes with addition of PP fibres showed no signs of fire spalling, while progressive spalling was observed for the concrete without PP fibres.

    Download full text (pdf)
    Thesis
  • 44.
    Albrektsson, Joakim
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Flansbjer, M.
    CBI .
    Lundqvist, J. E.
    Jansson, Robert
    Assessment of fire exposed concrete with full-field strain determination2011In: 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure, 2011, p. 337-344Conference paper (Refereed)
    Abstract [en]

    A concrete structure exposed to fire deteriorates when the temperature increase in the structure. An experimental study has been performed in order to evaluate the degree of degradation of concrete exposed to two different fire scenarios. As the thermal diffusivity of concrete is low, high thermal gradient is induced in the cross-section. This causes inhomogeneous mechanical properties of a concrete structure. In traditionally core testing of the elastic modulus and compressive the material is assumed to be homogeneous, this is not the case when concrete has been exposed to a real fire. By using an optical full-field strain measuring device the mechanical response at different depth, from the fire exposed surface, can be studied. In this study a typical concrete mix for civil engineer applications were used. In addition a similar concrete mix with reduced aggregate size was tested. The test samples were exposed to the standard fire curve ISO 834-1 or a temperature rise of 10 °C/min. In addition, Ultrasonic Pulse Velocity measurement and PFM Microscopy were conducted in order obtain a reliable picture of the residual mechanical properties and the durability.

  • 45.
    Albrektsson, Joakim
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Jansson, Robert
    Capillary suction and chloride migration in fire exposed concrete with PP-fibre2012In: Concrete Repair, Rehabilitation and Retrofitting III (ICCRRR), 2012, p. 128-129Conference paper (Refereed)
    Abstract [en]

    Annually, several concrete structures, such as buildings, bridges, parking garages, tunnels, etc. are exposed to fires. Many fires are small, for example single car fires in tunnels. These fires do not affect the load carrying capability of the concrete structure and thus minor or no reparations are required. In modern concrete for civil engineer applications the use of Polypropylene fibres (PP-fibre) to reduce fire spalling is growing. Some studies have been carried out which indicate that the use of PP-fibres will not affect the durability of the concrete. But in case of a fairly moderate fire exposure, a fire exposure that does not lead to structural damage, the PP-fibres can potentially lead to reduced durability. During low intensity fires or at long distances downstream a large fire in a tunnel the PP-fibres melts and form channels in the concrete. After such degradation of the PP-fibres it is plausible that accelerated damage may occur when moisture, de-icing salts and carbon dioxide can more easily penetrate the concrete. In this experimental study the chloride migration and the capillary suction are studied in moderately heated concrete containing PP fibres. The chloride migration tests were conducted with heated samples with and without PP-fibres. The capillary suction tests were even conducted with different fibre contents. As a reference the results are compared with results from unheated concrete. The aim of the project is to define whether or not measures have to be taken to repair concrete structures after small fires and at long distances downstream from large fires in tunnels. If the durability is affected the costs and consequences of not repairing and refurbishing after the fire can potentially be very high especially after a fires in very long tunnel.

  • 46.
    Albrektsson, Joakim
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Jansson, Robert
    Silfwerbrand, Johan
    CBI .
    Assessment of fire exposed concrete structures2012In: Symposium 2012, 2012, p. 619-622Conference paper (Refereed)
    Abstract [en]

    Annually, several concrete structures, such as buildings, bridges, parking garages and tunnels are exposed to fires. An assessment is then necessary to decide whether the structure can be repaired or needs to be replaced. In a recent research project, recommendations for assessments of fire exposed concrete structures have been developed. The recommendations are based on a literature survey, results from an experimental study, where ultrasonic measurements, microscopy, Digital Image Correlation (DIC) measurement on loaded core samples were used and practical experience of real post-fire structural assessments. A refined assessment of the fire damage is obtained by combining these test methods.

  • 47.
    Albrektsson, Joakim
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Jansson, Robert
    Silfwerbrand, Johan
    CBI .
    Durability of fire exposed concrete cover considering non-linear thermal gradient, boundary effecs and polypropylene fibresManuscript (preprint) (Other academic)
  • 48.
    Alexandersson, John
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Life Cycle Cost Analysis of two high temperature cooling systems supplied by geothermal energy: A Case Study in Sant-Cugat, Spain2022Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Energy efficiency in the building sector is an important matter all over the world. The business of energy efficiency is especially highlighted in the European Union, where several directives and projects are directed to increase the knowledge and encourage and force property owners to implement new energy efficient solutions. Besides studying the primary energy demand of building as the only measure of the sustainability, it is also beneficial to study the exergy performance of building services to achieve a more correct picture of sustainability in the building sector. The objective of this Master Thesis is how two high temperature cooling systems connected to a local geothermal heat sink can be compared in terms of cost-effectiveness. The thesis is based on a case study where the two systems are evaluated in an administrative building in Sant-Cugat, Spain. Life Cycle Cost Analysis is used as a methodology and a complementary sensitivity analysis is conducted to highlight how different included parameters, such as maintenance cost, discount factor and electricity escalation rate impact the Life Cycle Cost of each system. The two systems compared are an all-air cooling system connected to a vertical ground heat exchanger/sink and a radiant cooling system also using the same arrangement as a heatsink.A study period of 30 year is implemented and in addition of the comparison of the two system, a comparison against a baseline scenario with no retrofitting is conducted, where the cost of the baseline scenario is quantified as the loss of work productivity due to overheating. The study shows that both systems are feasible to implement, since the loss in work productivity is fairly high. The all-air cooling system shows to be slightly more beneficial from an economical viewpoint during the study period, although the sensitivity analysis shows that the result is sensitive and not especially significant. To sum up, the thesis gives answers regarding the economic feasibility of the two systems and provide material for a hypothetical decision maker regarding which of the systems that would be most suitable to implement in the studied building.

    Download full text (pdf)
    fulltext
  • 49.
    Alkurdi, Rahaf Alobaid
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Hussein, Masad
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Interaction effects during internal explosions in reinforced concrete frame structures2024Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Urbanization presents challenges in accommodating a growing population while ensuring that infrastructure capacity increases steadily. As population density increases, the risk of collisions rises, necessitating robust infrastructure solutions. Reinforced concrete tunnels and over-decking structures are fundamental elements of infrastructure, designed as frame structures to withstand accidental loads caused by multiple sources such as collisions or explosive charges. Rigid frame structures act as cohesive units, experiencing significant interaction effects under the presence of blast loads. Recent studies conducted by institutions such as the Swedish Defence Research Agency (FOI) have focused on the dynamic response of individual concrete elements. This underscores the need to revise design codes to account for theinteraction effects in monolithic structures. This thesis aims to analyze the disparity between the interaction effects in monolithic frame structures and the behavior of individual elements.

    The theoretical work in this thesis is conducted using non-linear finite element analyses to investigate the interaction effects at the connections between beams and columns when a reinforced concrete frame structure is subjected to an internal air blast load. The study focuses on modeling the entire frame, as well as experimenting with the boundary conditions for the column element, to investigate which configuration best considers the effect of the ceiling. The differences in second-order effects exhibited by the respective models will be compared to draw a conclusion. The choice of boundary conditions significantly affects a structure’s dynamic response. One boundary condition offered flexibility in force dissipation, while the other configuration prevented excessive movement but caused severe damage and higher vibration in wall elements.

    The results from the less stiff wall model exhibited dynamic behavior similar to the frame model but had a notable disparity in the midpoint deflection at the wall element for the respective model. In further investigations, it was observed that the bending moment for the frame model was distinguished by a prominent dissimilarity in behavior, with the wall models exhibiting a larger moment compared to the frame model. These results provide insights into how the wall models do not accurately capture the total effect of the second-order moment due to the lack of beam-column interactions.

    Download full text (pdf)
    fulltext
  • 50.
    Al-Nassrawi, Hamzah
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Tsamis, Grigorios
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Global Analysis and design of a complex slanted High-Rise Building with Tube Mega Frame2017Independent thesis Advanced level (degree of Master (Two Years)), 80 credits / 120 HE creditsStudent thesis
    Abstract [en]

    The need for tall buildings will increase in the future and new building techniques will emerge to full fill that need. Tyrénshas developed a new structural system called Tube Mega Frame where the major loads are transferred to the ground through big columns located in the perimeter of the building. The new concept has the advantage of eliminating the core inside the heart of the building but furthermore gives countless possibilities and flexibility for a designer. The elimination of the central core, plus the multiformity the Tube Mega Frame, can result new building shapes if combined with new inventions like the Multi elevator Thussenkrupp developed.

    Multi is a new elevator system with the ability to move in all directions apart from vertically. In this thesis research of the possible combinations between TMF and Multi was conducted. The building shaped resulted is only one of the many possible outcomes which the mix of Multi and TMF can have. The building was constructed in a way so the TMF would be the main structural system, the building would have inclinations so the multi elevator would be the only elevator appropriate for the structure and the height would be significantly large.

    The pre-study focused on the inclination and its particularities. The inclination played a significant role on how the inner forces were distributed in a structure. Under special circumstances the inclination could be even beneficial although inclination could result in axial forces on the slabs so the horizontal elements should be designed thoroughly not only for bending or shear but also for axial loading. The next phase was experimenting on different simple shaped buildings and combinations of them. The conclusions on the simple buildings formed the idea on how the main building would be.

    The main building was modeled using four different structural systems and their subcategories with seven models in total. Totally seven systems were compared in load combinations for wind, dead, live, and seismic loads and the global behavior was studied. The model comparison included maximum deformations and modes of vibrations. This way the best structural systems were discovered for the specific building shape and conclusions on inclination into a structure were made. The best structural systems and more reliable in terms of results but also in simplicity of construction were chosen to be designed in ETABS. The 50m belt system, the outside braces system and the diagrid system were designed.

    The design of the buildings was conducted using the American code ASCE /SEI 7-10. In the design two different mega columns were used to study how a solid or hollow cross section can affect the global behavior. Depending on the structural system the mega column had a major or minor effect on the stiffness of the structure. The design of the cross sections was divided in many groups since the complex geometry had an impact on how and where forces arised in the structure. The outside brace system had the best results in terms of less weight and global stiffness proving that in inclined building and columns with the correct bracing and triangulation of elements could extinguish the negative effects of inclination and even perform better compared to conventional buildings.

     The 50-belt system was furthermore studied in buckling since it was one of the best structural systems but with the least bracing, but also the least complex in terms of construction method. The automated buckling through ETABS was conducted and a more conservative approach where the user is defining the buckling length and support factors was used. In addition, a comparison between the user defined factors and global buckling was conducted.

    Download full text (pdf)
    Tsamis_Al-Nassrawi_Thesis
1234567 1 - 50 of 754
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf