Change search
Refine search result
1234567 1 - 50 of 408
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abbasiverki, Roghayeh
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Ansell, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Seismic response of buried concrete pipelines subjected to highfrequency earthquakesIn: Geotechnical and Geological Engineering, ISSN 0960-3182, E-ISSN 1573-1529Article in journal (Refereed)
    Abstract [en]

    Buried pipelines are tubular structures that cross large areas with different geological conditions. During an earthquake, imposed loads from soil deformations on concrete pipelines may cause severe damages. In this study, the use of two-dimensional finite element models of pipelines and surrounding soil for simulation of seismic waves that propagate from the bedrock through the soil are demonstrated. The models describe both longitudinal and transverse cross-sections of pipelines and the soil-pipe interaction is modelled as a nonlinear behaviour. The effects of uniform ground with different burial depths, soil layer thickness, soil stiffness and bedrock geometry on the seismic response of reinforced concrete pipelines is studied. Two earthquakes, with high and low frequency contents, are employed for the dynamic analysis. The results show that there is a much smaller risk of damage from high-frequency earthquakes, but that there is a significant effect on the response due to possible irregular ground with inclined bedrock.

  • 2.
    Abbaszadeh Shahri, Abbas
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics. College of Civil Engineering, Roudehen branch, Islamic Azad University, Tehran, Iran.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Johansson, Fredrik
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    CPT-SPT correlations using artificial neural network approach: A Case Study in Sweden2015In: The Electronic journal of geotechnical engineering, ISSN 1089-3032, E-ISSN 1089-3032, Vol. 20, no 28, 13439-13460 p.Article in journal (Refereed)
    Abstract [en]

    The correlation between Standard and Cone Penetration Tests (SPT and CPT) as two of the most used in-situ geotechnical tests is of practical interest in engineering designs. In this paper, new SPT-CPT correlations for southwest of Sweden are proposed and developed using an artificial neural networks (ANNs) approach. The influences of soil type, depth, cone tip resistance, sleeve friction, friction ratio and porewater pressure on obtained correlations has been taken into account in optimized ANN models to represent more comprehensive and accurate correlation functions. Moreover, the effect of particle mean grain size and fine content were investigated and discussed using graph analyses. The validation of ANN based correlations were tested using several statistical criteria and then compared to existing correlations in literature to quantify the uncertainty of the correlations. Using the sensitivity analyses, the most and least effective factors on CPT-SPT predictions were recognized and discussed. The results indicate the ability of ANN as an attractive alternative method regarding to conventional statistical analyses to develop CPT-SPT relations.

  • 3.
    Abbaszadeh Shahri, Abbas
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Johansson, Fredrik
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Updated relations for the uniaxial compressive strength of marlstones based on P-wave velocity and point load index test2016In: INNOVATIVE INFRASTRUCTURE SOLUTIONS, ISSN 2364-4176, Vol. 1, no 1, UNSP 17Article in journal (Refereed)
    Abstract [en]

    Although there are many proposed relations for different rock types to predict the uniaxial compressive strength (UCS) as a function of P-wave velocity (V-P) and point load index (Is), only a few of them are focused on marlstones. However, these studies have limitations in applicability since they are mainly based on local studies. In this paper, an attempt is therefore made to present updated relations for two previous proposed correlations for marlstones in Iran. The modification process is executed through multivariate regression analysis techniques using a provided comprehensive database for marlstones in Iran, including UCS, V-P and Is from publications and validated relevant sources comprising 119 datasets. The accuracy, appropriateness and applicability of the obtained modifications were tested by means of different statistical criteria and graph analyses. The conducted comparison between updated and previous proposed relations highlighted better applicability in the prediction of UCS using the updated correlations introduced in this study. However, the derived updated predictive models are dependent on rock types and test conditions, as they are in this study.

  • 4.
    Adevik, Sebastian
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Effekt av överlast på förstärkt jord: FEM- analys för att visa överlastens verkningsgrad på krypsättningar i kalkcementpelarförstärkt lös jord2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [sv]

    Applicering av överlast på kalkcementförstärkta jordar är ofta förekommande idag, forskning indikerar dock på att överlasten här, inte ger samma effekt som på oförstärkta jordar. Med grund i uppmätta värden i fält, visas i denna rapport, sättningsdifferenser mellan att använda överlast jämfört med att endast applicera brukslast. Resultat av analyserna visar på sättningsbeteende observerat i fält. Om erforderlig liggtid för brukslast finns, uppstår endast små sättningsdifferenser mellan att använda överlast eller inte.

    Genom att utföra sensitivitetsanalys i FEM- programvaran PLAXIS studeras kryputvecklingen i den förstärkta jorden. Effekten av att applicera en överlast visas för krypsättningar över lång tid.

    Inget resultat från de numeriska FEM- analyserna visade att märkbart gynnsam effekt uppstår på grund av överlastens applicering, med avseende på krypsättningar.

    De numeriska analyserna utförs i 2 och 3 dimensioner för att belysa effekt av förenkling av ett lastfall som inte uppfyller krav för oförstärkta jordar i plant töjningstillstånd.

    Utöver detta ges efter en litteraturstudie, förslag på hur vissa indataparametrar kan utvärderas från empiriska relationer. Indataparametrar som ligger till grund för analyserna är utvärderade från sonderingsresultat i kombination med värden från laborationsförsök och empiriska data.

  • 5.
    Adolfi, Emma
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Eriksson, Josefine
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Islastens inverkan på brottsannolikheten för glidning och stjälpning av betongdammar2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    There are many old dams in Sweden and, since few dams are constructed today, the main task in risk assessment on the existing dams is often to reduce the risk of failure. RIDAS (Swedish Guidelines on Dam Safety) is used when designing new dams and assess the existing ones. The guidelines include stability requirements for different failure modes, e.g. overturning and sliding, which imply that the load effect from e.g. uplift and ice load need to be less than the resisting loads or moments. The ice load in RIDAS is given as a deter­ministic value depending on where in Sweden the dam is located. For many years, ice and ice load have been researched, but there is still a lack of knowledge regarding the magni­tude of the ice load and how it affects the probability of failure for dams. More knowledge about the actual ice load would result in a lower calculated probability of failure for the dam which could be used to design slender dams or avoid unnecessary reinforcement of existing dams.

    Dam safety evaluation is often performed with deterministic methods based on safety factors. In recent years, the use of probabilistic methods in dam design has increased. The method has an advantage compared to deterministic methods in safety evaluations of existing dams, since probabilistic methods provide an answer to which parameters that have the greatest impact on the stability of the dam and take into account the variations in each parameter.

    I this master thesis, a statistical distribution for the variation of the ice load’s annual maxi­mum value was calculated. This was used in the analysis of the probability of failure for solid gravity concrete dams and buttress concrete dams. The probability of failure was cal­culated for dams of different sizes for overturning and sliding failure modes, and also for three different load cases; without ice load, with a truncated ice load distribution and with an ice load distribution that has not been truncated. The probabilistic stability analysis was conducted in Comrel with ice load as one of the stochastic variables. It was found which sizes of the dams that have the largest impact from the ice load; also what effect extreme values on the ice load has on the failure probability of the dam.

    The results indicated that the probability of failure for dams lower than 15 m is more affected by the ice load, for both failure modes analyzed. The probability of failure is reduced for all dam types when eliminating extreme values of the ice load, particularly for dams lower than 15 m. In several cases, truncation of the ice load distribution is the differ­ence between an accepted and a non-accepted level of the probability of failure. It is also shown that reduced coefficient of variance for the ice load results in a decreased probability of failure. The conclusion is that solid gravity dams and buttress dams lower than 15 m, with a high consequence class, should be risk assessed with the ice load as a stochastic vari­able. The statistical distribution of the ice load is still uncertain and the distribution used in this report should not be used globally, rather in areas with a climate similar to northern Sweden. The reason for this is that the measurements that were used to derive the global distribution were mainly performed in areas with conditions similar to those in northern Sweden.

    A recommendation for further research is to focus on determining statistical distributions for the ice load for southern, central and northern Sweden. An alternative is to use differ­ent ice load distributions for the different areas. Another alternative could be to use the same statistical distribution for southern, central and northern Sweden but with different values for where the ice load distribution is truncated, depending on the maximal ice thick­ness in each area. The recommendation is also to develop a reliable method for measuring the ice load. In addition, attempts should be made to determine whether extreme values on the ice load really exist or if they are effects of measurement errors.

    Key words: concrete dams, ice load, probabilistic stability analysis, probability of failure

  • 6.
    Ahlund, Rasmus
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Ögren, Oscar
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Pore pressures and settlements generated from two different pile drilling methods2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    For piling works in sensitive soil, especially in inner city projects, it is essential to be aware of the available methods and to choose the most suitable method to minimize the risk of damaging existing buildings or endanger the workers at the construction site. Down-the-hole drilling of piles is a relatively safe method and can be separated into drilling with air powered hammers and water powered hammers. This study compares water powered drilling with air powered drilling and shows that the impact on the soil generated by air powered drilling is larger than that from water powered drilling.

    A field study was carried out where 4 piles were drilled, two with air powered DTH drilling and two with water powered DTH drilling. The drilling was carried out in clay resting on an approximately 4 m layer of silt and friction soil. The total soil depth was about 12- 15 m. To analyze the soil influence, settlements were measured at ground level and in depth and pore pressure was measured in the middle of the clay layer. This study distinguished two major problems when drilling through this type of soil. The first is the risk of over-drilling in the friction layer. The second problem is the risk of increasing the pore pressure in the clay. Both these problems were experienced when using air powered drilling but for the water powered case only a small pore pressure increase and no over-drilling was observed. In conclusion, drilling with water has less influence on the soil in the sense that it gives a smaller effect on the pore water pressure and causes smaller settlements.

  • 7.
    Alamaa, Angelica
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    High-speed railway embankments: a comparison of different regulation2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Swedish transport administration initiated this Master Thesis project and the aim was to compare regulations for the design of high-speed railways from three European countries: France, Germany and Spain. The reason why this is of interest for the Swedish transport administration is the design of the first Swedish high-speed railway, called Ostlänken. Therefore, a literature study of the regulations and other literature regarding high-speed railway has been carried out. A basic description of railway components, slab track and ballasted tracks is presented.

    Ballasted embankments usually consist of a trackbed layer (ballast onto subballast), and the ultimate thickness of this layer is discussed, as there are a number of methods available to calculate the appropriate thickness, with a number of different design parameters. These design methods results in different trackbed thickness and choosing the “wrong” method might lead to an overestimation or underestimation of the trackbed layer. Constructing a ballastless railway line means that the ballast is replaced by another material, usually a slab made of reinforced concrete or asphalt, and the rail is cast onto this slab. Countries design their slab using different methods. Germany has constructed high-speed railway lines with a slab track solution, generally slabs with low flexible stiffness. France has until recently constructed their high-speed line ballasted but is now developing a new slab track technique, called NBT (New Ballastless Track) and Spain uses various methods.

    It is difficult to compare the regulations, however, there are some factors that at least begin to explain the differences between the countries: the frost hazard, the inherent ground quality, purpose with the railway (mixed traffic, solely passenger traffic, etc.), design parameters (life, axle load, etc.). Furthermore, the settlement requirements, soil classification and bearing capacity are factors that varies from country to country, but the origin for this variation is harder to detect.

  • 8.
    Alcalá Perales, Diego
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics. UPV.
    Spatial variation in uplift pressure and correlation with rock mass conditions under two buttress dams: A case study of Ramsele and Storfinnforsen dams2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Uplift water pressure is one of the dominating forces with signicant impact acting on a dam. It is usually measured with piezometers installed along the dam. However, the value of the pressure along the dam is often hard to measure due to the limited number of piezometers available (Bernstone et al., 2009). Furthermore, uplift pressure can oscillate substantially in a single hole both with time and also spatially under the dam due to the combination of rock mass characteristics in the foundation, loads and temperature variations.There is still a lack of information regarding the magnitude and variation of the uplift pressure. The aim of this thesis is to investigate the spatial variation of the uplift pressure based on uplift pressure measurements taken from Storfinnforsen and Ramsele dams. The aim is also to investigate how the uplift pressure depends on the rock mass conditions. The two dams Storfinnforsen and Ramsele provides a unique opportunity due to the signicant amount of piezometers, 270 in total, installed along the rock foundation for the new monitoring programme at the monoliths of both dams.Based on the measured uplift pressure, a probabilistic distribution has been assigned to the uplift pressure. In addition, a possible correlation between the rock mass quality and the uplift pressure as well as the joint aperture and the uplift pressure was analysed.

  • 9.
    Ali Akbar, Saman
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Al-Naddaf, Manar
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Evaluating and Comparing of Three Penetrability Measuring Devices: Modified Filter Pump, Modified Penetrability Meter, and Short Slot2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Rock grouting is a commonly used process for sealing rocks in tunnels to reduce water ingress. In order to achieve sufficient sealing level the grout must effectively penetrate into rock fractures while the limiting factor is filtration of cement based grout. Many devices and measuring methods have been developed to study filtration and to measure the penetrability. The filter pump and the penetrability meter are two of the most commonly used instruments for measuring filtration tendency in the field and in the lab, while short slot is used mainly in the lab. The results obtained from these devices have relatively different estimations of the penetrability partly due to the weaknesses in measuring methods and test procedures. Furthermore, there are no clear criteria to find out which of the results are closer to the reality or how much the results differ among these instruments. The aim of this study is comparing, and evaluating the results of these devices in relatively similar conditions while using more accurate methods of weight-time and pressure-time compared to the less reliable total volume method. The filter pump and the penetrability meter were modified In order to fulfill the requirement of testing in similar conditions and to improve their accuracy and versatility.

    The results show that increasing the pressure improves the penetrability significantly. The modification of the filter pump results in reducing many uncertainties related to the testing procedure. Probably the modified filter pump has higher accuracy in measuring the penetrability compared to regular filter pump. The short slot has the highest accuracy in estimating penetrability of cement based grout especially at higher pressures, furthermore, the short slot provides a more flexible way to measure penetrability with different pressures in the range of 1-15 bars.

  • 10.
    Al-Naqshabandy, Mohammed
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Ultimate limit statedesign of LC columns2013Conference paper (Other academic)
  • 11.
    Al-Naqshabandy, Mohammed
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Effect of Uncertainties of Improved Soil Shear Strength on the Reliability of Embankments2013In: Journal of Geotechnical and Geoenvironmental Engineering, ISSN 1090-0241, E-ISSN 1943-5606, Vol. 139, no 4, 619-632 p.Article in journal (Refereed)
    Abstract [en]

    The strength variability of soils improved by lime-cement columns is very high, and assessment of the reliability is associated with high uncertainty. Previous research on natural soils has shown that variability has a major impact on the reliability of geotechnical systems. However, concerning ground improvement with lime-cement columns, the effect of the uncertainties associated with improved strength properties on the reliability is unknown. This paper addresses the integration of reliability-based design in the design of embankments founded on soil improved by lime-cement columns by an analysis of a project conducted in Sweden. The uncertainties associated with estimating the strength property based on results from cone penetration tests and their effect on the assessed system reliability are addressed and discussed. The use of variance reduction with respect to the spatial variability of the shear strength of the columns was found to have a major influence on the assessed system reliability. Furthermore, it was found that the transformation uncertainty from measurements based on cone penetration tests has a significant impact on the assessed system reliability. System reliability cannot be improved significantly simply by performing a large number of tests.

  • 12.
    Al-Naqshabandy, Mohammed
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Partial factor design for a highway embankment founded on lime-cement columns2012Conference paper (Refereed)
    Abstract [en]

    Stability assessment of highway embankments is a common practice in geotechnical engineering. Rational estimation of soil properties is essential for reliable and safe design. However, previous research has shown that high degree of uncertainty is associated with engineering properties and the behavior of the ground improvement with lime-cement columns. Current design methods for stability of lime-cement column are deterministic and the uncertainties are not treated rationally. A reliable design requires rational treatment of uncertainties. This paper addresses the need for application of partial factor design for safety and reliability assessment of lime-cement columns. The study was carried out on an example highway embankment of 6 m height. Resistance and load parameters were considered random variables. The sensitivity factors for the random variables were evaluated from the first order reliability method (FORM). Partial factors were evaluated for the random variables according to the approximate location of the design values. It was shown that the design by partial factor method fulfills both safety and reliability requirements.

  • 13.
    Al-Naqshabandy, Mohammed Salim
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Reliability-based ultimate limit state design of lime-cement columns2012Doctoral thesis, comprehensive summary (Other academic)
  • 14.
    Al-Naqshabandy, Mohammed Salim
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Strength variability in lime-cement columns and its effect on the reliability of embankments2011Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Ground improvement by deep mixing (DM) is a generic term used for a number of methods in which a binding agent, often lime and/or cement, is mechanically mixed with the soil to increase its engineering properties. The inherent variability with respect to the engineering properties of the improved soil is high due to the variations in geology and the complex mixing process. High variability introduces uncertainty in estimating improved soil properties and the performance of the structure.

    Current design methodology deals with soil properties deterministically and the uncertainties involved are incorporated in a single value represented by a total factor of safety (FS). The chosen FS is highly dependent on the engineer’s judgment and past experience, in which both of these factors vary between different geotechnical designers. Therefore, current design methodology used in practice for DM does not deal with uncertainties in a rational way. In order to design a geotechnical system with the desired level of confidence, the uncertainties involved must be integrated in the DM design. This can be achieved by using reliability-based design (RBD) methods.

    The research work in this thesis is presented as a collection of three papers. In the first paper, a comprehensive statistical analysis of cone penetration test (CPT) data is described. The objective was to make a contribution to empirical knowledge by evaluating the strength variability of lime-cement columns within the group of tested columns. In the second paper, the effect of the spatial variability and statistical uncertainty with regard to the embankment’s reliability was investigated within the framework of RBD. The study in the third paper investigated the strength variability in lime-cement columns based on two test methods, namely CPT and column penetration test (KPS). In this study, the effect of different test methods on the evaluation of the design value was addressed.

    The main conclusions from this study can be summarized as follows. First, the probability distribution function (PDF) for the undrained shear strength of lime-cement columns can be modeled in RBD as normal or log-normal distributions. However, the use of log-normal distribution is recommended for RBD analyses. Second, the evaluated scales of fluctuation indicate ranges of 2 to 4 m and 0.2 to 0.8 m in the horizontal and the vertical directions respectively. This means that in order to fulfill the requirements of independent/uncorrelated samples for assessment of the design value, the spacing between samples must exceed the horizontal scale of fluctuation. It is therefore proposed that the spacing between individual samples should be at least 4 meters. Third, the design values evaluated using CPT and KPS were approximately the same. However, the inherent variability evaluated differs due to the larger volume tested with the KPS probe than with the CPT probe. However, this difference was not significant between the two tests. Fourthly, due to the limitation in the deterministic design in terms of dealing with uncertainties, it is recommended that RBD design should be used in parallel with the deterministic design of lime-cement column.

  • 15.
    Al-Naqshabandy, Mohammed Salim
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Bergman, Niclas
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Effect of spatial variability of the strength properties in lime-cement columns on embankment stability2012In: Geotechnical Special Publication, ISSN 0895-0563, Vol. 228, 231-242 p.Article in journal (Refereed)
    Abstract [en]

    Spatial variability with respect to the strength in lime-cement columns is an unavoidable source of uncertainty that should be considered in design. Current design method for the assessment of embankment stability, based on the deterministic factor of safety, cannot address the effect of spatial variability. Reliability-based design methodology is a powerful tool that can be used to integrate the variability into the analysis. In this paper, the spatial variability with respect to the undrained shear strength in the soil and in the columns was evaluated based on CPT test. The first order second moment (FOSM) reliability method was applied to address the impact of the spatial variability of the strength in the soil and in the columns on the reliability of an embankment founded on improved soil by lime-cement columns. The paper also presents a technique to evaluate the variance reduction factor over the failure surface. The results propose that the undrained shear strength in the soil and in the columns can be modelled following normal or lognormal distribution. The analysed example show that the reliability increased significantly when the spatial variability was considered

  • 16.
    Al-Naqshabandy, Mohammed Salim
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Bergman, Niclas
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Strength variability in lime-cement columns based on CPT data2012In: Ground Improvement, ISSN 1365-781X, E-ISSN 1751-7621, Vol. 165, no 1, 15--30 p.Article in journal (Refereed)
    Abstract [en]

    Natural and improved soils have relatively high inherent property variability that should be taken into consideration in design. Investigations of the spatial variability in lime-cement columns are important since they provide a rational quantification of the variability parameters needed for a reliability-based design analysis of geotechnical systems. Statistical analyses are used to evaluate the spatial variability parameters, i.e. the mean, the variance, and the scale of fluctuation, which is the distance within which soil properties reveal strong correlation. This paper presents a field test, in which 30 CPT soundings were performed and analyzed statistically in order to address the spatial variability in a group of lime-cement columns, with respect to the cone tip resistance. The objective of this paper is to describe the statistical analyses and to make a contribution to the empirical knowledge about strength variability in a volume of lime-cement columns. Stationarity has been assessed, and the scale of fluctuation has been evaluated in the vertical and horizontal directions. Random field theory was used based on the sample autocorrelation function ACF. The scale of fluctuation was found to be within the range of 0.2-0.7 m and 2-3 m in the vertical and horizontal direction, respectively. A simple design consideration shows that the variance reduction factor has a major influence on the determination of the design value.

  • 17.
    Amin, Diyar
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Triaxial testing of lime/cement stabilized clay: A comparison with unconfined compression tests2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This master thesis presents results from a laboratory study on a clay from Enköping which was stabilized with lime and clay. Isotropic consolidated undrained compressive tests were performed on samples and compared to unconfined compressive testing.

    The two methods have shown no difference in the evaluation of undrained shear strength. However the modulus of elasticity was shown to be much higher for the triaxial tests. For the unconfined compressive tests the relation between the undrained shear strength and secant modulus was within the range of 44-146. The equivalent for the triaxial tests was in the interval of 112-333. However no pattern was extinguishable between the two tests as this relation has varied between 1,0 to 3,5.

    A lower and higher back pressure was used during the triaxial testing. However, both back pressures have succeeded in saturating the sample. Results show that the back pressure has little effect on the results, as long as the sample has been fully saturated.

    In addition to this extension tests were performed on samples as well. The tests performed were isotropic consolidated undrained. However two different shearing methods were used. The first test was strain rate dependant while the second test was stress rate dependant. In the first test the vertical stress decreased while the radial stresses were kept constant, while in the other test the radial stresses increased while the vertical stress were kept constant.

    The undrained shear strength was compared to lime/cement column penetration tests in field. Results showed that tests in field show a much higher undrained shear strength than laboratory testing.

  • 18.
    Andersson, Christer
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Pelarförsök vid Äspö2005Conference paper (Other academic)
  • 19.
    Andersson, J. Christer
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Rock Mass Response to Coupled Mechanical Thermal Loading: Äspö Pillar Stability Experiment, Sweden2007Doctoral thesis, monograph (Other scientific)
    Abstract [en]

    The geological disposal of nuclear waste, in underground openings and the long-term performance of these openings demand a detailed understanding of fundamental rock mechanics. A full scale field experiment: Äspö Pillar Stability Experiment was conducted at a depth of 450 m in sparsely fractured granitic rock to examine the rock mass response between two deposition holes. An oval shaped tunnel was excavated parallel to the σ3 direction to provide access to the experiment and also provide elevated stress magnitudes in the floor. In the tunnel floor two 1.75-m diameter 6-m deep boreholes were excavated so that a 1-m thick pillar was created between them. In one of the holes a confinement pressure of 700 kPa was applied and in the other displacement transducers were installed. The pillar volume was monitored by an Acoustic Emission System. Spatially distributed thermocouples were used to monitor the temperature development as the pillar was heated by electrical heaters. The excavation-induced stress together with the thermal-induced stress was sufficient to cause the wall of the open borehole to yield. The temperature-induced stress was increased slowly to enable detailed studies of the rock mass yielding process. Once the rock mass loading response was observed, the rock mass was unloaded using a de-stress slotting technique.

    This thesis focuses on the in-situ study of the rock mass response to coupled mechanical thermal loading and thermal-mechanical unloading. The experiment, its design, monitoring and observations are thoroughly described. An estimate of the yielding strength of the rock mass is presented and compared with laboratory test and results from other rock mass conditions reported elsewhere in the open literature. General conclusions about the effect of the confining pressure and the observations from the unloading of the pillar are also presented.

    Important findings are that the yielding strength of the rock mass has been successfully determined, low confinement pressures significantly affects the onset of yielding, the primary mode of fracture initiation and propagation is extensional, no significant time dependency of the yielding process was observed. The unloading studies also indicated that what appeared to be shear bands likely was a propagating zone of extensile failure that weakened the rock so that displacements in the shear direction could occur.

  • 20. Andersson, J. Christer
    et al.
    Martin, C. Derek
    Stille, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    The Aspo Pillar Stability Experiment: Part II-Rock mass response to coupled excavation-induced and thermal-induced stresses2009In: International Journal of Rock Mechanics And Mining Sciences, ISSN 1365-1609, E-ISSN 1873-4545, Vol. 46, no 5, 879-895 p.Article in journal (Refereed)
    Abstract [en]

    A 1-m-thick pillar was subject to coupled excavation- and thermal-induced stresses to induce brittle rock mass yielding. The yielding strength of the heterogeneous and fractured rock mass consisting of Aspo diorite was evaluated at eighteen discrete locations using data from the displacement, acoustic emission, and thermal monitoring systems. The average rock mass yielding strength was determined to be 0.59 of the uniaxial compressive strength. The onset of dilation in uniaxial laboratory tests, determined from strain gauge data, was found to occur at approximately 0.45 of the uniaxial compressive strength. It was shown that that the onset of acoustic emission events in situ also occurred when the tangential stress exceeded 0.43 of the uniaxial compressive strength. For sites with absence of in situ data it is recommended that this lower-bound value determined from laboratory data may be used for assessing the in situ rock mass yielding strength. Visual observation and displacement monitoring showed that extent of rock mass yielding is sensitive to small changes in the tangential stress magnitudes. It was determined using three-dimensional modelling that changes in the tangential stress magnitude of approximately 1 MPa was sufficient to cause yielding of the pillar to propagate in what appeared to be intact rock. Observations suggest that without this small stress change yielding of the rock mass would not occur. In other words, there appeared to be a well defined boundary, and if the stresses reached this boundary yielding was observed. However, if stresses were only slightly below this boundary yielding or time-dependant processes were not observed over the monitoring period used in the experiment.

  • 21.
    Andersson, Jimmie
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Sannolikhetsbaseraddimensionering av geotekniskbärförmåga för pålar i grupp: En jämförelse mellan gällande normer och ensannolikhetsbaserad metod2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
  • 22. Andreasson, Bo
    et al.
    Bahrekazemi, Mehdi
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Bodare, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Massarsch, Rainer
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Nya tider, nya problem - ny SGF Markvibrationskommitté2007In: Väg och Vattenbyggaren, ISSN 0042-2177, no 4, 38-41 p.Article in journal (Other (popular science, discussion, etc.))
  • 23.
    Ansell, Anders
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Holmgren, Jonas
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
    Mundt, Elisabeth
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Services Engineering.
    Silfwerbrandt, Johan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Stille, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Sundquist, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    State-of-the-art och förslag till forskningsprojekt: Drift, underhåll och reparation av trafiktunnlar2007Report (Other academic)
  • 24.
    Avestedt, Lisa
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Comparison of Risk Assessments for Underground Construction Projects A study about distinctions and common features and suggestions for improvements2012Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This master thesis is a study of risk assessment tools and other risk management

    documentation created by consultants and contractors in the US and Sweden for

    underground construction projects. Risk management as part of managing

    underground projects is common practice in both countries for underground

    construction projects. Depending on location and other parameters other types of risks

    than the geological ones need to be considered, for example of the settings of the

    project is an urban environment or if it is situated in a less densely populated area.

    Normally underground project also involves large investments and therefore

    managing cost is important. Risk management is a way of managing cost and other

    areas that may be of concern.

    The main goals of this thesis are to:

    Identify a theoretical general approach to risk management and specifically risk

    assessments based on a literature study

    Identify similarities between risk management practices in the two countries

    Identify differences between risk management practices in the two countries

    Identify how risk management practices differ in the two countries from the

    theoretical approach established from the literature study

    Apart from the study of theoretical literature 12 projects in total were studied; 5

    Swedish projects and 7 projects from the USA. The conclusions of this thesis are

    generally not statistically significant nor do they indicate trends; they are purely

    observation on the specific documentation studied.

    When comparing application in Sweden vs. application in the USA; main conclusions

    are:

    It is recognized that practices within risk management are generally the same in

    the two countries as established when studying theoretical literature on the

    subject. However categorization of risk parameters is normally less detailed in

    both countries’ project specific documentation than found in theoretical

    literature.

    The US risk management as a rule includes a numerical simulation to determine

    contingency levels for cost and schedule high ranked risks but the simulations

    were not done in the Swedish project specific documents. However it must be

    remembered that the US-projects studied were provided from one soul provider

    and is not in any way significant for this country but for the particular provider

    studied.

    Evaluating the risk registers of the projects studied there seem to be more

    concern for damages to third party in the US as compared to in Sweden. Also

    right-of-way, insurance and financial issues are of higher concern in the US

    projects studied as compared to the Swedish projects studied.

    The projects in Sweden put a slightly higher emphasis on space availability for

    construction than in the US projects.

    For more detailed findings; please read on!

  • 25. Axelsson, Morgan
    et al.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Column penetration tests for lime-cement columns in deep mixing - experiences in Sweden2003In: Geotechnical Special Publication, ISSN 0895-0563, Vol. 120, 681-694 p.Article in journal (Refereed)
    Abstract [en]

    In this paper column penetration tests for lime-cement columns in deep soil mixing are reviewed. In principle, column penetration tests and reversed column penetration tests are considered. Improved test techniques are presented and discussed based on tests from two test sites in Sweden. The investigations indicate that the reversed column penetration test is the most suitable method for the primary quality test with reference to the uniformity and continuity of the columns. The probe should, however, be installed by the lime-cement column machine short after the manufacturing of the column to avoid disturbances in the mixing process and to enable a random test selection.

  • 26. Baghbanan, A.
    et al.
    Sookhak, A.
    Hashemalhosseini, H.
    Bagheri, Mehdi
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Block stability analysis around a large cavern using probabilistic approach2010In: Rock Engineering in Difficult Ground Conditions - Soft Rocks and Karst - Proceedings of the Regional Symposium of the International Society for Rock Mechanics, EUROCK 2009, 2010, 435-440 p.Conference paper (Refereed)
    Abstract [en]

    Block stability analysis around a large excavation is analyzed with both Probabilistic Kinematics Limit Equilibrium (PKLE) and Discrete Fracture Network-Distinct Element Method (DFNDEM) approaches. Different combination of geometric parameters of fracture sets are selected in PKLE method and a series of numerical DEM modeling are performed on generated and validated DFN models in DFN-DEM approach to measure volume of potential unstable blocks and also minimum required support patterns. The mean volume of unstable blocks for PKLE with limited joint length assumption is fairly close to DFN models and they are far from mean value of PKLE when the joint length is extended infinitely. The minimum required support pattern for PKLE is smaller than DEM models which means that the PKLE design tool is underestimated compared with DFN-DEM method which benefits more realistic conceptual model and facilitates more sophisticate simulation tool.

  • 27.
    Bagheri, Mehdi
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Block stability analysis using deterministic and probabilistic methods2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis presents a discussion of design tools for analysing block stability around a tunnel. First, it was determined that joint length and field stress have a significant influence on estimating block stability. The results of calculations using methods based on kinematic limit equilibrium (KLE) were compared with the results of filtered DFN-DEM, which are closer to reality. The comparison shows that none of the KLE approaches– conventional, limited joint length, limited joint length with stress and probabilistic KLE – could provide results similar to DFN-DEM. This is due to KLE’s unrealistic assumptions in estimating either volume or clamping forces.

    A simple mechanism for estimating clamping forces such as continuum mechanics or the solution proposed by Crawford-Bray leads to an overestimation of clamping forces, and thus unsafe design. The results of such approaches were compared to those of DEM, and it was determined that these simple mechanisms ignore a key stage of relaxation of clamping forces due to joint existence. The amount of relaxation is a function of many parameters, such as stiffness of the joint and surrounding rock, the joint friction angle and the block half-apical angle.

    Based on a conceptual model, the key stage was considered in a new analytical solution for symmetric blocks, and the amount of joint relaxation was quantified. The results of the new analytical solution compared to those of DEM and the model uncertainty of the new solution were quantified.

    Further numerical investigations based on local and regional stress models were performed to study initial clamping forces. Numerical analyses reveal that local stresses, which are a product of regional stress and joint stiffness, govern block stability. Models with a block assembly show that the clamping forces in a block assembly are equal to the clamping forces in a regional stress model. Therefore, considering a single block in massive rock results in lower clamping forces and thus safer design compared to a block assembly in the same condition of in-situ stress and properties.

    Furthermore, a sensitivity analysis was conducted to determine which is  the most important parameter by assessing sensitivity factors and studying the applicability of the partial coefficient method for designing block stability.

    It was determined that the governing parameter is the dispersion of the half-apical angle. For a dip angle with a high dispersion, partial factors become very large and the design value for clamping forces is close to zero. This suggests that in cases with a high dispersion of the half-apical angle, the clamping forces could be ignored in a stability analysis, unlike in cases with a lower dispersion. The costs of gathering more information about the joint dip angle could be compared to the costs of overdesign. The use of partial factors is uncertain, at least without dividing the problem into sub-classes. The application of partial factors is possible in some circumstances but not always, and a FORM analysis is preferable.

  • 28.
    Bagheri, Mehdi
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Model uncertainty of design tools to analyze block stability2009Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Block failure is one of the most common failure modes in tunnels. Design tools have some simplifications and, therefore, they also have some model uncertainties. The purpose of this licentiate thesis is to assess the model uncertainty for different design tools in order to estimate block stability.

    Different approaches of kinematic limit equilibrium (KLE) including conventional KLE, limited joint length, limited joint length and stress field consideration and probabilistic KLE were compared to that of DFN-DEM. In this approach, the results of the calibrated DFN-DEM with field mapping were considered to be of true value. The results show that the conventional KLE is overdesign due to it’s over simplification. By considering fracture length and stress field, the volume of predicted unstable blocks is reduced. The probabilistic approach of KLE by considering finite joint length and stress field predicts the volume of unstable blocks to be lower than DFN-DEM approach. Therefore there is a great model uncertainty of our standard design tools for block stability analysis.

    The assumption made in this study is that the results from DEM were considered to have a true value; the results from analytical solution based on joint relaxation process were compared to those of DEM in a different condition of depth, K0, apical and friction angle, Kn and Ks value, and ratio of Kn/Ks. The comparison shows that for shallow depth with K0 less than 1, analytical solution leads to an overestimation of block stability. The analytical solution predicts that the block is stable, while the analyses from numerical solution show the block is unstable. The analyses show that by increasing K0, accuracy of analytical solution also increases. Moreover, for the cases with close value of friction angle to semi-apical angle, the use of analytical solution is not recommended. As the ratio of Kn/Ks increases, the accuracy of analytical solution decreases. Increasing the angle ratio (ratio between semi-apical angle to friction angle) is one source of increasing uncertainty in the model. The analytical solution is very uncertain in cases with a low value of K0, and a high value of stiffness ratio and angle ratio. On the other hand, the analytical solution is more certain in conditions with a high value of K0 and a low value of stiffness ratio and angle ratio. According to current information (K0, angle ratio, stiffness ratio), one can determine the value of model uncertainty by using the diagrams presented in Chapter 6 of the thesis. The analyses show that by having more information about the key parameters, the model uncertainty could be identified more precisely. However, having more information means spending more money, and this increase in cost must be compared to the cost of failure or delay in the project or overdesign.

     

     

  • 29.
    Bagheri, Mehdi
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Shafiezadeh, N
    Continuum Modeling of Masjed E Soleyman Power House Cavern using an Empirical Continuum Media2006In: ARMA's Golden Rocks 2006 - 50 Years of Rock Mechanics, 2006Conference paper (Refereed)
    Abstract [en]

    Numerical modeling is a useful tool to design underground openings. Masjed ESoleyman Power House Cavern is one of the largest caverns in the Middle East. Ramamurthy introduced an empirical equivalent media in 1994. Ramamurthy Equivalentmedia was applied to a Finite element analysis. Phase2D software was used to analyzecontinuum media. The displacements obtained from Equivalent continuum analysis were compared to those measured by MultiPoint Borehole Extensometers (MPBX). 

  • 30.
    Bagheri, Mehdi
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Stille, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    A new analytical solution based on joint relaxation for analyzing symmetrical block stability2013In: International Journal for Numerical and analytical in geomechanics,, ISSN 0363-9061, Vol. 37, no 8, 771-786 p.Article in journal (Refereed)
    Abstract [en]

    The magnitude of clamping forces has a significant influence on the estimated ultimate pullout force of a block. The Crawford–Bray equation, which is fundamental in considering clamping forces, is only a function of horizontal stress and block height. Further research to incorporate the influence of induced stress in block stability analysis was considered, but all the previous analytical solutions for analyzing block stability assume a continuum medium to estimate clamping forces and do not allow joint deformations to occur before block movement due to gravity. Assuming a continuous medium to estimate clamping forces leads to an overestimation of block stability and therefore unsafe design. In this paper, an attempt has been made to deepen the understanding of the block failure mechanism and correct the estimated magnitude of clamping forces in a discontinuous medium. A conceptual model is proposed based on the loading–unloading of the block from an in-situ state to failure. Based on this model, an analytical solution has been developed that calculates clamping forces in a discontinuous medium. The validity and model uncertainty of the solution were checked for different conditions. The new analytical solution is both precise and accurate and can be used as a design tool to estimate block stability.

  • 31.
    Bagheri, Mehdi
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Stille, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Application of partial factors to block stability analysisIn: Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, ISSN 1749-9518, E-ISSN 1749-9526Article in journal (Other academic)
  • 32.
    Bagheri, Mehdi
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Stille, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Investigation of model uncertainty for block stability analysis2011In: International journal for numerical and analytical methods in geomechanics (Print), ISSN 0363-9061, E-ISSN 1096-9853, Vol. 35, no 7, 824-836 p.Article in journal (Refereed)
    Abstract [en]

    The application of probabilistic design, such as FORM, is expanding rapidly in the design of geotechnical structures. The analytical solution proposed by Crawford and Bray for analyzing block stability can be used as a performance function to carry out probabilistic design. The solution benefits from considering both clamping forces and joint stiffness. However, imperfect assumptions and simplifications in the solution generate model uncertainties. The amount of model uncertainty must be considered in order to assess a reliable design. The purpose of this paper is to identify when the analytical solution is applicable and quantify the model uncertainty of the solution. The amount of model uncertainty for the analytical solution has been assessed for different conditions. The results show that at a shallow depth with a low value of in situ stress ratio (horizontal stress/vertical stress), the analytical solution predicts that the block is stable whereas DEM shows that the block is unstable. The results of the analyses indicate that in cases with low stress ratio, cases with high anisotropy of joint stiffness or the case of a semiapical angle close to the friction angle, the accuracy of the analytical solution is low. Neglecting key parameters, such as the absolute value of joint shear and normal stiffness, vertical in situ stress and its influence on joint relaxation generate model uncertainty in the analytical solution. The analyses show that by having more information about the key parameters, the model uncertainty factor could be identified more precisely.

  • 33.
    Bagheri, Mehdi
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Stille, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Some Aspects of Model Uncertainties of Block Stability Estimation2008In: ARMS 2008, Teheran, 2008, 675-681 p.Conference paper (Refereed)
  • 34.
    Bahrekazemi, Mehdi
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Bodare, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Andréasson, Bo
    Smekal, Alexander
    Mitigation of train-induced ground vibrations. Lessons from the Ledsgård project2004Conference paper (Other academic)
  • 35.
    Bahrekazemi, Mehdi
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Bodare, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Massarsch, Rainer
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Vibrationsproblem vid tunnelsprängning i bebyggda områden2007In: Väg och vattenbyggaren, ISSN 0042-2177, no 4, 32-37 p.Article in journal (Other (popular science, discussion, etc.))
  • 36.
    Benhalima, Mehdi
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Evaluation of the differences in characterization and classification of the rock mass quality: A comparison between pre-investigation, engineering geological forecast and tunnel mapping in the Northern Link project and the Cityline project2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In the construction of a tunnel, the characterization of the rock mass is performed in three different steps, in the pre-investigations, in the engineering geological forecast and in the tunnel mapping during construction. There has in previous work been observed that discrepancies exist between the results from these different steps, with a tendency to assign poorer rock mass quality in the tunnel mapping than in the pre-investigations and in the engineering geological forecast. One example is the work done by Kjellström [1] on the Cityline where the divergence in rock mass quality was analyzed between the different steps. If a divergence exists between the engineering geological forecast and the actual conditions observed in the tunnel mapping, it will influence both planning and budget. It is therefore important that the engineering geological forecast is as close as possible to the actual rock mass conditions in the field.

    The aim of this thesis was, using the case study of the Northern Link, to analyze those discrepancies in the rock mass quality estimated in the characterization and in the classification between the mapping of drill cores, the engineering geological forecast and the tunnel mapping thus complementing the work by Kjellström [1]. The aim was also identifying which parameters included in the Q-system that causes these discrepancies

    The analysis of the results showed that it is difficult to make the engineering geological forecast and the actual mapping match for every single meter, but that the overall correlation between them was good. The methodology used in the characterization and classification in the different phases (drill-core mapping, engineering geological forecast, tunnel mapping) may to some extent explain this divergence. The parameters Jr, Jn and Ja, included in the Q-system were the ones identified as having the largest influence on the discrepancies. In future work, it is recommended that focus is given on these parameters.

    A way to improve future engineering geological forecast for tunnel contracts would be to have a better follow up of the engineering geological forecast and to have standardized guidelines on how to assess clearly the value of the Q parameters in each phase (for the drill cores as well as for the actual mapping). The reduction of those differences would then lead to a better planning and budget management in future tunnel projects in Sweden.

  • 37.
    Berglin, Alexander
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Short-term deformations in clay under a formwork during the construction of a bridge: A design study2017Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    During the casting of a concrete bridge deck, the temporary formwork is causing the underlying ground to deform if a shallow foundation solution is used. There are often demands on the maximum deformation of the superstructure when designing the foundation for the formwork.  To keep the deformations within the desired limits, several ground improvement methods like deep mixing columns or deep foundation methods like piling can be used. Permanent ground improvement methods are however expensive, and far from always needed. To reduce the need for unnecessary ground improvements, it is crucial to calculate the predicted deformations accurately during the design phase.

    The purpose of this thesis was to investigate how short-term deformations in clay under a formwork during bridge construction should be calculated more generally in future projects.

    Three different calculation models have here been used to calculate the ground deformations caused by the temporary formwork. A simple analytical calculation and two numerical calculations based on the Mohr Coulomb and Hardening Soil-Small constitutive models. The three calculation models were chosen based on their complexity. The analytical calculation model was the most idealised and the Hardening Soil-Small to be the most complex and most realistic model.

    Results show that the numerical calculation model Mohr Coulomb and the analytical calculation model gives the best results compared to the measured deformation. One of the most probable reasons for the result is that both of the models require a few input parameters that can easily be determined by well-known methods, such as triaxial-, routine- and CRS-tests. The more advanced Hardening soil small model requires many parameters to fully describe the behaviour of soil. Many of the parameters are hard to determine or seldom measured. Due to the larger uncertainties in the parameter selection compared with the other two models, the calculated deformation also contains larger uncertainties. 

  • 38.
    Bergman, Niclas
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Aspects of probabalistic serviceability limit state design of dry deep mixing2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    An expanding population and increased need for infrastructure increasingly necessitate construction on surfaces with poor soil conditions. To facilitate the construction of buildings, roads and railroads in areas with poor soil conditions, these areas are often improved by means of foundation engineering. Constructions that are fairly limited in scope are often founded on shallow or deep foundations. However, these methods are relatively expensive and thus not applicable for large-scale constructions like roads and railroads. A cost-effective way to deal with poor soil conditions is to use ground improvement. This thesis deals with a ground improvement method called deep mixing (DD)using lime-cement columns.

    Lime-cement columns are manufactured by pushing a mechanical mixing tool to the desired depth, with the tool then rotated and retracted while a lime-cement binder is distributed into soil, forming lime-cement columns. Because of the complex mixing process and inherent soil variability, soil improved by DD shows high variability with respect to strength and deformation properties. Due to this high variability, it is difficult to predict the properties in advance; it is therefore important to verify the properties after installation. In Sweden, this is normally done using the column penetration test (KKK) method.

    Current design praxis considers evaluated mean values in the design, and the effect of variability and uncertainties is dealt with by using a sufficiently high total factor of safety. A more rational approach for dealing with the effect of variability and uncertainties on the reliability of a mechanical system is to include them as parameters in the design model. This can be done by using reliability-based design (RRR). A major incentive for using 𝑅𝑅𝑅 is that lower variability in design properties produces higher design values. This is important since it encourages contractors to improve their manufacturing methodologies because 𝑅𝑅𝑅 allows more homogenous columns to be assigned higher design values. Reliability-based design is also in line with Eurocode 7, which states that the selection of the characteristic values for geotechnical parameters shall take the variability of the measured property values into account.

    The first part of this doctoral thesis deals with test methods and quantification of the strength variability of soil improved by lime-cement columns. Tip resistances from three different test sites using three different penetration test methods – the cone penetration test, the column penetration test and the total-sounding test – are analysed and quantified in terms of means, variances and scale of fluctuations. The second part introduces RRR in serviceability limit state (SSS) design, using First Order Reliability Methods (FFFF) and Monte-Carlo simulations.

    Summarizing the most important findings and conclusions from this study:

    •  The scale of fluctuation was estimated to be 0.2-0.7 m and 0-3 m in the vertical and horizontal direction, respectively.
    •  The relation between cone tip resistances measured using the cone penetration test and column penetration test does not correspond to the cone factors proposed in previous studies and in the Swedish Design Guidelines.
    •  The agreement between the column penetration test and total-sounding test was found to be “good enough”. It is therefore suggested that the total-sounding test be used as a complement to the column penetration test in evaluating the average strength properties of a group of medium- and high-strength lime-cement columns.
    • Reliability-based design is a rational approach to incorporate strength and deformation parameter variability with an SSS design.
  • 39.
    Bergman, Niclas
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Characterization of strenght vaiability for reliability-based design of lime-cement columns2012Licentiate thesis, comprehensive summary (Other academic)
  • 40.
    Bergman, Niclas
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Al-Naqshabandy, Mohammed Salim
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Variability of strength and deformation properties in lime-cement columns evaluated from CPT and KPS measurements2013In: Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, ISSN 1749-9518, E-ISSN 1749-9526, Vol. 7, no 1, 21-36 p.Article in journal (Refereed)
    Abstract [en]

    The strength variability of soil improved by deep mixing with lime-cement columns is generally high. Eurocode 7 states that selection of characteristic values for geotechnical parameters shall take the variability of measured property values into account. This variability can be considered in the design by using reliability-based design. With reliability-based design, three statistical parameters are needed to evaluate the design value; mean, variance and scale of fluctuation. In this paper, the shear strength of soil improved by lime-cement columns was evaluated using two different penetration methods, the cone penetration test and the column penetration test. The strength was quantified statistically by the mean, variance and scale of fluctuation, while each test method was analyzed and discussed with a focus on its influence on the design value. Based on the analyses, the column penetration test is suggested as a test method for soil improved by lime-cement columns.

  • 41.
    Bergman, Niclas
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Ignat, Razvan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics. Skanska Sverige AB.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Serviceability Limit State design of lime-cement columns - A reliability-based design approach2014In: Geotechnical Safety and Risk IV - Proceedings of the 4th International Symposium on Geotechnical Safety and Risk, ISGSR 2013 / [ed] D . Q . Li, London: Taylor & Francis Group, 2014, 417-422 p.Conference paper (Refereed)
    Abstract [en]

    Deep mixing with lime-cement columns is a ground improvement method used to improve the strength and deformation properties of soft cohesive soils. Due to the complex manufacturing process, the variability in the strength and deformation properties is normally high. A rational approach to include variability in the design process is by introducing Reliability-Based Design (RBD). This paper presents a reliability-based design approach for Serviceability Limit State (SLS) design of soil improved by lime-cement columns using the First-Order Reliability Method (FORM). The paper further presents the impact of uncertainties, reliability indices and area replacement ratios on the relationship between the characteristic value and the design value with respect to the column modulus of elasticity.

  • 42.
    Bergman, Niclas
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Johansson, Fredrik
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Probabilistic serviceability limit statedesign approach for dry deep mixingManuscript (preprint) (Other academic)
  • 43.
    Bergman, Niclas
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Alternativ metod för verifiering av hållfasthet hos kalkcementpelare2013In: Bygg & teknik, ISSN 0281-658X, no 1, 75-79 p.Article in journal (Other (popular science, discussion, etc.))
    Abstract [sv]

    Inom ett doktorandprojekt på Kungliga Tekniska högskolan (KTH) har möjligheten till att använda Jb-totalsondering som testmetod för verifiering av hållfasthet hos kalkcementpelare studerats. Syftet med doktorandprojektet, som är finansierat av Svenska Byggbranschens Utvecklingsfond (SBUF) och Trafikverket, är att öka förståelsen för variationer i hållfasthets- och deformationsegenskaper hos kalkcementpelare och att undersöka variationernas betydelse vid sannolikhetsbaserad dimensionering i bruksstadiet, Bergman (2012).

  • 44.
    Bergman, Niclas
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Comparing column penetration and total–sounding data for lime–cement columns2014In: Ground Improvement, ISSN 1365-781X, E-ISSN 1751-7621, Vol. 167, no 4, 249-259 p.Article in journal (Refereed)
    Abstract [en]

    In Sweden, the method commonly used for the quality control of lime–cement columns is the column penetration test. However, it is recommended for depths of no more than 8 m because the probe easily deviates from the column at greater depths. As an alternative to facilitate keeping the probe vertical, a centre hole is normally bored in the column using the total-sounding test method. The aim of this paper is to quantify the agreement between the two methods. If there is good agreement, it should be possible to use the less expensive and less time-consuming total-sounding test as a complement to the column penetration test. The analyses suggest good agreement between the methods, and it is therefore suggested that the total-sounding test be used as a complement to the column penetration test in evaluating the average strength properties of a group of medium- and high-strength lime–cement columns.

  • 45.
    Bitir (Buliga), Andreea-Cristina
    et al.
    “Gheorghe Asachi” Technical University of Iaşi.
    Muşat, Vasile
    “Gheorghe Asachi” Technical University of Iaşi.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Laboratory Methods Used to Assess the Mechanical Properties of Soft Soils Improved by Deep Mixing2015In: Bulletin of the Polytechnic Institute of Jassy, Constructions, Architechture Section, ISSN 1224-3884, E-ISSN 2068-4762, Vol. LXI (LXV), no 4, 165-178 p.Article in journal (Other academic)
    Abstract [en]

    In ground improvement projects by deep mixing, the laboratory experimental programis an important stage by which,the suitable binder and quantity are chosen andgeotechnical performances of improvedsoil are evaluated.In current practice, the design process oflime-cement columns ismainlybased on unconfined compressive strength and the corresponding secant Young's modulusevaluated by unconfined compression tests. In this paper, the main laboratory methods used to assess the mechanical properties of improvedsoil mixed with lime and cement in deep mixing are reviewed. Laboratory preparation of the samples and testing procedures for unconfined compression tests, triaxial tests and oedometer testsare presented. In addition,someexperimental results of tests conducted on soft soils mixed with lime and cement are analyzedand commented.

  • 46.
    Bjureland, William
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Analysis of deep excavations using the mobilized strength design(MSD) method2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The population in Sweden and around the world is increasing. When population increases, cities

    become more densely populated and a demand for investments in housing and infrastructure is

    created. The investments needed are usually large in size and the projects resulting from the

    investments are often of a complex nature. A major factor responsible for creating the

    complexity of the projects is the lack of space due to the dense population. The lack of space

    creates a situation where a very common feature of these types of projects is the use of earth

    retaining systems.

    The design of retaining systems in Europe is performed today based on Eurocode. Eurocode is a

    newly introduced standard for the design of structures and is developed in order to make it

    easier to work cross borders by using the same principle of design in all countries. For the

    design of retaining walls in Sweden, Eurocode uses the old standard as the basis of the design

    procedure consisting of two separate calculations, ultimate limit state and serviceability limit

    state. Since soil does not consist of two separate mechanisms consisting of failure and

    serviceability, this approach to solving engineering problems fails to address the real behavior

    of soils. To handle this problem Bolton et. al. (1990a, 1990b, 2004, 2006, 2008, 2010)

    developed the theory of “mobilized strength design” where a single calculation procedure

    incorporates both the calculation of deformations and the safety against failure. The calculation

    uses conservation of energy and the degree of mobilized shear strength to study deformations in

    and around the retaining system and the safety against failure in mobilizing the maximum shear

    strength of the soil.

    The aim of this thesis was to introduce the theory of mobilized strength design to geotechnical

    engineers in Sweden working both in academia and in industry. Another aim of the thesis was to

    develop a tool that could be used to perform calculations of earth retaining systems based on

    this theory.

    The development of a working tool has resulted in a Matlab code which can in a simple way be

    used to calculate both deformations in the retaining system and the safety against failure by

    using the degree of mobilized shear strength presented in the theory. The Matlab code can

    handle ground layering with different shear strengths and weights of the soil. A comparison

    instrument in a Mathcad calculation sheet have been developed to produce results based on the

    original theory where the feature of soil layering is not incorporated into the calculation

    procedure. The thesis shows that the Matlab code developed performs well but is not yet

    sensitive enough to produce the same results as the Mathcad calculation sheet and needs to be

    further developed to make it more robust in order to handle all different excavation scenarios.

    v

    The theory of mobilized strength design has been introduced to geotechnical engineers in

    Sweden and the thesis studies the theory and shows the calculation procedure and how the

    different input values and calculations affect the analysis.

    The thesis also shows some areas in which the theory and the code can be modified and where

    further research can be performed in order to make them fully applicable to Swedish conditions.

    As an example the use of rock dowels drilled into the bedrock and attached to the retaining

    structure is a common feature for deep excavations in Sweden. Further research can be pursued

    on how to incorporate the energy stored in the rock dowels into the calculation procedure.

  • 47.
    Bjureland, William
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    On reliability-based design of rock tunnel support2017Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Tunneling involves large uncertainties. Since 2009, design of rock tunnels in European countries should be performed in accordance with the Eurocodes. The main principle in the Eurocodes is that it must be shown in all design situations that no relevant limit state is exceeded. This can be achieved with a number of different methods, where the most common one is design by calculation. To account for uncertainties in design, the Eurocode states that design by calculation should primarily be performed using limit state design methods, i.e. the partial factor method or reliability-based methods. The basic principle of the former is that it shall be assured that a structure’s resisting capacity is larger than the load acting on the structure, with high enough probability. Even if this might seem straightforward, the practical application of limit state design to rock tunnel support has only been studied to a limited extent.

    The aim of this licentiate thesis is to provide a review of the practical applicability of using reliability-based methods and the partial factor method in design of rock tunnel support. The review and the following discussion are based on findings from the cases studied in the appended papers. The discussion focuses on the challenges of applying fixed partial factors, as suggested by Eurocode, in design of rock tunnel support and some of the practical difficulties the engineer is faced with when applying reliability-based methods to design rock tunnel support.

    The main conclusions are that the partial factor method (as defined in Eurocode) is not suitable to use in design of rock tunnel support, but that reliability-based methods have the potential to account for uncertainties present in design, especially when used within the framework of the observational method. However, gathering of data for statistical quantification of input variables along with clarification of the necessary reliability levels and definition of “failure” are needed.

  • 48.
    Bjureland, William
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Spross, Johan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Johansson, Fredrik
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Prästings, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Challenges in applying fixed partial factors to rock engineering design2017In: Geotechnical Special Publication, ISSN 0895-0563, no 283, 384-393 p.Article in journal (Refereed)
    Abstract [en]

    The Swedish national guidelines for design of the main structural support system in road and railway rock tunnels have been adjusted to cohere with Eurocode 7. In the design guidelines, the limit states that the designer should consider are specified. The main method to account for uncertainties in the Swedish guidelines is similar to the method preferred in Eurocode 7: the partial factor method. For each limit state, fixed partial factors retrieved from different sections of the Eurocodes are specified. However, fixed partial factors may not correspond to the same structural reliability for all design situations. In this paper, we show for a common design situation in rock engineering design how partial factors in theory should vary with design geometries and uncertainties. The derived partial factors are compared to the Eurocodes’ fixed values. We find that using fixed partial factors to ensure structural safety in these limit states might not be suitable. The implications are discussed along with suggestions of other more suitable methods to account for uncertainties in rock engineering design.

  • 49.
    Bjureland, William
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Spross, Johan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Johansson, Fredrik
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Prästings, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Larsson, Stefan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Reliability aspects of rock tunnel design with the observational methodManuscript (preprint) (Other academic)
  • 50.
    Bjureland, William
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Spross, Johan
    KTH, School of Architecture and the Built Environment (ABE).
    Johansson, Fredrik
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Stille, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.
    Some aspect of reliability-based design for tunnels using observational method (EC7)2015In: EUROCK 2015 & 64th Geomechanics Colloquium, Salzburg, 2015Conference paper (Refereed)
    Abstract [en]

    According to Eurocode 7, the observational method is an accepted design method, where a preliminary design may be updated as the construction progresses. However, Eurocode 7 does not give any advice on how to relate the observations to the acceptable level of safety of the structure. In this paper, we outline a methodology for how to use deformation measurements to predict the final deformation of a circular rock tunnel to calculate the probability of failure. Consequently, the measurements can be used to verify that the design does not violate the specified safety level. The paper shows the potential of combining the observational method with reliability-based design in tunneling

1234567 1 - 50 of 408
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf