Change search
Refine search result
1234567 1 - 50 of 879
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abraham, Mark James
    et al.
    KTH, School of Engineering Sciences (SCI), Theoretical Physics, Theoretical & Computational Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Murtola, T.
    Schulz, R.
    Páll, Szilárd
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Smith, J. C.
    Hess, Berk
    KTH, School of Engineering Sciences (SCI), Theoretical Physics, Theoretical & Computational Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindahl, Erik
    KTH, School of Engineering Sciences (SCI), Theoretical Physics, Theoretical & Computational Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers2015In: SoftwareX, ISSN 2352-7110, Vol. 1-2, p. 19-25Article in journal (Refereed)
    Abstract [en]

    GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules. It provides a rich set of calculation types, preparation and analysis tools. Several advanced techniques for free-energy calculations are supported. In version 5, it reaches new performance heights, through several new and enhanced parallelization algorithms. These work on every level; SIMD registers inside cores, multithreading, heterogeneous CPU-GPU acceleration, state-of-the-art 3D domain decomposition, and ensemble-level parallelization through built-in replica exchange and the separate Copernicus framework. The latest best-in-class compressed trajectory storage format is supported.

  • 2. Abrahamsson, T. R.
    et al.
    Jakobsson, H. E.
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Björkstén, B.
    Engstrand, Lars
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Jenmalm, M. C.
    Low gut microbiota diversity in early infancy precedes asthma at school age2014In: Clinical and Experimental Allergy, ISSN 0954-7894, E-ISSN 1365-2222, Vol. 44, no 6, p. 842-850Article in journal (Refereed)
    Abstract [en]

    Background Low total diversity of the gut microbiota during the first year of life is associated with allergic diseases in infancy, but little is known how early microbial diversity is related to allergic disease later in school age. Objective To assess microbial diversity and characterize the dominant bacteria in stool during the first year of life in relation to the prevalence of different allergic diseases in school age, such as asthma, allergic rhinoconjunctivitis (ARC) and eczema. Methods The microbial diversity and composition was analysed with barcoded 16S rDNA 454 pyrosequencing in stool samples at 1week, 1month and 12months of age in 47 infants which were subsequently assessed for allergic disease and skin prick test reactivity at 7years of age (ClinicalTrials.gov ID NCT01285830). Results Children developing asthma (n=8) had a lower diversity of the total microbiota than non-asthmatic children at 1week (P=0.04) and 1month (P=0.003) of age, whereas allergic rhinoconjunctivitis (n=13), eczema (n=12) and positive skin prick reactivity (n=14) at 7years of age did not associate with the gut microbiota diversity. Neither was asthma associated with the microbiota composition later in infancy (at 12months). Children having IgE-associated eczema in infancy and subsequently developing asthma had lower microbial diversity than those that did not. There were no significant differences, however, in relative abundance of bacterial phyla and genera between children with or without allergic disease. Conclusion and Clinical Relevance Low total diversity of the gut microbiota during the first month of life was associated with asthma but not ARC in children at 7years of age. Measures affecting microbial colonization of the infant during the first month of life may impact asthma development in childhood.

  • 3. Abrahamsson, Thomas R.
    et al.
    Jakobsson, Hedvig E.
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Björksten, Bengt
    Engstrand, Lars
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Jenmalm, Maria C.
    Gut microbiota diversity and atopic disease: Does breast-feeding play a role? Reply2013In: Journal of Allergy and Clinical Immunology, ISSN 0091-6749, E-ISSN 1097-6825, Vol. 131, no 1, p. 248-249Article in journal (Other academic)
  • 4. Abrahamsson, Thomas R.
    et al.
    Jakobsson, Hedvig E.
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Björkstén, Bengt
    Engstrand, Lars
    Jenmalm, Maria C.
    Low diversity of the gut microbiota in infants with atopic eczema2012In: Journal of Allergy and Clinical Immunology, ISSN 0091-6749, E-ISSN 1097-6825, Vol. 129, no 2, p. 434-U244Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: It is debated whether a low total diversity of the gut microbiota in early childhood is more important than an altered prevalence of particular bacterial species for the increasing incidence of allergic disease. The advent of powerful, cultivation-free molecular methods makes it possible to characterize the total microbiome down to the genus level in large cohorts. OBJECTIVE: We sought to assess microbial diversity and characterize the dominant bacteria in stool during the first year of life in relation to atopic eczema development. METHODS: Microbial diversity and composition were analyzed with barcoded 16S rDNA 454-pyrosequencing in stool samples at 1 week, 1 month, and 12 months of age in 20 infants with IgE-associated eczema and 20 infants without any allergic manifestation until 2 years of age (ClinicalTrials.gov ID NCT01285830). RESULTS: Infants with IgE-associated eczema had a lower diversity of the total microbiota at 1 month (P= .004) and a lower diversity of the bacterial phylum Bacteroidetes and the genus Bacteroides at 1 month (P= .02 and P= .01) and the phylum Proteobacteria at 12 months of age (P= .02). The microbiota was less uniform at 1 month than at 12 months of age, with a high interindividual variability. At 12 months, when the microbiota had stabilized, Proteobacteria, comprising gram-negative organisms, were more abundant in infants without allergic manifestation (Empirical Analysis of Digital Gene Expression in R edgeR test: P= .008, q= 0.02). CONCLUSION: Low intestinal microbial diversity during the first month of life was associated with subsequent atopic eczema.

  • 5. Acero Sanchez, Josep Ll.
    et al.
    Joda, Hamdi
    Henry, Olivier Y. F.
    Solnestam, Beata W.
    Kvastad, Linda
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sahlén, Pelin
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Laddach, Nadja
    Ramakrishnan, Dheeraj
    Riley, Ian
    Schwind, Carmen
    Latta, Daniel
    O'Sullivan, Ciara K.
    Electrochemical Genetic Profiling of Single Cancer Cells2017In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 89, no 6, p. 3378-3385Article in journal (Refereed)
    Abstract [en]

    Recent understandings in the development and spread of cancer have led to the realization of novel single cell analysis platforms focused on circulating tumor cells (CTCs). A simple, rapid, and inexpensive analytical platform capable of providing genetic information on these rare cells is highly desirable to support clinicians and researchers alike to either support the selection or adjustment of therapy or provide fundamental insights into cell function and cancer progression mechanisms. We report on the genetic profiling of single cancer cells, exploiting a combination of multiplex ligation-dependent probe amplification (MLPA) and electrochemical detection. Cells were isolated using laser capture and lysed, and the mRNA was extracted and transcribed into DNA. Seven markers were amplified by MLPA, which allows for the simultaneous amplification of multiple targets with a single primer pair, using MLPA probes containing unique barcode sequences. Capture probes complementary to each of these barcode sequences were immobilized on a printed circuit board (PCB) manufactured electrode array and exposed to single-stranded MLPA products and subsequently to a single stranded DNA reporter probe bearing a HRP molecule, followed by substrate addition and fast electrochemical pulse amperometric detection. We present asimple, rapid, flexible, and inexpensive approach for the simultaneous quantification of multiple breast cancer related mRNA markers, with single tumor cell sensitivity.

  • 6. Adiels, Martin
    et al.
    Mardinoglu, Adil
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Chalmers University of Technology, Sweden.
    Taskinen, Marja-Riitta
    Boren, Jan
    Kinetic Studies to Elucidate Impaired Metabolism of Triglyceride-rich Lipoproteins in Humans2015In: Frontiers in Physiology, ISSN 1664-042X, E-ISSN 1664-042X, Vol. 6, article id 342Article, review/survey (Refereed)
    Abstract [en]

    To develop novel strategies for prevention and treatment of dyslipidemia, it is essential to understand the pathophysiology of dyslipoproteinemia in humans. Lipoprotein metabolism is a complex system in which abnormal concentrations of various lipoprotein particles can result from alterations in their rates of production, conversion, and/or catabolism. Traditional methods that measure plasma lipoprotein concentrations only provide static estimates of lipoprotein metabolism and hence limited mechanistic information. By contrast, the use of tracers labeled with stable isotopes and mathematical modeling, provides us with a powerful tool for probing lipid and lipoprotein kinetics in vivo and furthering our understanding of the pathogenesis of dyslipoproteinemia.

  • 7. Adori, Csaba
    et al.
    Barde, Swapnali
    Bogdanovic, Nenad
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska Institutet, Sweden.
    Reinscheid, Rainer R.
    Kovacs, Gabor G.
    Hokfelt, Tomas
    Neuropeptide S- and Neuropeptide S receptor-expressing neuron populations in the human pons2015In: Frontiers in Neuroanatomy, ISSN 1662-5129, E-ISSN 1662-5129, Vol. 9Article in journal (Refereed)
    Abstract [en]

    Neuropeptide S (NPS) is a regulatory peptide with potent pharmacological effects. In rodents, NPS is expressed in a few pontine cell clusters. Its receptor (NPSR1) is, however, widely distributed in the brain. The anxiolytic and arousal promoting effects of NPS make the NPS NPSR1 system an interesting potential drug target in mood-related disorders. However, so far possible disease-related mechanisms involving NPS have only been studied in rodents. To validate the relevance of these animal studies for i.a. drug development, we have explored the distribution of NPS-expressing neurons in the human pons using in situ hybridization and stereological methods and we compared the distribution of NPS mRNA expressing neurons in the human and rat brain. The calculation revealed a total number of 22,317 +/- 2411 NPS mRNA-positive neurons in human, bilaterally. The majority of cells (84%) were located in the parabrachial area in human: in the extension of the medial and lateral parabrachial nuclei, in the Kolliker-Fuse nucleus and around the adjacent lateral lemniscus. In human, in sharp contrast to the rodents, only very few NPS-positive cells (5%) were found close to the locus coeruleus. In addition, we identified a smaller cell cluster (11% of all NPS cells) in the pontine central gray matter both in human and rat, which has not been described previously even in rodents. We also examined the distribution of NPSR1 mRNA-expressing neurons in the human pons. These cells were mainly located in the rostral laterodorsal tegmental nucleus, the cuneiform nucleus, the microcellular tegmental nucleus region and in the periaqueductal gray. Our results show that both NPS and NPSR1 in the human pons are preferentially localized in regions of importance for integration of visceral autonomic information and emotional behavior. The reported interspecies differences must, however, be considered when looking for targets for new pharmacotherapeutical interventions.

  • 8. Adori, Csaba
    et al.
    Barde, Swapnali
    Vas, Szilvia
    Ebner, Karl
    Su, Jie
    Svensson, Camilla
    Mathé, Aleksander A.
    Singewald, Nicolas
    Reinscheid, Rainer R.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kultima, Kim
    Bagdy, Gyorgy
    Hökfelt, Tomas
    Exploring the role of neuropeptide S in the regulation of arousal: a functional anatomical study2016In: Brain Structure and Function, ISSN 1863-2653, E-ISSN 1863-2661, Vol. 221, no 7, p. 3521-3546Article in journal (Refereed)
    Abstract [en]

    Neuropeptide S (NPS) is a regulatory peptide expressed by limited number of neurons in the brainstem. The simultaneous anxiolytic and arousal-promoting effect of NPS suggests an involvement in mood control and vigilance, making the NPS-NPS receptor system an interesting potential drug target. Here we examined, in detail, the distribution of NPS-immunoreactive (IR) fiber arborizations in brain regions of rat known to be involved in the regulation of sleep and arousal. Such nerve terminals were frequently apposed to GABAergic/galaninergic neurons in the ventro-lateral preoptic area (VLPO) and to tyrosine hydroxylase-IR neurons in all hypothalamic/thalamic dopamine cell groups. Then we applied the single platform-on-water (mainly REM) sleep deprivation method to study the functional role of NPS in the regulation of arousal. Of the three pontine NPS cell clusters, the NPS transcript levels were increased only in the peri-coerulear group in sleep-deprived animals, but not in stress controls. The density of NPS-IR fibers was significantly decreased in the median preoptic nucleus-VLPO region after the sleep deprivation, while radioimmunoassay and mass spectrometry measurements showed a parallel increase of NPS in the anterior hypothalamus. The expression of the NPS receptor was, however, not altered in the VLPO-region. The present results suggest a selective activation of one of the three NPS-expressing neuron clusters as well as release of NPS in distinct forebrain regions after sleep deprivation. Taken together, our results emphasize a role of the peri-coerulear cluster in the modulation of arousal, and the importance of preoptic area for the action of NPS on arousal and sleep.

  • 9. Adori, Csaba
    et al.
    Glueck, Laura
    Barde, Swapnali
    Yoshitake, Takashi
    Kovacs, Gabor G.
    Mulder, Jan
    Magloczky, Zsofia
    Havas, Laszlo
    Boelcskei, Kata
    Mitsios, Nicholas
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Szolcsanyi, Janos
    Kehr, Jan
    Ronnback, Annica
    Schwartz, Thue
    Rehfeld, Jens F.
    Harkany, Tibor
    Palkovits, Miklos
    Schulz, Stefan
    Hokfelt, Tomas
    Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer's disease2015In: Acta Neuropathologica, ISSN 0001-6322, E-ISSN 1432-0533, Vol. 129, no 4, p. 541-563Article in journal (Refereed)
    Abstract [en]

    Alzheimer's disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites. This is noteworthy since cortical and hypothalamic somatostatin content is reduced in neurodegenerative pathologies. Yet a possible role of a somatostatin signal deficit in the maintenance of noradrenergic projections remains unknown. Here, we deployed tissue microarrays, immunohistochemistry, quantitative morphometry and mRNA profiling in a cohort of Alzheimer's and age-matched control brains in combination with genetic models of somatostatin receptor deficiency to establish causality between defunct somatostatin signalling and noradrenergic neurodegeneration. In Alzheimer's disease, we found significantly reduced somatostatin protein expression in the temporal cortex, with aberrant clustering and bulging of tyrosine hydroxylase-immunoreactive afferents. As such, somatostatin receptor 2 (SSTR2) mRNA was highly expressed in the human LC, with its levels significantly decreasing from Braak stages III/IV and onwards, i.e., a process preceding advanced Alzheimer's pathology. The loss of SSTR2 transcripts in the LC neurons appeared selective, since tyrosine hydroxylase, dopamine beta-hydroxylase, galanin or galanin receptor 3 mRNAs remained unchanged. We modeled these pathogenic changes in Sstr2 (-/-) mice and, unlike in Sstr1 (-/-) or Sstr4 (-/-) genotypes, they showed selective, global and progressive degeneration of their central noradrenergic projections. However, neuronal perikarya in the LC were found intact until late adulthood (< 8 months) in Sstr2 (-/-) mice. In contrast, the noradrenergic neurons in the superior cervical ganglion lacked SSTR2 and, as expected, the sympathetic innervation of the head region did not show any signs of degeneration. Our results indicate that SSTR2-mediated signaling is integral to the maintenance of central noradrenergic projections at the system level, and that early loss of somatostatin receptor 2 function may be associated with the selective vulnerability of the noradrenergic system in Alzheimer's disease.

  • 10. Aebersold, Ruedi
    et al.
    Agar, Jeffrey N.
    Amster, I. Jonathan
    Baker, Mark S.
    Bertozzi, Carolyn R.
    Boja, Emily S.
    Costello, Catherine E.
    Cravatt, Benjamin F.
    Fenselau, Catherine
    Garcia, Benjamin A.
    Ge, Ying
    Gunawardena, Jeremy
    Hendrickson, Ronald C.
    Hergenrother, Paul J.
    Huber, Christian G.
    Ivanov, Alexander R.
    Jensen, Ole N.
    Jewett, Michael C.
    Kelleher, Neil L.
    Kiessling, Laura L.
    Krogan, Nevan J.
    Larsen, Martin R.
    Loo, Joseph A.
    Loo, Rachel R. Ogorzalek
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab. Stanford Univ, Dept Genet, Stanford, CA 94305 USA.
    MacCoss, Michael J.
    Mallick, Parag
    Mootha, Vamsi K.
    Mrksich, Milan
    Muir, Tom W.
    Patrie, Steven M.
    Pesavento, James J.
    Pitteri, Sharon J.
    Rodriguez, Henry
    Saghatelian, Alan
    Sandoval, Wendy
    Schluter, Hartmut
    Sechi, Salvatore
    Slavoff, Sarah A.
    Smith, Lloyd M.
    Snyder, Michael P.
    Thomas, Paul M.
    Uhlen, Mathias
    Van Eyk, Jennifer E.
    Vidal, Marc
    Walt, David R.
    White, Forest M.
    Williams, Evan R.
    Wohlschlager, Therese
    Wysocki, Vicki H.
    Yates, Nathan A.
    Young, Nicolas L.
    Zhang, Bing
    How many human proteoforms are there?2018In: Nature Chemical Biology, ISSN 1552-4450, E-ISSN 1552-4469, Vol. 14, no 3, p. 206-214Article in journal (Refereed)
    Abstract [en]

    Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA-and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.

  • 11.
    Afkham, Heydar Maboudi
    et al.
    KTH, School of Computer Science and Communication (CSC).
    Qiu, Xuanbin
    KTH, School of Computer Science and Communication (CSC).
    The, Matthew
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Käll, Lukas
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uncertainty estimation of predictions of peptides' chromatographic retention times in shotgun proteomics2017In: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 33, no 4, p. 508-513Article in journal (Refereed)
    Abstract [en]

    Motivation: Liquid chromatography is frequently used as a means to reduce the complexity of peptide-mixtures in shotgun proteomics. For such systems, the time when a peptide is released from a chromatography column and registered in the mass spectrometer is referred to as the peptide's retention time. Using heuristics or machine learning techniques, previous studies have demonstrated that it is possible to predict the retention time of a peptide from its amino acid sequence. In this paper, we are applying Gaussian Process Regression to the feature representation of a previously described predictor ELUDE. Using this framework, we demonstrate that it is possible to estimate the uncertainty of the prediction made by the model. Here we show how this uncertainty relates to the actual error of the prediction. Results: In our experiments, we observe a strong correlation between the estimated uncertainty provided by Gaussian Process Regression and the actual prediction error. This relation provides us with new means for assessment of the predictions. We demonstrate how a subset of the peptides can be selected with lower prediction error compared to the whole set. We also demonstrate how such predicted standard deviations can be used for designing adaptive windowing strategies.

  • 12. Agostinho, A.
    et al.
    Kouznetsova, A.
    Hernández-Hernández, A.
    Bernhem, Kristoffer
    KTH, School of Engineering Sciences (SCI), Applied Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Blom, Hans
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Brismar, Hjalmar
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Höög, C.
    Sexual dimorphism in the width of the mouse synaptonemal complex2018In: Journal of Cell Science, ISSN 0021-9533, E-ISSN 1477-9137, Vol. 131, no 5, article id jcs212548Article in journal (Refereed)
    Abstract [en]

    Sexual dimorphism has been used to describe morphological differences between the sexes, but can be extended to any biologically related process that varies between males and females. The synaptonemal complex (SC) is a tripartite structure that connects homologous chromosomes in meiosis. Here, aided by superresolution microscopy techniques, we show that the SC is subject to sexual dimorphism, in mouse germ cells. We have identified a significantly narrower SC in oocytes and have established that this difference does not arise from a different organization of the lateral elements nor from a different isoform of transverse filament protein SYCP1. Instead, we provide evidence for the existence of a narrower central element and a different integration site for the C-termini of SYCP1, in females. In addition to these female-specific features, we speculate that post-translation modifications affecting the SYCP1 coiled-coil region could render a more compact conformation, thus contributing to the narrower SC observed in females.

  • 13. Agostinho, Ana
    et al.
    Manneberg, Otto
    KTH, School of Engineering Sciences (SCI), Applied Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    van Schendel, Robin
    Hernandez-Hernandez, Abrahan
    Kouznetsova, Anna
    Blom, Hans
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Brismar, Hjalmar
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Höög, Christer
    High density of REC8 constrains sister chromatid axes and prevents illegitimate synaptonemal complex formation2016In: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 17, no 6, p. 901-913Article in journal (Refereed)
    Abstract [en]

    During meiosis, cohesin complexes mediate sister chromatid cohesion (SCC), synaptonemal complex (SC) assembly and synapsis. Here, using super-resolution microscopy, we imaged sister chromatid axes in mouse meiocytes that have normal or reduced levels of cohesin complexes, assessing the relationship between localization of cohesin complexes, SCC and SC formation. We show that REC8 foci are separated from each other by a distance smaller than 15% of the total chromosome axis length in wild-type meiocytes. Reduced levels of cohesin complexes result in a local separation of sister chromatid axial elements (LSAEs), as well as illegitimate SC formation at these sites. REC8 but not RAD21 or RAD21L cohesin complexes flank sites of LSAEs, whereas RAD21 and RAD21L appear predominantly along the separated sister-chromatid axes. Based on these observations and a quantitative distribution analysis of REC8 along sister chromatid axes, we propose that the high density of randomly distributed REC8 cohesin complexes promotes SCC and prevents illegitimate SC formation.

  • 14. Ahmad, Yasmeen
    et al.
    Boisvert, Francois-Michel
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lamond, Angus I.
    Systematic Analysis of Protein Pools, Isoforms, and Modifications Affecting Turnover and Subcellular Localization2012In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 11, no 3Article in journal (Refereed)
    Abstract [en]

    In higher eukaryotes many genes encode protein isoforms whose properties and biological roles are often poorly characterized. Here we describe systematic approaches for detection of either distinct isoforms, or separate pools of the same isoform, with differential biological properties. Using information from ion intensities we have estimated protein abundance levels and using rates of change in stable isotope labeling with amino acids in cell culture isotope ratios we measured turnover rates and subcellular distribution for the HeLa cell proteome. Protein isoforms were detected using three data analysis strategies that evaluate differences between stable isotope labeling with amino acids in cell culture isotope ratios for specific groups of peptides within the total set of peptides assigned to a protein. The candidate approach compares stable isotope labeling with amino acids in cell culture isotope ratios for predicted isoform- specific peptides, with ratio values for peptides shared by all the isoforms. The rule of thirds approach compares the mean isotope ratio values for all peptides in each of three equal segments along the linear length of the protein, assessing differences between segment values. The three in a row approach compares mean isotope ratio values for each sequential group of three adjacent peptides, assessing differences with the mean value for all peptides assigned to the protein. Protein isoforms were also detected and their properties evaluated by fractionating cell extracts on one- dimensional SDS- PAGE prior to trypsin digestion and MS analysis and independently evaluating isotope ratio values for the same peptides isolated from different gel slices. The effect of protein phosphorylation on turnover rates was analyzed by comparing mean turnover values calculated for all peptides assigned to a protein, either including, or excluding, values for cognate phosphopeptides. Collectively, these experimental and analytical approaches provide a framework for expanding the func- tional annotation of the genome.

  • 15.
    Ahmadian, Afshin
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    AnderssonSvahn, Helene
    KTH, School of Biotechnology (BIO), Nano Biotechnology (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Massively parallel sequencing platforms using lab on a chip technologies2011In: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 11, no 16, p. 2653-2655Article in journal (Refereed)
  • 16. Ahmadinejad, F.
    et al.
    Møller, S. G.
    Hashemzadeh-Chaleshtori, M.
    Bidkhori, Gholamreza
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Jami, M. -S
    Molecular mechanisms behind free radical scavengers function against oxidative stress2017In: Antioxidants, ISSN 2076-3921, Vol. 6, no 3, article id 51Article in journal (Refereed)
    Abstract [en]

    Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimers disease, Parkinsons disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinsons disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively), collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase) and nitric oxide synthase (NOS). Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA) used routinely in the treatment of Parkinsons disease (not as a free radical scavenger), and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone) that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1). Although they share the targets in reversing the cytotoxic effects of H2O2, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein) with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.

  • 17. Ahmed, Engy
    et al.
    Hugerth, Luisa W.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Logue, Jürg Brendan
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bruchert, Volker
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Holmström, Sara J. M.
    Mineral Type Structures Soil Microbial Communities2017In: Geomicrobiology Journal, ISSN 0149-0451, E-ISSN 1521-0529, Vol. 34, no 6, p. 538-545Article in journal (Refereed)
    Abstract [en]

    Soil microorganisms living in close contact with minerals play key roles in the biogeochemical cycling of elements, soil formation, and plant nutrition. Yet, the composition of microbial communities inhabiting the mineralosphere (i.e., the soil surrounding minerals) is poorly understood. Here, we explored the composition of soil microbial communities associated with different types of minerals in various soil horizons. To this effect, a field experiment was set up in which mineral specimens of apatite, biotite, and oligoclase were buried in the organic, eluvial, and upper illuvial horizons of a podzol soil. After an incubation period of two years, the soil attached to the mineral surfaces was collected, and microbial communities were analyzed by means of Illumina MiSeq sequencing of the 16S (prokaryotic) and 18S (eukaryotic) ribosomal RNA genes. We found that both composition and diversity of bacterial, archaeal, and fungal communities varied across the different mineral surfaces, and that mineral type had a greater influence on structuring microbial assemblages than soil horizon. Thus, our findings emphasize the importance of mineral surfaces as ecological niches in soils.

  • 18.
    Akan, Pelin
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Alexeyenko, Andrey
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Costea, Paul Igor
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hedberg, Lilia
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Werne Solnestam, Beata
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundin, Sverker
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallman, Jimmie
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Comprehensive analysis of the genome transcriptome and proteome landscapes of three tumor cell lines2012In: Genome Medicine, ISSN 1756-994X, E-ISSN 1756-994X, Vol. 4, p. 86-Article in journal (Refereed)
    Abstract [en]

    We here present a comparative genome, transcriptome and functional network analysis of three human cancer cell lines (A431, U251MG and U2OS), and investigate their relation to protein expression. Gene copy numbers significantly influenced corresponding transcript levels; their effect on protein levels was less pronounced. We focused on genes with altered mRNA and/or protein levels to identify those active in tumor maintenance. We provide comprehensive information for the three genomes and demonstrate the advantage of integrative analysis for identifying tumor-related genes amidst numerous background mutations by relating genomic variation to expression/protein abundance data and use gene networks to reveal implicated pathways.

  • 19.
    Akan, Pelin
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO).
    Stranneheim, Henrik
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO).
    Lexow, Preben
    LingVitae, Oslo.
    Lundeberg, Joakim
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO).
    Design and assessment of binary DNA for nanopore sequencing2010In: Genome biology, ISSN 1474-760X, Vol. 11, p. P4-Article in journal (Other academic)
  • 20.
    Alexeyenko, Andrey
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lee, Woojoo
    Pernemalm, Maria
    Guegan, Justin
    Dessen, Philippe
    Lazar, Vladimir
    Lehtio, Janne
    Pawitan, Yudi
    Network enrichment analysis: extension of gene-set enrichment analysis to gene networks2012In: BMC Bioinformatics, ISSN 1471-2105, E-ISSN 1471-2105, Vol. 13, p. 226-Article in journal (Refereed)
    Abstract [en]

    Background: Gene-set enrichment analyses (GEA or GSEA) are commonly used for biological characterization of an experimental gene-set. This is done by finding known functional categories, such as pathways or Gene Ontology terms, that are over-represented in the experimental set; the assessment is based on an overlap statistic. Rich biological information in terms of gene interaction network is now widely available, but this topological information is not used by GEA, so there is a need for methods that exploit this type of information in high-throughput data analysis. Results: We developed a method of network enrichment analysis (NEA) that extends the overlap statistic in GEA to network links between genes in the experimental set and those in the functional categories. For the crucial step in statistical inference, we developed a fast network randomization algorithm in order to obtain the distribution of any network statistic under the null hypothesis of no association between an experimental gene-set and a functional category. We illustrate the NEA method using gene and protein expression data from a lung cancer study. Conclusions: The results indicate that the NEA method is more powerful than the traditional GEA, primarily because the relationships between gene sets were more strongly captured by network connectivity rather than by simple overlaps.

  • 21.
    Alexeyenko, Andrey
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nystedt, Björn
    Vezzi, Francesco
    Sherwood, Ellen
    Ye, Rosa
    Knudsen, Bjarne
    Simonsen, Martin
    Turner, Benjamin
    de Jong, Pieter
    Wu, Cheng-Cang
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Efficient de novo assembly of large and complex genomes by massively parallel sequencing of Fosmid pools2014In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 15, no 1, p. 439-Article in journal (Refereed)
    Abstract [en]

    Background: Sampling genomes with Fosmid vectors and sequencing of pooled Fosmid libraries on the Illumina platform for massive parallel sequencing is a novel and promising approach to optimizing the trade-off between sequencing costs and assembly quality. Results: In order to sequence the genome of Norway spruce, which is of great size and complexity, we developed and applied a new technology based on the massive production, sequencing, and assembly of Fosmid pools (FP). The spruce chromosomes were sampled with similar to 40,000 bp Fosmid inserts to obtain around two-fold genome coverage, in parallel with traditional whole genome shotgun sequencing (WGS) of haploid and diploid genomes. Compared to the WGS results, the contiguity and quality of the FP assemblies were high, and they allowed us to fill WGS gaps resulting from repeats, low coverage, and allelic differences. The FP contig sets were further merged with WGS data using a novel software package GAM-NGS. Conclusions: By exploiting FP technology, the first published assembly of a conifer genome was sequenced entirely with massively parallel sequencing. Here we provide a comprehensive report on the different features of the approach and the optimization of the process. We have made public the input data (FASTQ format) for the set of pools used in this study: ftp://congenie.org/congenie/Nystedt_2013/Assembly/ProcessedData/FosmidPools/.(alternatively accessible via http://congenie.org/downloads).The software used for running the assembly process is available at http://research.scilifelab.se/andrej_alexeyenko/downloads/fpools/.

  • 22.
    Alexeyenko, Andrey
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schmitt, Thomas
    Tjärnberg, Andreas
    Stockholm University, Science for Life Laboratory.
    Guala, Dmitri
    Stockholm University, Science for Life Laboratory.
    Frings, Oliver
    Stockholm University, Science for Life Laboratory.
    Sonnhammer, Erik L. L.
    Stockholm University, Science for Life Laboratory.
    Comparative interactomics with Funcoup 2.02012In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 40, no D1, p. D821-D828Article in journal (Refereed)
    Abstract [en]

    FunCoup (http://FunCoup.sbc.su.se) is a database that maintains and visualizes global gene/protein networks of functional coupling that have been constructed by Bayesian integration of diverse high-throughput data. FunCoup achieves high coverage by orthology-based integration of data sources from different model organisms and from different platforms. We here present release 2.0 in which the data sources have been updated and the methodology has been refined. It contains a new data type Genetic Interaction, and three new species: chicken, dog and zebra fish. As FunCoup extensively transfers functional coupling information between species, the new input datasets have considerably improved both coverage and quality of the networks. The number of high-confidence network links has increased dramatically. For instance, the human network has more than eight times as many links above confidence 0.5 as the previous release. FunCoup provides facilities for analysing the conservation of subnetworks in multiple species. We here explain how to do comparative interactomics on the FunCoup website.

  • 23.
    Ali, Raja Hashim
    et al.
    KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST). KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Bark, Mikael
    KTH, School of Information and Communication Technology (ICT).
    Miró, Jorge
    KTH, School of Information and Communication Technology (ICT).
    Muhammad, Sayyed Auwn
    KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST). KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Sjöstrand, J.
    Zubair, Syed M.
    KTH, School of Electrical Engineering (EES), Communication Networks. University of Balochistan, Pakistan.
    Abbas, R. M.
    Arvestad, L.
    VMCMC: A graphical and statistical analysis tool for Markov chain Monte Carlo traces2017In: BMC Bioinformatics, ISSN 1471-2105, E-ISSN 1471-2105, Vol. 18, no 1, article id 97Article in journal (Refereed)
    Abstract [en]

    Background: MCMC-based methods are important for Bayesian inference of phylogeny and related parameters. Although being computationally expensive, MCMC yields estimates of posterior distributions that are useful for estimating parameter values and are easy to use in subsequent analysis. There are, however, sometimes practical difficulties with MCMC, relating to convergence assessment and determining burn-in, especially in large-scale analyses. Currently, multiple software are required to perform, e.g., convergence, mixing and interactive exploration of both continuous and tree parameters. Results: We have written a software called VMCMC to simplify post-processing of MCMC traces with, for example, automatic burn-in estimation. VMCMC can also be used both as a GUI-based application, supporting interactive exploration, and as a command-line tool suitable for automated pipelines. Conclusions: VMCMC is a free software available under the New BSD License. Executable jar files, tutorial manual and source code can be downloaded from https://bitbucket.org/rhali/visualmcmc/.

  • 24.
    Ali, Raja Hashim
    et al.
    KTH, School of Computer Science and Communication (CSC), Computational Biology, CB. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Khan, Ammad Aslam
    Tracing the evolution of FERM domain of Kindlins2014In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 80, p. 193-204Article in journal (Refereed)
    Abstract [en]

    Kindlin proteins represent a novel family of evolutionarily conserved FERM domain containing proteins (FDCPs) and are members of B4.1 superfamily. Kindlins consist of three conserved protein homologs in vertebrates: Kindlin-1, Kindlin-2 and Kindlin-3. All three homologs are associated with focal adhesions and are involved in Integrin activation. FERM domain of each Kindlin is bipartite and plays a key role in Integrin activation. A single ancestral Kindlin protein can be traced back to earliest metazoans, e.g., to Parazoa. This protein underwent multiple rounds of duplication in vertebrates, leading to the present Kindlin family. In this study, we trace phylogenetic and evolutionary history of Kindlin FERM domain with respect to FERM domain of other FDCPs. We show that FERM domain in Kindlin homologs is conserved among Kindlins but amount of conservation is less in comparison with FERM domain of other members in B4.1 superfamily. Furthermore, insertion of Pleckstrin Homology like domain in Kindlin FERM domain has important evolutionary and functional consequences. Important residues in Kindlins are traced and ranked according to their evolutionary significance. The structural and functional significance of high ranked residues is highlighted and validated by their known involvement in Kindlin associated diseases. In light of these findings, we hypothesize that FERM domain originated from a proto-Talin protein in unicellular or proto-multicellular organism and advent of multi-cellularity was accompanied by burst of FDCPs, which supported multi-cellularity functions required for complex organisms. This study helps in developing a better understanding of evolutionary history of FERM domain of FDCPs and the role of FERM domain in metazoan evolution.

  • 25.
    Ali, Raja Hashim
    et al.
    KTH, School of Computer Science and Communication (CSC), Computational Biology, CB. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Muhammad, Sayyed Auwn
    KTH, School of Computer Science and Communication (CSC), Computational Biology, CB. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Khan, Mehmodd Alam
    KTH, School of Computer Science and Communication (CSC), Computational Biology, CB. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Arvestad, Lars
    Stockholms universitet.
    Quantitative synteny scoring improves homology inference and partitioning of gene families2013In: BMC Bioinformatics, ISSN 1471-2105, E-ISSN 1471-2105, Vol. 14, p. S12-Article in journal (Refereed)
    Abstract [en]

    Background: Clustering sequences into families has long been an important step in characterization of genes and proteins. There are many algorithms developed for this purpose, most of which are based on either direct similarity between gene pairs or some sort of network structure, where weights on edges of constructed graphs are based on similarity. However, conserved synteny is an important signal that can help distinguish homology and it has not been utilized to its fullest potential. Results: Here, we present GenFamClust, a pipeline that combines the network properties of sequence similarity and synteny to assess homology relationship and merge known homologs into groups of gene families. GenFamClust identifies homologs in a more informed and accurate manner as compared to similarity based approaches. We tested our method against the Neighborhood Correlation method on two diverse datasets consisting of fully sequenced genomes of eukaryotes and synthetic data. Conclusions: The results obtained from both datasets confirm that synteny helps determine homology and GenFamClust improves on Neighborhood Correlation method. The accuracy as well as the definition of synteny scores is the most valuable contribution of GenFamClust.

  • 26. Alkasalias, Twana
    et al.
    Alexeyenko, Andrey
    Hennig, Katharina
    Danielsson, Frida
    Lebbink, Robert Jan
    Fielden, Matthew
    Turunen, S. Pauliina
    Lehti, Kaisa
    Kashuba, Vladimir
    Madapura, Harsha S.
    Bozoky, Benedek
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Balland, Martial
    Guven, Hayrettin
    Klein, George
    Gad, Annica K. B.
    Pavlova, Tatiana
    RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo2017In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, no 8, p. E1413-E1421Article in journal (Refereed)
    Abstract [en]

    Fibroblasts are a main player in the tumor-inhibitory microenvironment. Upon tumor initiation and progression, fibroblasts can lose their tumor-inhibitory capacity and promote tumor growth. The molecular mechanisms that underlie this switch have not been defined completely. Previously, we identified four proteins over-expressed in cancer-associated fibroblasts and linked to Rho GTPase signaling. Here, we show that knocking out the Ras homolog family member A (RhoA) gene in normal fibroblasts decreased their tumor-inhibitory capacity, as judged by neighbor suppression in vitro and accompanied by promotion of tumor growth in vivo. This also induced PC3 cancer cell motility and increased colony size in 2D cultures. RhoA knockout in fibroblasts induced vimentin intermediate filament reorganization, accompanied by reduced contractile force and increased stiffness of cells. There was also loss of wide F-actin stress fibers and large focal adhesions. In addition, we observed a significant loss of a-smooth muscle actin, which indicates a difference between RhoA knockout fibroblasts and classic cancer-associated fibroblasts. In 3D collagen matrix, RhoA knockout reduced fibroblast branching and meshwork formation and resulted in more compactly clustered tumor-cell colonies in coculture with PC3 cells, which might boost tumor stem-like properties. Coculturing RhoA knockout fibroblasts and PC3 cells induced expression of proinflammatory genes in both. Inflammatory mediators may induce tumor cell stemness. Network enrichment analysis of transcriptomic changes, however, revealed that the Rho signaling pathway per se was significantly triggered only after coculturing with tumor cells. Taken together, our findings in vivo and in vitro indicate that Rho signaling governs the inhibitory effects by fibroblasts on tumor-cell growth.

  • 27.
    Alm, Tove
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Introducing the Affinity Binder Knockdown Initiative-A public-private partnership for validation of affinity reagents2016In: EuPA Open Proteomics, ISSN 0014-2328, E-ISSN 2212-9685, Vol. 10, p. 56-58Article in journal (Refereed)
    Abstract [en]

    The newly launched Affinity Binder Knockdown Initiative encourages antibody suppliers and users to join this public-private partnership, which uses crowdsourcing to collect characterization data on antibodies. Researchers are asked to share validation data from experiments where gene-editing techniques (such as siRNA or CRISPR) have been used to verify antibody binding. The initiative is launched under the aegis of Antibodypedia, a database designed to allow comparisons and scoring of publicly available antibodies towards human protein targets. What is known about an antibody is the foundation of the scoring and ranking system in Antibodypedia.

  • 28.
    Alm, Tove
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    von Feilitzen, Kalle
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sivertsson, Åsa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    A Chromosome-Centric Analysis of Antibodies Directed toward the Human Proteome Using Antibodypedia2014In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 13, no 3, p. 1669-1676Article in journal (Refereed)
    Abstract [en]

    Antibodies are crucial for the study of human proteins and have been defined as one of the three pillars in the human chromosome-centric Human Proteome Project (CHPP). In this article the chromosome-centric structure has been used to analyze the availability of antibodies as judged by the presence within the portal Antibodypedia, a database designed to allow comparisons and scoring of publicly available antibodies toward human protein targets. This public database displays antibody data from more than one million antibodies toward human protein targets. A summary of the content in this knowledge resource reveals that there exist more than 10 antibodies to over 70% of all the putative human genes, evenly distributed over the 24 human chromosomes. The analysis also shows that at present, less than 10% of the putative human protein-coding genes (n = 1882) predicted from the genome sequence lack antibodies, suggesting that focused efforts from the antibody-based and mass spectrometry-based proteomic communities should be encouraged to pursue the analysis of these missing proteins. We show that Antibodypedia may be used to track the development of available and validated antibodies to the individual chromosomes, and thus the database is an attractive tool to identify proteins with no or few antibodies yet generated.

  • 29.
    Alneberg, Johannes
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bioinformatic Methods in Metagenomics2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Microbial organisms are a vital part of our global ecosystem. Yet, our knowledge of them is still lacking. Direct sequencing of microbial communities, i.e. metagenomics, have enabled detailed studies of these microscopic organisms by inspection of their DNA sequences without the need to culture them. Furthermore, the development of modern high- throughput sequencing technologies have made this approach more powerful and cost-effective. Taken together, this has shifted the field of microbiology from previously being centered around microscopy and culturing studies, to largely consist of computational analyses of DNA sequences. One such computational analysis which is the main focus of this thesis, aims at reconstruction of the complete DNA sequence of an organism, i.e. its genome, directly from short metagenomic sequences.

    This thesis consists of an introduction to the subject followed by five papers. Paper I describes a large metagenomic data resource spanning the Baltic Sea microbial communities. This dataset is complemented with a web-interface allowing researchers to easily extract and visualize detailed information. Paper II introduces a bioinformatic method which is able to reconstruct genomes from metagenomic data. This method, which is termed CONCOCT, is applied on Baltic Sea metagenomics data in Paper III and Paper V. This enabled the reconstruction of a large number of genomes. Analysis of these genomes in Paper III led to the proposal of, and evidence for, a global brackish microbiome. Paper IV presents a comparison between genomes reconstructed from metagenomes with single-cell sequenced genomes. This further validated the technique presented in Paper II as it was found to produce larger and more complete genomes than single-cell sequencing.

  • 30.
    Alneberg, Johannes
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology.
    Bennke, Christin
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Beier, Sara
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Pinhassi, Jarone
    Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
    Jürgens, Klaus
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Ekman, Martin
    Department of Ecology, Environment and Plant Sciences, Stockholm University Science for Life Laboratory, Solna, Sweden.
    Ininbergs, Karolina
    Department of Ecology, Environment and Plant Sciences, Stockholm University Science for Life Laboratory, Solna, Sweden.
    Labrenz, Matthias
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Andersson, Anders F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology.
    Recovering 2,032 Baltic Sea microbial genomes by optimized metagenomic binningManuscript (preprint) (Other academic)
    Abstract [en]

    Aquatic microorganism are key drivers of global biogeochemical cycles and form the basis of aquatic food webs. However, there is still much left to be learned about these organisms and their interaction within specific environments, such as the Baltic Sea. Crucial information for such an understanding can be found within the genome sequences of organisms within the microbial community.

    In this study, the previous set of Baltic Sea clusters, constructed by Hugert et al., is greatly expanded using a large set of metagenomic samples, spanning the environmental gradients of the Baltic Sea. In total, 124 samples were individually assembled and binned to obtain 2,032 Metagenome Assembled Genomes (MAGs), clustered into 353 prokaryotic and 14 eukaryotic species- level clusters. The prokaryotic genomes were widely distributed over the prokaryotic tree of life, representing 20 different phyla, while the eukaryotic genomes were mostly limited to the division of Chlorophyta. The large number of reconstructed genomes allowed us to identify key factors determining the quality of the genome reconstructions.

    The Baltic Sea is heavily influenced of human activities of which we might not see the full implications. The genomes reported within this study will greatly aid further studies in our strive for an understanding of the Baltic Sea microbial ecosystem.

  • 31.
    Alneberg, Johannes
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bjarnason, Brynjar Smári
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    de Bruijn, Ino
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Bioinformatics Infrastructure for Life Sciences (BILS), Sweden.
    Schirmer, Melanie
    Quick, Joshua
    Ijaz, Umer Z.
    Lahti, Leo
    Loman, Nicholas J.
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Quince, Christopher
    Binning metagenomic contigs by coverage and composition2014In: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 11, no 11, p. 1144-1146Article in journal (Refereed)
    Abstract [en]

    Shotgun sequencing enables the reconstruction of genomes from complex microbial communities, but because assembly does not reconstruct entire genomes, it is necessary to bin genome fragments. Here we present CONCOCT, a new algorithm that combines sequence composition and coverage across multiple samples, to automatically cluster contigs into genomes. We demonstrate high recall and precision on artificial as well as real human gut metagenome data sets.

  • 32.
    Alneberg, Johannes
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Karlsson, Christofer M.G.
    Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Barlastgatan 11, 391 82 Kalmar, Sweden.
    Divne, Anna-Maria
    Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala, Sweden .
    Bergin, Claudia
    Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala, Sweden .
    Homa, Felix
    Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala, Sweden .
    Lindh, Markus V.
    Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Barlastgatan 11, 391 82 Kalmar, Sweden.
    Hugerth, Luisa W.
    Karolinska Institutet, Science for Life Laboratory, Department of Molecular, Tumour and Cell Biology, Centre for Translational Microbiome Research, Solna, Sweden.
    Ettema, Thijs JG
    Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala, Sweden.
    Bertilsson, Stefan
    Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
    Andersson, Anders F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology.
    Pinhassi, Jarone
    Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Barlastgatan 11, 391 82 Kalmar, Sweden.
    Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomesManuscript (preprint) (Other academic)
    Abstract [en]

    Background: Prokaryotes dominate the biosphere and regulate biogeochemical processes essential to all life. Yet, our knowledge about their biology is for the most part limited to the minority that has been successfully cultured. Molecular techniques now allow for obtaining genome sequences of uncultivated prokaryotic taxa, facilitating in-depth analyses that may ultimately improve our understanding of these key organisms.

    Results: We compared results from two culture-independent strategies for recovering bacterial genomes: single-amplified genomes and metagenome-assembled genomes. Single-amplified genomes were obtained from samples collected at an offshore station in the Baltic Sea Proper and compared to previously obtained metagenome-assembled genomes from a time series at the same station. Among 16 single-amplified genomes analyzed, seven were found to match metagenome-assembled genomes, affiliated with a diverse set of taxa. Notably, genome pairs between the two approaches were nearly identical (>98.7% identity) across overlapping regions (30-80% of each genome). Within matching pairs, the single-amplified genomes were consistently smaller and less complete, whereas the genetic functional profiles were maintained. For the metagenome-assembled genomes, only on average 3.6% of the bases were estimated to be missing from the genomes due to wrongly binned contigs; the metagenome assembly was found to cause incompleteness to a higher degree than the binning procedure.

    Conclusions: The strong agreement between the single-amplified and metagenome-assembled genomes emphasizes that both methods generate accurate genome information from uncultivated bacteria. Importantly, this implies that the research questions and the available resources are allowed to determine the selection of genomics approach for microbiome studies.

  • 33.
    Alneberg, Johannes
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sundh, John
    Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
    Bennke, Christin
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Beier, Sara
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Lundin, Daniel
    Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
    Hugerth, Luisa
    KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden.
    Pinhassi, Jarone
    Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
    Kisand, Veljo
    University of Tartu, Institute of Technology, Tartu, Estonia.
    Riemann, Lasse
    Section for Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
    Jürgens, Klaus
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Labrenz, Matthias
    Leibniz Institute for Baltic Sea Research, Warnemünde, Germany.
    Andersson, Anders F.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    BARM and BalticMicrobeDB, a reference metagenome and interface to meta-omic data for the Baltic SeaManuscript (preprint) (Other academic)
    Abstract [en]

    The Baltic Sea is one of the world’s largest brackish water bodies and is characterised by pronounced physicochemical gradients where microbes are the main biogeochemical catalysts. Meta-omic methods provide rich information on the composition of, and activities within microbial ecosystems, but are computationally heavy to perform. We here present the BAltic Sea Reference Metagenome (BARM), complete with annotated genes to facilitate further studies with much less computational effort. The assembly is constructed using 2.6 billion metagenomic reads from 81 water samples, spanning both spatial and temporal dimensions, and contains 6.8 million genes that have been annotated for function and taxonomy. The assembly is useful as a reference, facilitating taxonomic and functional annotation of additional samples by simply mapping their reads against the assembly. This capability is demonstrated by the successful mapping and annotation of 24 external samples. In addition, we present a public web interface, BalticMicrobeDB, for interactive exploratory analysis of the dataset.

  • 34.
    Alneberg, Johannes
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sundh, John
    Stockholm Univ, Sci Life Lab, Dept Biochem & Biophys, S-17165 Solna, Sweden..
    Bennke, Christin
    Leibniz Inst Balt Sea Res Warnemunde, D-18119 Rostock, Germany..
    Beier, Sara
    Leibniz Inst Balt Sea Res Warnemunde, D-18119 Rostock, Germany..
    Lundin, Daniel
    Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst, S-39182 Kalmar, Sweden..
    Hugerth, Luisa W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. KKarolinska Inst, Dept Mol Tumor & Cell Biol, Ctr Translat Microbiome Res, Sci Life Lab, S-17165 Solna, Sweden..
    Pinhassi, Jarone
    Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst, S-39182 Kalmar, Sweden..
    Kisand, Veljo
    Univ Tartu, Inst Technol, EE-50411 Tartu, Estonia..
    Riemann, Lasse
    Univ Copenhagen, Sect Marine Biol Sect, Dept Biol, DK-3000 Helsingor, Denmark..
    Juergens, Klaus
    Leibniz Inst Balt Sea Res Warnemunde, D-18119 Rostock, Germany..
    Labrenz, Matthias
    Leibniz Inst Balt Sea Res Warnemunde, D-18119 Rostock, Germany..
    Andersson, Anders F.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    BARM and BalticMicrobeDB, a reference metagenome and interface to meta-omic data for the Baltic Sea2018In: Scientific Data, E-ISSN 2052-4463, Vol. 5, article id 180146Article in journal (Refereed)
    Abstract [en]

    The Baltic Sea is one of the world's largest brackish water bodies and is characterised by pronounced physicochemical gradients where microbes are the main biogeochemical catalysts. Meta-omic methods provide rich information on the composition of, and activities within, microbial ecosystems, but are computationally heavy to perform. We here present the Baltic Sea Reference Metagenome (BARM), complete with annotated genes to facilitate further studies with much less computational effort. The assembly is constructed using 2.6 billion metagenomic reads from 81 water samples, spanning both spatial and temporal dimensions, and contains 6.8 million genes that have been annotated for function and taxonomy. The assembly is useful as a reference, facilitating taxonomic and functional annotation of additional samples by simply mapping their reads against the assembly. This capability is demonstrated by the successful mapping and annotation of 24 external samples. In addition, we present a public web interface, BalticMicrobeDB, for interactive exploratory analysis of the dataset. [GRAPHICS] .

  • 35. Ameur, Adam
    et al.
    Dahlberg, Johan
    Olason, Pall
    Vezzi, Francesco
    Karlsson, Robert
    Martin, Marcel
    Viklund, Johan
    Kahari, Andreas Kusalananda
    Lundin, Par
    Che, Huiwen
    Thutkawkorapin, Jessada
    Eisfeldt, Jesper
    Lampa, Samuel
    Dahlberg, Mats
    Hagberg, Jonas
    Jareborg, Niclas
    Liljedahl, Ulrika
    Jonasson, Inger
    Johansson, Asa
    Feuk, Lars
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Syvanen, Ann-Christine
    Lundin, Sverker
    Nilsson, Daniel
    Nystedt, Bjorn
    Magnusson, Patrik K. E.
    Gyllensten, Ulf
    SweGen: a whole-genome data resource of genetic variability in a cross-section of the Swedish population2017In: European Journal of Human Genetics, ISSN 1018-4813, E-ISSN 1476-5438, Vol. 25, no 11, p. 1253-1260Article in journal (Refereed)
    Abstract [en]

    Here we describe the SweGen data set, a comprehensive map of genetic variation in the Swedish population. These data represent a basic resource for clinical genetics laboratories as well as for sequencing-based association studies by providing information on genetic variant frequencies in a cohort that is well matched to national patient cohorts. To select samples for this study, we first examined the genetic structure of the Swedish population using high-density SNP-array data from a nation-wide cohort of over 10 000 Swedish-born individuals included in the Swedish Twin Registry. A total of 1000 individuals, reflecting a cross-section of the population and capturing the main genetic structure, were selected for whole-genome sequencing. Analysis pipelines were developed for automated alignment, variant calling and quality control of the sequencing data. This resulted in a genome-wide collection of aggregated variant frequencies in the Swedish population that we have made available to the scientific community through the website https://swefreq.nbis.se. A total of 29.2 million single-nucleotide variants and 3.8 million indels were detected in the 1000 samples, with 9.9 million of these variants not present in current databases. Each sample contributed with an average of 7199 individual-specific variants. In addition, an average of 8645 larger structural variants (SVs) were detected per individual, and we demonstrate that the population frequencies of these SVs can be used for efficient filtering analyses. Finally, our results show that the genetic diversity within Sweden is substantial compared with the diversity among continental European populations, underscoring the relevance of establishing a local reference data set.

  • 36.
    Andersson, Alma E. V.
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kasimova, Marina A.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Delemotte, Lucie
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Exploring the Viral Channel Kcv(PBCV-1) Function via Computation2018In: Journal of Membrane Biology, ISSN 0022-2631, E-ISSN 1432-1424, Vol. 251, no 3, p. 419-430Article in journal (Refereed)
    Abstract [en]

    Viral potassium channels (Kcv) are homologous to the pore module of complex -selective ion channels of cellular organisms. Due to their relative simplicity, they have attracted interest towards understanding the principles of conduction and channel gating. In this work, we construct a homology model of the open state, which we validate by studying the binding of known blockers and by monitoring ion conduction through the channel. Molecular dynamics simulations of this model reveal that the re-orientation of selectivity filter carbonyl groups coincides with the transport of potassium ions, suggesting a possible mechanism for fast gating. In addition, we show that the voltage sensitivity of this mechanism can originate from the relocation of potassium ions inside the selectivity filter. We also explore the interaction of with the surrounding bilayer and observe the binding of lipids in the area between two adjacent subunits. The model is available to the scientific community to further explore the structure/function relationship of Kcv channels.

  • 37.
    Andersson, Anders
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Gene Technology.
    Pelve, Erik A.
    Lindeberg, Stefan
    Lundgren, Magnus
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Bernander, Rolf
    Replication-biased genome organisation in the crenarchaeon Sulfolobus2010In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 11, p. 454-Article in journal (Refereed)
    Abstract [en]

    Background: Species of the crenarchaeon Sulfolobus harbour three replication origins in their single circular chromosome that are synchronously initiated during replication. Results: We demonstrate that global gene expression in two Sulfolobus species is highly biased, such that early replicating genome regions are more highly expressed at all three origins. The bias by far exceeds what would be anticipated by gene dosage effects alone. In addition, early replicating regions are denser in archaeal core genes (enriched in essential functions), display lower intergenic distances, and are devoid of mobile genetic elements. Conclusion: The strong replication-biased structuring of the Sulfolobus chromosome implies that the multiple replication origins serve purposes other than simply shortening the time required for replication. The higher-level chromosomal organisation could be of importance for minimizing the impact of DNA damage, and may also be linked to transcriptional regulation.

  • 38. Andersson, Gustav
    et al.
    Wennersten, Christoffer
    Gaber, Alexander
    Boman, Karolina
    Nodin, Björn
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Segersten, Ulrika
    Malmström, Per-Uno
    Jirström, Karin
    Reduced expression of ezrin in urothelial bladder cancer signifies more advanced tumours and an impaired survival: validatory study of two independent patient cohorts2014In: BMC Urology, ISSN 1471-2490, E-ISSN 1471-2490, Vol. 14, no 1, p. 36-Article in journal (Refereed)
    Abstract [en]

    Background: Reduced membranous expression of the cytoskeleton-associated protein ezrin has previously been demonstrated to correlate with tumour progression and poor prognosis in patients with T1G3 urothelial cell carcinoma of the bladder treated with non-maintenance Bacillus Calmette-Guerin (n = 92), and the associations with adverse clinicopathological factors have been validated in another, unselected, cohort (n = 104). In the present study, we examined the prognostic significance of ezrin expression in urothelial bladder cancer in a total number of 442 tumours from two independent patient cohorts. Methods: Immunohistochemical expression of ezrin was evaluated in tissue microarrays with tumours from one retrospective cohort of bladder cancer (n = 110; cohort I) and one population-based cohort (n = 342; cohort II). Classification regression tree analysis was applied for selection of prognostic cutoff. Kaplan-Meier analysis, log rank test and Cox regression proportional hazards' modeling were used to evaluate the impact of ezrin on 5-year overall survival (OS), disease-specific survival (DSS) and progression-free survival (PFS). Results: Ezrin expression could be evaluated in tumours from 100 and 342 cases, respectively. In both cohorts, reduced membranous ezrin expression was significantly associated with more advanced T-stage (p < 0.001), high grade tumours (p < 0.001), female sex (p = 0.040 and p = 0.013), and membranous expression of podocalyxin-like protein (p < 0.001 and p = 0.009). Moreover, reduced ezrin expression was associated with a significantly reduced 5-year OS in both cohorts (HR = 3.09 95% CI 1.71-5.58 and HR = 2.15(1.51-3.06), and with DSS in cohort II (HR = 2.77, 95% CI 1.78-4.31). This association also remained significant in adjusted analysis in Cohort I (HR1.99, 95% CI 1.05-3.77) but not in Cohort II. In pTa and pT1 tumours in cohort II, there was no significant association between ezrin expression and time to progression. Conclusions: The results from this study validate previous findings of reduced membranous ezrin expression in urothelial bladder cancer being associated with unfavourable clinicopathological characteristics and an impaired survival. The utility of ezrin as a prognostic biomarker in transurethral resection specimens merits further investigation.

  • 39.
    Andersson, Magnus
    et al.
    KTH, School of Engineering Sciences (SCI), Theoretical Physics, Theoretical & Computational Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mattle, Daniel
    Sitsel, Oleg
    Nielsen, Anna Marie
    Lindahl, Erik
    KTH, School of Engineering Sciences (SCI), Applied Physics, Experimental Biomolecular Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    White, Stephen H.
    Nissen, Poul
    Gourdon, Pontus
    Transport Pathway in Cu+ P-Type ATPases2014In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 106, no 2, p. 427A-427AArticle in journal (Other academic)
  • 40. Andersson, Sandra
    et al.
    Nilsson, Kenneth
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sundström, Christer
    Danielsson, Angelika
    Edlund, Karolina
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Asplund, Anna
    The Transcriptomic and Proteomic Landscapes of Bone Marrow and Secondary Lymphoid Tissues2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 12, p. e115911-Article in journal (Refereed)
    Abstract [en]

    Background: The sequencing of the human genome has opened doors for global gene expression profiling, and the immense amount of data will lay an important ground for future studies of normal and diseased tissues. The Human Protein Atlas project aims to systematically map the human gene and protein expression landscape in a multitude of normal healthy tissues as well as cancers, enabling the characterization of both housekeeping genes and genes that display a tissue-specific expression pattern. This article focuses on identifying and describing genes with an elevated expression in four lymphohematopoietic tissue types (bone marrow, lymph node, spleen and appendix), based on the Human Protein Atlas-strategy that combines high throughput transcriptomics with affinity-based proteomics. Results: An enriched or enhanced expression in one or more of the lymphohematopoietic tissues, compared to other tissue-types, was seen for 693 out of 20,050 genes, and the highest levels of expression were found in bone marrow for neutrophilic and erythrocytic genes. A majority of these genes were found to constitute well-characterized genes with known functions in lymphatic or hematopoietic cells, while others are not previously studied, as exemplified by C19ORF59. Conclusions: In this paper we present a strategy of combining next generation RNA-sequencing with in situ affinity-based proteomics in order to identify and describe new gene targets for further research on lymphatic or hematopoietic cells and tissues. The results constitute lists of genes with enriched or enhanced expression in the four lymphohematopoietic tissues, exemplified also on protein level with immunohistochemical images.

  • 41. Andersson, Sandra
    et al.
    Sundberg, Marten
    Pristovsek, Nusa
    Ibrahim, Ahmed
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Natl Res Ctr, Egypt.
    Jonsson, Philip
    Katona, Borbala
    Clausson, Carl-Magnus
    Zieba, Agata
    Ramstrom, Margareta
    Soderberg, Ola
    Williams, Cecilia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Univ Houston, USA; Karolinska Inst, Sweden.
    Asplund, Anna
    Insufficient antibody validation challenges oestrogen receptor beta research2017In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, article id 15840Article in journal (Refereed)
    Abstract [en]

    The discovery of oestrogen receptor beta (ER beta/ESR2) was a landmark discovery. Its reported expression and homology with breast cancer pharmacological target ER alpha (ESR1) raised hopes for improved endocrine therapies. After 20 years of intense research, this has not materialized. We here perform a rigorous validation of 13 anti-ER beta antibodies, using well-characterized controls and a panel of validation methods. We conclude that only one antibody, the rarely used monoclonal PPZ0506, specifically targets ER beta in immunohistochemistry. Applying this antibody for protein expression profiling in 44 normal and 21 malignant human tissues, we detect ER beta protein in testis, ovary, lymphoid cells, granulosa cell tumours, and a subset of malignant melanoma and thyroid cancers. We do not find evidence of expression in normal or cancerous human breast. This expression pattern aligns well with RNA-seq data, but contradicts a multitude of studies. Our study highlights how inadequately validated antibodies can lead an exciting field astray.

  • 42. Andrews, B. J.
    et al.
    Marian Walhout, A. J.
    Iyengar, R.
    Apweiler, R.
    Ardlie, K.
    Azeloglu, E. U.
    Birtwistle, M. R.
    Coon, J. J.
    Dolinski, K.
    Fan, T.
    FitzGerald, G. A.
    Gavin, A. -C
    Gingras, A. -C
    Gough, N. R.
    Hoffmann, A.
    Lee, M. J.
    Loew, L. M.
    CraigMak, H.
    Murphy, R. C.
    Myers, C.
    Snyder, M. P.
    Sorger, P. K.
    Stolovitzky, G.
    Subramaniam, S.
    Taipale, M.
    Travé, G.
    Troyanskaya, O. G.
    Uhlén, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Vidal, M.
    Quantitative human cell encyclopedia2016In: Science Signaling, ISSN 1945-0877, E-ISSN 1937-9145, Vol. 9, no 443, article id mr1Article in journal (Refereed)
    Abstract [en]

    Scientists gathered to discuss the necessity, feasibility, and challenges of generating a quantitative catalog of the components in human cells that is essential for our understanding of human physiology in health and disease and to support future breakthroughs in treating diseases. This report summarizes the discussion that emerged at the Human Quantitative Dynamics Workshop held in Bethesda, MD, USA, in December 2015.

  • 43.
    Angleby, Helen
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oskarsson, Mattias
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pang, Junfeng
    Zhang, Ya-ping
    Leitner, Thomas
    Braham, Caitlyn
    Arvestad, Lars
    KTH, School of Computer Science and Communication (CSC), Computational Biology, CB. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Webb, Kristen M.
    Savolainen, Peter
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forensic Informativity of similar to 3000bp of Coding Sequence of Domestic Dog mtDNA2014In: Journal of Forensic Sciences, ISSN 0022-1198, E-ISSN 1556-4029, Vol. 59, no 4, p. 898-908Article in journal (Refereed)
    Abstract [en]

    The discriminatory power of the noncoding control region (CR) of domestic dog mitochondrial DNA alone is relatively low. The extent to which the discriminatory power could be increased by analyzing additional highly variable coding regions of the mitochondrial genome (mtGenome) was therefore investigated. Genetic variability across the mtGenome was evaluated by phylogenetic analysis, and the three most variable similar to 1kb coding regions identified. We then sampled 100 Swedish dogs to represent breeds in accordance with their frequency in the Swedish population. A previously published dataset of 59 dog mtGenomes collected in the United States was also analyzed. Inclusion of the three coding regions increased the exclusion capacity considerably for the Swedish sample, from 0.920 for the CR alone to 0.964 for all four regions. The number of mtDNA types among all 159 dogs increased from 41 to 72, the four most frequent CR haplotypes being resolved into 22 different haplotypes.

  • 44.
    Anil, Anandashankar
    et al.
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Spalinskas, Rapolas
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO).
    Åkerborg, Örjan
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sahlén, Pelin
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO).
    HiCapTools: a software suite for probe design and proximity detection for targeted chromosome conformation capture applications2018In: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 34, no 4, p. 675-677Article in journal (Refereed)
    Abstract [en]

    Folding of eukaryotic genomes within nuclear space enables physical and functional contacts between regions that are otherwise kilobases away in sequence space. Targeted chromosome conformation capture methods (T2C, chi-C and HiCap) are capable of informing genomic contacts for a subset of regions targeted by probes. We here present HiCapTools, a software package that can design sequence capture probes for targeted chromosome capture applications and analyse sequencing output to detect proximities involving targeted fragments. Two probes are designed for each feature while avoiding repeat elements and non-unique regions. The data analysis suite processes alignment files to report genomic proximities for each feature at restriction fragment level and is isoform-aware for gene features. Statistical significance of contact frequencies is evaluated using an empirically derived background distribution. Targeted chromosome conformation capture applications are invaluable for locating target genes of disease-associated variants found by genome-wide association studies. Hence, we believe our software suite will prove to be useful for a wider user base within clinical and functional applications.

  • 45. Apellaniz-Ruiz, Maria
    et al.
    Sanchez-Barroso, Lara
    Gutierrez-Gutierrez, Gerardo
    Sereno, Maria
    Garcia-Donas, Jesus
    Avall-Lundqvist, Elisabeth
    Green, Henrik
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Brosen, Kim
    Bergmann, Troels K.
    Rodriguez-Antona, Cristina
    Replication of Genetic Polymorphisms Reported to Be Associated with Taxane-Related Sensory Neuropathy in Patients with Early Breast Cancer Treated with Paclitaxel-Letter2015In: Clinical Cancer Research, ISSN 1078-0432, E-ISSN 1557-3265, Vol. 21, no 13, p. 3092-3093Article in journal (Refereed)
  • 46. Arabi, A.
    et al.
    Ullah, K.
    Branca, R. M. M.
    Johansson, J.
    Bandarra, D.
    Haneklaus, M.
    Fu, J.
    Ariës, I.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Den Boer, M. L.
    Pokrovskaja, K.
    Grandér, D.
    Xiao, G.
    Rocha, S.
    Lehtiö, J.
    Sangfelt, O.
    Proteomic screen reveals Fbw7 as a modulator of the NF-kappa B pathway2012In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 3, p. 976-Article in journal (Refereed)
    Abstract [en]

    Fbw7 is a ubiquitin-ligase that targets several oncoproteins for proteolysis, but the full range of Fbw7 substrates is not known. Here we show that by performing quantitative proteomics combined with degron motif searches, we effectively screened for a more complete set of Fbw7 targets. We identify 89 putative Fbw7 substrates, including several disease-associated proteins. The transcription factor NF-κB2 (p100/p52) is one of the candidate Fbw7 substrates. We show that Fbw7 interacts with p100 via a conserved degron and that it promotes degradation of p100 in a GSK3 2 phosphorylation-dependent manner. Fbw7 inactivation increases p100 levels, which in the presence of NF-κB pathway stimuli, leads to increased p52 levels and activity. Accordingly, the apoptotic threshold can be increased by loss of Fbw7 in a p100-dependent manner. In conclusion, Fbw7-mediated destruction of p100 is a regulatory component restricting the response to NF-κB2 pathway stimulation.

  • 47.
    Araújo, Ana Catarina
    et al.
    KTH, School of Biotechnology (BIO), Glycoscience.
    Song, Yajing
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ståhl, Patrik L.
    Brumer, Harry, III
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Activated Paper Surfaces for the Rapid Hybridization of DNA through Capillary Transport2012In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 84, no 7, p. 3311-3317Article in journal (Refereed)
    Abstract [en]

    The development of low-cost, accurate, and equipment-free diagnostic tests is crucial to many clinical, laboratory, and field applications, including forensics and medical diagnostics. Cellulose fiber-based paper is an inexpensive, biodegradable, and renewable resource, the use of which as a biomolecule detection matrix and support confers several advantages compared to traditional materials such as glass. In this context, a new, facile method for the preparation of surface functionalized papers bearing single-stranded probe DNA (ssDNA) for rapid target hybridization via capillary transport is presented. Optimized reaction conditions were developed that allowed the direct, one-step activation of standard laboratory filters by the inexpensive and readily available bifunctional linking reagent, 1,4-phenylenediisothiocyanate. Such papers were thus amenable to subsequent coupling of amine-labeled ssDNA under standard conditions widely used for glass-based supports. The intrinsic wicking ability of the paper matrix facilitated rapid sample elution through arrays of probe DNA, leading to significant, detectable hybridization in the time required for the sample liquid to transit the vertical length of the strip (less than 2 min). The broad applicability of these paper test strips as rapid and specific diagnostics in "real-life" situations was exemplified by the discrimination of amplicons generated from canine and human mitochondrial and genomic DNA in mock forensic samples.

  • 48.
    Ardalan, Arman
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Molecular Profiling of the Population Dynamics: Foundation and Expansion of an Archaic Domesticate2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    "An ‘exponential growth of science’ throughout modern history has been frequently boasted by numerous narcissistic accounts of ‘modern humanity.’ Nonetheless, ‘modern science’ seems to have overwhelmingly compromised on its original promises by fitting into an ‘industrial scheme.’ With this concern, ‘molecular phylogeographics with conservational ambitions’ would look an intact ground for research efforts in a ‘school of biotechnology.’ The dog (Canis familiaris) as an earliest domestic animal has a history of conflicts over its origins and dispersal. Having those disputes addressed, valuable knowledge could be acquired on the nature and dynamics of domestication, and of human societies particularly of pre-agricultural ages. We employed two most widely-used genealogical markers, the mitochondrial DNA (mtDNA) and the non-recombining portion of the Y-chromosome (NRY), to address dog demography. Through 582 bps of mtDNA Control Region, complemented with whole mitochondrial genomes, it was established that almost all maternal lineages of the domestic dog worldwide coalesce to a population of at least 51 and perhaps many more female wolves in Asia South of Yangtze River (ASY) approximately 16,000 years before present (BP). This was based on the presence of a maximal diversity in this area, a descending gradient of diversity outward it, and a ubiquitous population structure everywhere in the world. A closer examination of this portrait in Southwest Asia (SwAsia) and the Fertile Crescent (FC), a region which has supplied persuasive evidence on early presence of the domestic dog, retrieved the same information, with implications for backbreeding with the local wolf population. Meanwhile, analyses of mtDNA dispersal showed that dogs took the long way via land to Madagascar Island, and not together with humans via sea. By the other approach, the NRY data in 14,437 bps length supplemented the mtDNA in reporting the height of diversity from ASY with a founding population of at least 13 male wolves, but expectably produced lower inter-regional differentiation by diversity. Screening of NRY by a SNP assay in the dingoes of Australia Island as a population of feral dogs revealed restricted and similar dispersal patterns for sires and dams. Prospects of ancient, multilocus and whole genome assays with the emerging high-throughput technologies has still more to promise on finer elaborations of these issues."

  • 49.
    Ardalan, Arman
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kluetsch, Cornelya F. C.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Gene Technology.
    Zhang, Ai-bing
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Erdogan, Metin
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Houshmand, Massoud
    Tepeli, Cafer
    Ashtiani, Seyed Reza Miraei
    Savolainen, Peter
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Comprehensive study of mtDNA among Southwest Asian dogs contradicts independent domestication of wolf, but implies dog–wolf hybridization2011In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758, Vol. 1, no 3, p. 373-385Article in journal (Refereed)
    Abstract [en]

    Studies of mitochondrial DNA (mtDNA) diversity indicate explicitly that dogs were domesticated, probably exclusively, in southern East Asia. However, Southwest Asia (SwAsia) has had poor representation and geographical coverage in these studies. Other studies based on archaeological and genome-wide SNP data have suggested an origin of dogs in SwAsia. Hence, it has been suspected that mtDNA evidence for this scenario may have remained undetected. In the first comprehensive investigation of genetic diversity among SwAsian dogs, we analyzed 582 bp of mtDNA for 345 indigenous dogs from across SwAsia, and compared with 1556 dogs across the Old World. We show that 97.4% of SwAsian dogs carry haplotypes belonging to a universal mtDNA gene pool, but that only a subset of this pool, five of the 10 principal haplogroups, is represented in SwAsia. A high frequency of haplogroup B, potentially signifying a local origin, was not paralleled with the high genetic diversity expected for a center of origin. Meanwhile, 2.6% of the SwAsian dogs carried the rare non-universal haplogroup d2. Thus, mtDNA data give no indication that dogs originated in SwAsia through independent domestication of wolf, but dog–wolf hybridization may have formed the local haplogroup d2 within this region. Southern East Asia remains the only region with virtually full extent of genetic variation, strongly indicating it to be the primary and probably sole center of wolf domestication. An origin of dogs in southern East Asia may have been overlooked by other studies due to a substantial lack of samples from this region.

  • 50. Arendt, M.
    et al.
    Cairns, K. M.
    Ballard, J. W. O.
    Savolainen, Peter
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Axelsson, E.
    Diet adaptation in dog reflects spread of prehistoric agriculture2016In: Heredity, ISSN 0018-067X, E-ISSN 1365-2540, Vol. 117, no 5, p. 301-306Article in journal (Refereed)
    Abstract [en]

    Adaptations allowing dogs to thrive on a diet rich in starch, including a significant AMY2B copy number gain, constituted a crucial step in the evolution of the dog from the wolf. It is however not clear whether this change was associated with the initial domestication, or represents a secondary shift related to the subsequent development of agriculture. Previous efforts to study this process were based on geographically limited data sets and low-resolution methods, and it is therefore not known to what extent the diet adaptations are universal among dogs and whether there are regional differences associated with alternative human subsistence strategies. Here we use droplet PCR to investigate worldwide AMY2B copy number diversity among indigenous as well as breed dogs and wolves to elucidate how a change in dog diet was associated with the domestication process and subsequent shifts in human subsistence. We find that AMY2B copy numbers are bimodally distributed with high copy numbers (median 2n AMY2B =11) in a majority of dogs but no, or few, duplications (median 2n AMY2B =3) in a small group of dogs originating mostly in Australia and the Arctic. We show that this pattern correlates geographically to the spread of prehistoric agriculture and conclude that the diet change may not have been associated with initial domestication but rather the subsequent development and spread of agriculture to most, but not all regions of the globe.

1234567 1 - 50 of 879
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf