Change search
Refine search result
1234567 1 - 50 of 1473
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abbasi, Mahmoud
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal2017In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 145, p. 105-113Article in journal (Refereed)
    Abstract [en]

    The adsorption characteristics of Direct Blue 71 (DB71) and Reactive Blue 19 (RB19) from aqueous solution onto novel magnetic nanocomposite of Chitosan/SiO2/CNTs (MNCSC) have been investigated. The morphology of MNCSC was characterized by vibrating sample magnetometer (VSM), field-emission scanning electron microscopy (FESEM), X-ray Diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The effect of initial dye concentration, contact time, adsorbent dosage and initial pH as experimental parameters on the removal of dyes were investigated. The adsorption experiments indicated the maximum adsorption capacity occurred at pH 6.8 for DB71 and pH 2.0 for RB19. The experimental data were analyzed by isotherm models and equilibrium results were fitted well with the Langmuir isotherm model and the maximum adsorption capacity of the MNCSM was determined to be 61.35 mg/g for DB71 (R-2 = 0.996) and 97.08 mg/g for RB19 (R-2 = 0.998). Adsorption data were analyzed with three kinetics models and pseudo second-order equation could best describe for adsorption of dyes. Finally, the thermodynamic parameters were determined. (C) 2017 Elsevier Ltd. All rights reserved.

  • 2.
    Acevedo Gomez, Yasna
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Lindbergh, Göran
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Lagergren, Carina
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Reformate from biogas used as fuel in a PEM fuel cell2013In: EFC 2013 - Proceedings of the 5th European Fuel Cell Piero Lunghi Conference, 2013, p. 163-164Conference paper (Refereed)
    Abstract [en]

    The performance of a PEM fuel cell can be easily degraded by introducing impurities in the fuel gas. Since reformate of biogas from olive mill wastes will contain at least one third of carbon dioxide, its influence was studied on a PtRu catalyst. A clean reformate gas for the anode (67% H2 and 33% CO2) without any traces of other compounds was used and electrochemical measurements showed that the performance of the fuel cell was hardly affected. However, diluting the hydrogen with higher amounts of CO2 will reduce the performance remarkably.

  • 3.
    Ahlberg Tidblad, Annika
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Lindbergh, Göran
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Surface analysis with ESCA and GD-OES of the film formed by cathodic reduction of chromate1991In: Electrochimica Acta, Vol. 36, no 10, p. 1605-1610Article in journal (Refereed)
    Abstract [en]

    In the chlorate process, a small addition of chromate to the electrolyte results in the formation of a cathode film, which inhibits the reduction of the intermediate hypochlorite ions. To enable surface characterization of the chromium film, it was grown by cathodic reduction onto gold and platinum substrates in hydroxide and chlorate solution. Surface analyses of this film by ESCA and GD-OES indicate that it has a distinct and constant chemical composition during growth given by the formula Cr(OH)3·xH2O. The film is thin, less than 50 Å on platinum and 80 Å on gold. It exhibits poor conductivity and covers the entire cathode surface. © 1991.

  • 4.
    Ahmadi, Mozhgan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Brage, Claes O.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Sjöström, Krister
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Engvall, Klas
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Knoef, H.
    Van De Beld, B.
    Development of an on-line tar measurement method based on photo ionization technique2011In: Catalysis Today, ISSN 0920-5861, E-ISSN 1873-4308, Vol. 176, no 1, p. 250-252Article in journal (Refereed)
    Abstract [en]

    This paper presents work in progress for development of an on-line method based on PID (Photo Ionization Detector) for quantitative measurement of tar from biomass gasification. To calibrate the method the PID signals are compared to quantitative data of individual tar compounds obtained by an established reference method. The measured response factors for the model tar compounds demonstrated very good linearity. The PID approach was tested on-line with real producer gases from an atmospheric fluidized bed gasifier operated at 800-900 °C. The results suggest that PID can be used for continuous on-line tar measurement of product gases from biomass gasification.

  • 5.
    Ahmadi, Mozhgan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Knoef, Harrie
    Van De Beld, Bert
    Liliedahl, Truls
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Engvall, Klaus
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Development of a PID based on-line tar measurement method: Proof of concept2013In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 113, p. 113-121Article in journal (Refereed)
    Abstract [en]

    In this study, a proof of concept was conducted for an on-line tar analyzer based on photo ionization detection (PID). Tar model compounds (naphthalene, acenaphthene, acenaphthylene, fluorene, indane and indene) were used for the initial investigation of the analysis method. It was found that the analysis method has a high sensitivity and a linear behavior was observed between the PID response and the tar concentration over a wide concentration span. The on-line tar analysis method was successfully validated against the solid phase adsorption (SPA) method using a real producer gas.

  • 6.
    Ahmadi, Mozhgan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Sjöström, Krister
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Brage, Claes
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Engvall, Klas
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Liliedahl, Truls
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Develompent of an online tar measuring method using ionization potential2010Conference paper (Refereed)
  • 7.
    Ahmadi, Mozhgan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Sjöström, Krister
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Brage, Claes
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Liliedahl, Truls
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Knoef, Harri A.M.
    Van de Beld, Bert
    Development of an online tar measuring method for quantitative analysis of biomass producer gas2009Conference paper (Refereed)
  • 8.
    Ahmadi, Mozhgan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Svensson, Erik Elm
    Engvall, Klas
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Application of solid phase microextraction (SPME) as a tar sampling method during real gasificationManuscript (preprint) (Other academic)
  • 9.
    Ahmadi, Mozhgan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Svensson, Erik Elm
    Engvall, Klas
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Application of Solid-Phase Microextraction (SPME) as a Tar Sampling Method2013In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 27, no 7, p. 3853-3860Article in journal (Refereed)
    Abstract [en]

    This paper presents the result of an investigation of the potential use of solid-phase microextraction (SPME) as a tar sampling method. The SPME stationary phase used was 50 mu m of polydimethylsiloxane (PDMS) coated on a fused silica fiber. Tar model compounds normally present in a producer gas from gasifiers, benzene, toluene, indane, indene, naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene, were used in the investigation. The adsorbed compounds were analyzed by injection into gas chromatography coupled to a flame ionization detector (GC- FID). The amount of adsorbed tar on the SPME fiber determined the detection and quantification limits for the method. The results showed that adsorption of tar model compounds on the SPME fiber increased with decreasing polarity. The adsorption of compounds increased with a decreasing temperature, enabling a possibility to tune the sensitivity of the method by changing the sampling temperature. Conclusively, SPME has a very high potential as a tar sampling method and, in combination with GC- FID trace analysis of tar, is a feasible application.

  • 10.
    Ahmadi Svensson, Mozhgan
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Sampling and Analysis of Tars by Means of Photo Ionization Detection and Solid Phase Micro Extraction2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Gasification of biomass will likely play an important role in the production of energy and chemicals in a future sustainable society. However, during gasification impurities, such as tars, will be formed. Tars may cause fouling and blockages of equipment downstream the gasifier. It is therefore important to minimize the formation of tars, alternatively to remove the formed tars. These processes need to be monitored, which makes it necessary to develop tar analysis methods suitable for this task.

    This work describes the development of two tar analysis methods, an on-line method based on a photoionization detector (PID) and an off-line method based on solid phase microextraction (SPME). Both methods were successfully validated against the established solid phase adsorption (SPA) method.

    The method based on PID was shown to have a very fast response time. Furthermore, the PID method is selective towards tar, but only limited information will be obtained regarding the composition of the tar compounds. The PID method is suitable for applications where it is important to detect fast changes of the tar concentration, i.e. process monitoring.

    The SPME method was shown to be a very sensitive method for qualitative and quantitative tar analysis. The sampling temperature was shown to be crucial for obtaining analysis results with the wanted detection limit. The SPME method is suitable for applications where extremely low detection and quantification limits are needed, i.e. for syngas production.

     

  • 11.
    Akhand, Victoria
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Celsi, Adrian
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Lagerberg, Tove
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Sångberg, Oscar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Plastfilm från rapshalm2015Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The purpose of this project is to extract hemicellulose from the rape straw by using alkali- and water extraction, and thereafter to produce a film with these polymers. The intention with this film is to eventually replace the present oxygen barrier made of aluminium in applications such as food packaging made of cardboard, among other things. The film is composed of hemicellulose and additives, either the CMC or sorbitol molecules. Many analyses were conducted on the extracts and the films in order to draw conclusions about the structure and properties. The NMR analysis showed that the extracts contained the expected sugars and that the main deacetylation of O-acetyl groups happened during the extraction with low alkali. The SEC analysis gave low values of Đ. The tensile testing gave exceptional results, namely elongations of 10-60%, depending on the composition of the films. Two of the most significant analyses are the ion chromatography and the oxygen permeability test, which could not be implemented because of technical difficulties. Low alkali is to be preferred as solvent, used to extract the polymers, with respect to the environment, the economy and the mechanical properties. Furthermore, high addition of CMC is preferred when producing films because low CMC and sorbitol resulted in sticky films. For future work it would be recommended to analyse the films by conducting the ion chromatography and the oxygen permeability test. Additionally, it would be desirable to find the optimal addition amount of the CMC.

  • 12. Alander, E. M.
    et al.
    Rasmuson, Åke C.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Mechanisms of crystal agglomeration of paracetamol in acetone-water mixtures2005In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 44, no 15, p. 5788-5794Article in journal (Refereed)
    Abstract [en]

    The mechanisms governing the influence of the solvent composition on the agglomeration in a crystallization process have been investigated. Narrowly sieved paracetamol crystals were suspended in supersaturated acetone-water solutions, and were allowed to grow at isothermal conditions, after which the agglomeration was recorded. In all experiments the same sieve size fraction was used as well as the same magma density. In each experiment the supersaturation was kept constant. Experiments were performed in different solvent compositions at different supersaturation, crystal growth rate, solution viscosity, and agitation rate. For a statistically sufficient number of particles from each experiment, the number of crystals in each product particle was determined by image analysis and multivariate data evaluation. From the resulting number distributions of crystals per product particle, parameters defining the degree of agglomeration were extracted. The experimental results clearly establish that there is an influence of the solvent composition on the degree of agglomeration, which cannot be explained by differences in crystal growth rate, or differences in solution viscosity. The degree of agglomeration is found to decrease with increasing solvent polarity. It is, suggested that the mechanism by which the solvent influence relates to the crystal-solvent interaction and the physicochemical. adhesion forces between crystals in the solution.

  • 13. Alander, Eva M.
    et al.
    Rasmuson, Åke C.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Agglomeration and adhesion free energy of paracetamol crystals in organic solvents2007In: AIChE Journal, ISSN 0001-1541, E-ISSN 1547-5905, Vol. 53, no 10, p. 2590-2605Article in journal (Refereed)
    Abstract [en]

    The agglomeration of paracetamol during crystallization in different pure solvents has been investigated. Narrowly sieved crystals were suspended as seeds and allowed to grow and agglomerate at constant supersaturation and temperature. Particles from each experiment were examined by image analysis and multivariate data evaluation, for the number of crystals per particle. From the resulting number distribution, parameters defining the degree of agglomeration were extracted. The degree of agglomeration among the product particles is fairly low in water, methanol, and ethanol, while it is substantial in acetone particularly, but also in acetonitrile and methyl ethyl ketone. Surfaces of large, well-grown paracetamol crystals have been characterized by contact angle measurements. The surface free energy components of different crystal faces have been estimated using Lifshitz-van der Waals acid-base theory. The data are used for estimation of the solid-liquid interfacial free energy of each face in the solvents of the agglomeration experiments and the corresponding crystal-crystal adhesion free energy of pairs of faces. The degree of agglomeration in different solvents does correlate to the free energies of adhesion. This supports the hypothesis that the influence of the solvent on the crystal agglomeration relates to physico-chemical adhesion forces between crystal faces in the solution.

  • 14.
    Albero Caro, Jesus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Woldehaimanot, Mussie
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Rasmuson, Åke Christoffer
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Semibatch reaction crystallization of salicylic acid2014In: Chemical engineering research & design, ISSN 0263-8762, E-ISSN 1744-3563, Vol. 92, no 3, p. 522-533Article in journal (Refereed)
    Abstract [en]

    Reaction crystallization of salicylic acid has been investigated by experiments and modeling. In the experimental work, dilute hydrochloric acid has been added to an agitated aqueous solution of sodium salicylate in 1 L scale, and product crystals have been characterized by image analysis. The results show that the product crystal number mean size at first increases with increasing agitation rate but then gradually decreases again at further increase in stirring rate. At lower stirring rate, larger crystals are obtained when the feeding point is located close to the agitator instead of being located out in the bulk solution. The mean crystal size increases with decreasing feeding rate and with decreasing reactant concentrations. There is a decrease in mean size with increasing feed pipe diameter. These trends in the experimental results show great similarity with previous results on benzoic acid. The experimental results have been examined by a population balance model accounting for meso and micro mixing, and crystal nucleation and growth rate dispersion. It is found that the crystallization kinetic parameter estimation is quite complex, and the objective function hyper surface contains many different minima. Hence, parameter estimation has to rely on a combination of mathematical optimization strategies and a scientific understanding of the physical meaning of the parameters and their relation to current theories. As opposed to our previous work on benzoic acid, it has not been possible to find a set of kinetic parameters that provides for a good description of all experimental data.

  • 15.
    Alemrajabi, Mahmood
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Rasmuson, Åke C.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Korkmaz, Kivanc
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Forsberg, Kerstin
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Recovery of rare earth elements from nitrophosphoric acid solutions2017In: Hydrometallurgy, ISSN 0304-386X, E-ISSN 1879-1158, Vol. 169, p. 253-262Article in journal (Refereed)
    Abstract [en]

    In the present study, the recovery of rare earth elements (REEs) from an apatite concentrate in the nitrophosphate process of fertilizer production has been studied. The apatite concentrate has been recovered from iron ore tailings in Sweden by flotation. In the first step, the apatite is digested in concentrated nitric acid, after which Ca(NO3)2.4H2O is separated by cooling crystallization. The solution is then neutralized using ammonia whereby the REEs precipitate mainly as phosphates (REEPO4.nH2O) and together with calcium as REEn Cam (PO4)(3n + 2m) / 3. In this work, the degree of rare earth coprecipitation during seeded cooling crystallization of Ca(NO3)2.4H2O has been studied. The solubility of calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) in acidic nitrophosphoric acid solutions in the temperature range of − 2 °C to 20 °C has been determined. For the neutralization step, it is shown that the calcium concentration and the final pH play an important role in determining the concentration of REEs in the precipitate. It is found that reaching maximum recovery of REE with minimum simultaneous precipitation of calcium requires careful control of the final pH to about 1.8. It is further observed that the precipitation yield of REEs and iron is favored by a longer residence time and higher temperature. Finally, the effect of seeding with synthesized REE phosphate crystals as well as a mixture of REE and Ca phosphates on the precipitation rate and the composition of the precipitate was studied.

  • 16.
    Alexiadis, Alessio
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Cornell, Ann
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Dudukovic, M. P.
    Comparison between CFD calculations of the flow in a rotating disk cell and the Cochran/Levich equations2012In: Journal of Electroanalytical Chemistry, ISSN 1572-6657, Vol. 669, p. 55-66Article in journal (Refereed)
    Abstract [en]

    Three CFD (Computational Fluid Dynamics) models (single-phase. VOF and Euler-Euler) are employed to simulate the flow in a finite, rotating electrode cell under different operative conditions. The main dimensionless groups are derived and their effect on the flow is investigated. Except very close to the rotating electrode (i.e. in the hydrodynamic layer), the results show a flow pattern considerably different from Cochran's approximate analytical solution often used in electrochemistry. Historically, the Cochran equation was used to derive the Levich equation, which permits the calculation of the limiting current density on a rotating electrode. Despite the general inadequacy of Cochran's analytical solution, however, we show that the Levich equation often retains its validity because, in many practical situations, the concentration boundary layer is considerably smaller than the hydrodynamic boundary layer. When bubbles are generated on the electrode and a certain critical void fraction is exceeded, however, the Levich equation also becomes inaccurate. We propose, therefore, an amended version of this equation, which provides results closer to the CFD calculations.

  • 17.
    Alexiadis, Alessio
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Dudukovic, M. P.
    Ramachandran, P.
    Cornell, Ann
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    On the stability of the flow in multi-channel electrochemical systems2012In: Journal of Applied Electrochemistry, ISSN 0021-891X, E-ISSN 1572-8838, Vol. 42, no 9, p. 679-687Article in journal (Refereed)
    Abstract [en]

    The importance of the fluid dynamics in the modelling of electrochemical systems is often underestimated. The knowledge of the flow velocity pattern in an electrochemical cell, in fact, can allow us to associate certain electrochemical reactions with specific fluid patterns to maximize the yield of some reaction and, conversely, to minimize unwanted or side reactions. The correct evaluation of the convective term in the Nernst-Planck equation, however, requires the solution of the so-called Navier-Stokes equations, and computational fluid dynamics (CFD) is today the established method to numerically solve these equations. In this work, a CFD model is employed to show that the gas-liquid flow pattern can be remarkably different in a single channel or in a multi-channel gas-evolving electrochemical system. In the single channel, in fact, under certain conditions, vortices and recirculation regions can appear in the flow, which does not appear in the multi-channel case. The reason of this difference is found in the uneven distribution of the small bubbles in the two cases. Additionally, a second, simplified, model of the flow is discussed to show how a higher concentration of small bubbles in the single channel system can destabilize the flow.

  • 18.
    Alexiadis, Alessio
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Dudukovic, M. P.
    Ramachandran, P.
    Cornell, Ann
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Wanngard, J.
    Bokkers, A.
    Liquid-gas flow patterns in a narrow electrochemical channel2011In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 66, no 10, p. 2252-2260Article in journal (Refereed)
    Abstract [en]

    The flow in a narrow (3 mm wide) vertical gap of an electrochemical cell with gas evolution at one electrode is modeled by means of the two-phase Euler-Euler model. The results indicate that at certain conditions an unsteady type of flow with vortices and recirculation regions can occur. Such flow pattern has been observed experimentally, but not reported in previous modeling studies. Further analysis establishes that the presence of a sufficient amount of small (similar to 10 mu m) bubbles is the main factor causing this type of flow at high current densities.

  • 19.
    Alexiadis, Alessio
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Dudukovic, M P
    Ramachandran, P
    Cornell, Ann
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Wanngard, J
    Bokkers, A
    On the electrode boundary conditions in the simulation of two phase flow in electrochemical cells2011In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 36, no 14, p. 8557-8559Article in journal (Refereed)
  • 20.
    Alexiadis, Alessio
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Dudukovic, M. P.
    Ramachandran, P.
    Cornell, Ann
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Wanngård, J.
    Bokkers, A.
    The flow pattern in single and multiple submerged channels with gas evolution at the electrodes2012In: International Journal of Chemical Engineering, ISSN 1687-806X, E-ISSN 1687-8078, Vol. 2012, p. 392613-Article in journal (Refereed)
    Abstract [en]

    We show that the gas-liquid flow pattern in a single gas-evolving electrochemical channel can be remarkably different from the flow pattern in multiple submerged gas-evolving electrochemical channels. This is due to the fact that in a single channel there is a higher accumulation of small bubbles and these can considerably affect the liquid velocity pattern which in turn may affect the performance of a cell. Since experimental work is often carried out in single channels, while industrial applications almost always involve multiple channels, this study provides insight into the factors that affect the flow pattern in each situation and establishes the basis for relating the behavior of single-and multiple-channel devices.

  • 21.
    Alexiadis, Alessio
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Dudukovic, M. P.
    Ramachandran, P.
    Cornell, Ann
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Wanngård, J.
    Bokkers, A.
    Transition to pseudo-turbulence in a narrow gas-evolving channel2012In: Theoretical and Computational Fluid Dynamics, ISSN 0935-4964, E-ISSN 1432-2250, Vol. 26, no 6, p. 551-564Article in journal (Refereed)
    Abstract [en]

    Different flow regimes have been observed, both experimentally and in CFD simulations, in narrow channels with gas evolution. In this manuscript, we examine, using the Euler-Euler model, the flow in a narrow channel, where gas is evolved from a vertical wall. We find some pseudo-turbulent features at conditions described in this manuscript. The transition to this pseudo-turbulent regime is associated with the value of a specific dimensionless group.

  • 22.
    Alvfors, Per
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Arnell, Jenny
    IVL.
    Berglin, Niklas
    Innventia.
    Björnsson, Lovisa
    LU.
    Börjesson, Pål
    LU.
    Grahn, Maria
    Chalmers/SP.
    Harvey, Simon
    Chalmers.
    Hoffstedt, Christian
    Innventia.
    Holmgren, Kristina
    IVL.
    Jelse, Kristian
    IVL.
    Klintbom, Patrik
    Kusar, Henrik
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Lidén, Gunnar
    LU.
    Magnusson, Mimmi
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Pettersson, Karin
    Chalmers.
    Rydberg, Tomas
    IVL.
    Sjöström, Krister
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Stålbrand, Henrik
    LU.
    Wallberg, Ola
    LU.
    Wetterlund, Elisabeth
    LiU.
    Zacchi, Guido
    LU.
    Öhrman, Olof
    ETC Piteå.
    Research and development challenges for Swedish biofuel actors – three illustrative examples: Improvement potential discussed in the context of Well-to-Tank analyses2010Report (Other academic)
    Abstract [en]

    Currently biofuels have strong political support, both in the EU and Sweden. The EU has, for example, set a target for the use of renewable fuels in the transportation sector stating that all EU member states should use 10% renewable fuels for transport by 2020. Fulfilling this ambition will lead to an enormous market for biofuels during the coming decade. To avoid increasing production of biofuels based on agriculture crops that require considerable use of arable area, focus is now to move towards more advanced second generation (2G) biofuels that can be produced from biomass feedstocks associated with a more efficient land use. Climate benefits and greenhouse gas (GHG) balances are aspects often discussed in conjunction with sustainability and biofuels. The total GHG emissions associated with production and usage of biofuels depend on the entire fuel production chain, mainly the agriculture or forestry feedstock systems and the manufacturing process. To compare different biofuel production pathways it is essential to conduct an environmental assessment using the well-to-tank (WTT) analysis methodology. In Sweden the conditions for biomass production are favourable and we have promising second generation biofuels technologies that are currently in the demonstration phase. In this study we have chosen to focus on cellulose based ethanol, methane from gasification of solid wood as well as DME from gasification of black liquor, with the purpose of identifying research and development potentials that may result in improvements in the WTT emission values. The main objective of this study is thus to identify research and development challenges for Swedish biofuel actors based on literature studies as well as discussions with the the researchers themselves. We have also discussed improvement potentials for the agriculture and forestry part of the WTT chain. The aim of this study is to, in the context of WTT analyses, (i) increase knowledge about the complexity of biofuel production, (ii) identify and discuss improvement potentials, regarding energy efficiency and GHG emissions, for three biofuel production cases, as well as (iii) identify and discuss improvement potentials regarding biomass supply, including agriculture/forestry. The scope of the study is limited to discussing the technologies, system aspects and climate impacts associated with the production stage. Aspects such as the influence on biodiversity and other environmental and social parameters fall beyond the scope of this study. We find that improvement potentials for emissions reductions within the agriculture/forestry part of the WTT chain include changing the use of diesel to low-CO2-emitting fuels, changing to more fuel-efficient tractors, more efficient cultivation and manufacture of fertilizers (commercial nitrogen fertilizer can be produced in plants which have nitrous oxide gas cleaning) as well as improved fertilization strategies (more precise nitrogen application during the cropping season). Furthermore, the cultivation of annual feedstock crops could be avoided on land rich in carbon, such as peat soils and new agriculture systems could be introduced that lower the demand for ploughing and harrowing. Other options for improving the WTT emission values includes introducing new types of crops, such as wheat with higher content of starch or willow with a higher content of cellulose. From the case study on lignocellulosic ethanol we find that 2G ethanol, with co-production of biogas, electricity, heat and/or wood pellet, has a promising role to play in the development of sustainable biofuel production systems. Depending on available raw materials, heat sinks, demand for biogas as vehicle fuel and existing 1G ethanol plants suitable for integration, 2G ethanol production systems may be designed differently to optimize the economic conditions and maximize profitability. However, the complexity connected to the development of the most optimal production systems require improved knowledge and involvement of several actors from different competence areas, such as chemical and biochemical engineering, process design and integration and energy and environmental systems analysis, which may be a potential barrier.

  • 23.
    Alvfors, Per
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Svedberg, Gunnar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Modelling of the simultaneous calcination, sintering and sulphation of limestone and dolomite1992In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 47, no 8, p. 1903-1912Article in journal (Refereed)
    Abstract [en]

    The partially sintered spheres model, describing the sulphation of a sorbent particle consisting of CaO and inert content, is incorporated in a model taking into account the calcination of the limestone or dolomite and the sintering of the nascent oxide resulting from the calcination. The model is applicable, for example, to the sulphation of limestone or dolomite when injected into the furnace of a pulverized coal-fired boiler. The simulations show a temperature optimum in the calcium conversion. Increased calcium conversion is found when inert material is present. Satisfactory experimental verifications of the model are shown.

  • 24.
    Alvfors, Per
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Svedberg, Gunnar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Modelling of the sulphation of calcined limestone and dolomite—a gas-solid reaction with structural changes in the presence of inert solids1988In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 43, no 5, p. 1183-1193Article in journal (Refereed)
    Abstract [en]

    The partially sintered spheres model is further developed to account for the influence of inert material present in the solid reactant. This model is applicable, for example, to the sulphation of CaO with a variable amount of inert material. An example is the reaction between calcined dolomite, CaO·MgO, and SO2, when used as an SO2 sorbent in a boiler furnace. The results show that the rate of reaction increases and the active part of the sorbent reaches a higher degree of conversion when inert material is present.

  • 25. Ammenberg, J.
    et al.
    Anderberg, S.
    Lönnqvist, Tomas
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Grönkvist, Stefan
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Sandberg, Thomas
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.).
    Biogas in the transport sector—actor and policy analysis focusing on the demand side in the Stockholm region2018In: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, Vol. 129, p. 70-80Article in journal (Refereed)
    Abstract [en]

    Sweden has ambitions to phase out fossil fuels and significantly increase the share of biofuels it uses. This article focuses on Stockholm County and biogas, with the aim to increase the knowledge about regional preconditions. Biogas-related actors have been interviewed, focusing on the demand side. Biogas solutions play an essential role, especially regarding bus transports and taxis. Long-term development has created well-functioning socio-technical systems involving collaboration. However, uncertainties about demand and policy cause hesitation and signs of stagnating development. Public organizations are key actors regarding renewables. For example, Stockholm Public Transport procures biogas matching the production at municipal wastewater treatment plants, the state-owned company Swedavia steers via a queuing system for taxis, and the municipalities have shifted to “environmental cars”. There is a large interest in electric vehicles, which is expected to increase significantly, partially due to suggested national policy support. The future role of biogas will be affected by how such an expansion comes about. There might be a risk of electricity replacing biogas, making it more challenging to reach a fossil-free vehicle fleet. Policy issues strongly influence the development. The environmental car definition is of importance, but its limited focus fails to account for several different types of relevant effects. The dynamic policy landscape with uncertainties about decision makers’ views on biogas seems to be one important reason behind the decreased pace of development. A national, long-term strategy is missing. Both the European Union and Sweden have high ambitions regarding a bio-based and circular economy, which should favor biogas solutions.

  • 26.
    Ammenberg, Jonas
    et al.
    Linköping University.
    Anderberg, Stefan
    Linköping University.
    Lönnqvist, Tomas
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Grönkvist, Stefan
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Sandberg, Thomas
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.).
    Biogas in the transport sector - a regional actor and policy analysis focusing on the demand sideManuscript (preprint) (Other academic)
  • 27. An, Lin
    et al.
    Yu, Xinhai
    Yang, Jie
    Tu, Shan-Tung
    Yan, Jinyue
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    CO2 capture using a superhydrophobic ceramic membrane contactor2015In: CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, Elsevier, 2015, p. 2287-2292Conference paper (Refereed)
    Abstract [en]

    Wetting and fouling of membrane contactor result in performance deterioration of membrane gas absorption system for CO2 post-combustion capture of coal-fired power plants. To solve these problems, in this study, a superhydrophobic ceramic (SC) membrane contactor was fabricated by chemically modification using 1H, 1H, 2H, 2H-perfluorooctylethoxysilane (FAS) solution. The membrane contactor fabrication costs for both SC membrane and PP (polypropylene) membrane contactors per unit mass absorbed CO2 were roughly the same. However, by using the SC membrane, the detrimental effects of wetting can be alleviated by periodic drying to ensure a high CO2 removal efficiency (>90%), whereas the drying does not work for the PP membrane. The SC membrane contactor exhibited a better anti-fouling ability than the PP membrane contactor because the superhydrophobic surface featured a self-cleaning function. To ensure continuous CO2 removal with high efficiency, a method that two SC membrane contactors alternatively operate combined with periodic drying was proposed. (C) 2015 Published by Elsevier Ltd.

  • 28.
    Andersson, Robert
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Catalytic conversion of syngas to higher alcohols over MoS2-based catalysts2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The present thesis concerns catalytic conversion of syngas (H2+ CO) into a blend of methanol and higher alcohols, an attractive way of producing fuels and chemicals. This route has the potential to reduce the oil dependence in the transport sector and, with the use of biomass for the syngas generation, produce CO2-neutral fuels.

    Alkali promoted MoS2-based catalysts show a high selectivity to higher alcohols, while at the same time being coke resistant, sulfur tolerant and displaying high water-gas shift activity. This makes this type of catalyst especially suitable for being used with syngas derived from biomass or coal which typically has a low H2/CO-ratio.

    This thesis discusses various important aspects of higher alcohol synthesis using MoS2-based catalysts and is a summary of four scientific papers. The first part of the thesis gives an introduction to how syngas can be produced and converted into different fuels and chemicals. It is followed by an overview of higher alcohol synthesis and a description of MoS2-based catalysts. The topic alcohol for use in internal combustion engines ends the first part of the thesis.

    In the second part, the experimental part, the preparation of the MoS2-based catalysts and the characterization of them are handled. After describing the high-pressure alcohol reactor setup, the development of an on-line gas chromatographic system for higher alcohol synthesis with MoS2 catalysts is covered (Paper I). This method makes activity and selectivity studies of higher alcohol synthesis catalysts more accurate and detailed but also faster and easier. Virtually all products are very well separated and the established carbon material balance over the reactor closed well under all tested conditions. The method of trace level sulfur analysis is additionally described.

    Then the effect of operating conditions, space velocity and temperature on product distribution is highlighted (Paper II). It is shown that product selectivity is closely correlated with the CO conversion level and why it is difficult to combine both a high single pass conversion and high alcohol selectivity over this catalyst type. Correlations between formed products and formation pathways are additionally described and discussed. The CO2 pressure in the reactor increases as the CO conversion increases, however, CO2 influence on formation rates and product distribution is to a great extent unclear. By using a CO2-containing syngas feed the effect of CO2 was studied (Paper III).

    An often emphasized asset of MoS2-based catalysts is their sulfur tolerance. However, the use of sulfur-containing feed and/or catalyst potentially can lead to incorporation of unwanted organic sulfur compounds in the product. The last topic in this thesis covers the sulfur compounds produced and how their quantity is changed when the feed syngas contains H2S (Paper IV). The effect on catalyst activity and selectivity in the presence of H2S in the feed is also covered.

  • 29.
    Andersson, Robert
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Correlation patterns and effect of syngas conversion level for product selectivity to alcohols and hydrocarbons over molybdenum sulfide based catalysts2012In: Applied Catalysis A: General, ISSN 0926-860X, E-ISSN 1873-3875, Vol. 417, p. 119-128Article in journal (Refereed)
    Abstract [en]

    The focus of the present study was to investigate the effect of the operation conditions, space velocity and temperature, on product distribution for a K-Ni-MoS2 catalyst for mixed alcohol synthesis from syngas. All experiments were performed at 91 bar pressure and constant H-2/CO=1 syngas feed ratio. For comparison, results from a non-promoted MoS2 catalyst are presented. It was found that the CO conversion level for the K-Ni-MoS2 catalyst very much decides the alcohol and hydrocarbon selectivities. Increased CO conversion by means of increased temperature (tested between 330 and 370 degrees C) or decreased space velocity (tested between 2400 and 18,000 ml/(g(cat) h)), both have the same effect on the product distribution with decreased alcohol selectivity and increased hydrocarbon selectivity. Increased CO conversion also leads to a greater long-to-short alcohol chain ratio. This indicates that shorter alcohols are building blocks for longer alcohols and that those alcohols can be converted to hydrocarbons by secondary reactions. At high temperature (370 degrees C) and low space velocity (2400 ml/(g(cat) h)) the selectivity to isobutanol is much greater than previously reported (9%C). The promoted catalyst (K-Ni-MoS2) is also compared to a non-promoted (MoS2) catalyst: the promoted catalyst has quite high alcohol selectivity, while almost only hydrocarbons are produced with the non-promoted catalyst. Another essential difference between the two catalysts is that the paraffin to olefin ratio within the hydrocarbon group is significantly different. For the non-promoted catalyst virtually no olefins are produced, only paraffins, while the promoted catalyst produces approximately equal amounts of C-2-C-6 olefins and paraffins. Indications of olefins being produced by dehydration of alcohols were found. The selectivity to other non-alcohol oxygenates (mostly short esters and aldehydes) is between 5 and 10%C and varies little with space velocity but decreases slightly with increased temperature. Very strong correlation patterns (identical chain growth probability) and identical deviations under certain reaction conditions between aldehyde and alcohol selectivities (for the same carbon chain length) indicate that they derive from the same intermediate. Also olefin selectivity is correlated to alcohol selectivity, but the correlation is not as strong as between aldehydes and alcohols. The selectivity to an ester is correlated to the selectivity to the two corresponding alcohols, in the same way as an ester can be thought of as built from two alcohol chains put together (with some H-2 removed). This means that, e.g. methyl acetate selectivity (C-3) is correlated to the combination of methanol (C-1) and ethanol (C-2) selectivities.

  • 30.
    Andersson, Robert
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Effect of CO2 in the synthesis of mixed alcohols from syngas over a K/Ni/MoS2 catalyst2013In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 107, p. 715-723Article in journal (Refereed)
    Abstract [en]

    An unsupported K-Ni-MoS2 catalyst for higher alcohol synthesis from syngas (H-2/CO) has been studied during 360 h on stream. It shows a gradual increase in activity with time on stream and some possible reasons for this are discussed in the paper. The main focus of this paper was to study the on the effect of CO2-containing syngas, relative CO2-free syngas under identical reaction conditions and identical inlet H-2 and CO partial pressures (340 degrees C, 100 bar, GHSV = 6920 ml/(g(cat) h)). The effect of increased partial pressure of H-2 and CO was also studied, and to a minor extent also the effect of changed gas hourly space velocity (GHSV). Under the studied conditions, addition of CO2 was found to greatly decrease total product yield, while the selectivities to alcohol and hydrocarbons (C%, CO2-free), respectively, were unchanged. CO2 addition, however, led to a great change in the distribution within the alcohol and hydrocarbon groups. With CO2 added the methanol selectivity increased much while selectivity to longer alcohols decreased. For hydrocarbons the effect is the same, the selectivity to methane is increased while the selectivity to longer hydrocarbons is decreased. It has earlier been shown that product selectivities are greatly affected by syngas conversion level (correlated to outlet concentration of organic products, i.e. alcohols, hydrocarbons etc.) which can be altered by changes in space velocity or temperature. This means that alcohol selectivity is decreased in favor of increased hydrocarbon selectivity and longer alcohol-to-methanol ratio when syngas conversion is increased. At first it might be thought that the selectivity changes occurring when CO2 is present in the feed, just correlate to a decreased organic product concentration in the reactor and that the selectivities with CO2-containing and CO2-free syngas would be identical under constant concentration of organic products in the reactor. However, CO2-addition studies where space velocity was varied showed that significantly lower alcohol selectivity (mainly ethanol selectivity) and increased hydrocarbon selectivity (mainly methane) were found at similar organic outlet concentrations as when CO2-free syngas was feed. Comparing addition of extra H-2 or extra CO, it was found that a high H-2/CO ratio (H-2/CO = 1.52 tested in our case) favors maximum product yield, especially methanol formation, while a lower H-2/CO ratio (H-2/CO = 0.66 tested in our case) leads to higher yield of higher alcohols simultaneously minimizing hydrocarbon and methanol formation.

  • 31.
    Andersson, Robert
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Higher alcohols from syngas using a K/Ni/MoS2 catalyst: Trace sulfur in the product and effect of H2S-containing feed2014In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 115, p. 544-550Article in journal (Refereed)
    Abstract [en]

    Two types of experiments have been performed related to the higher alcohol synthesis from syngas over a K-Ni-MoS2 catalyst which beforehand has been operated for 1000 h on stream in sulfur-free syngas. In the first experimental part, sulfur-free syngas was used as feed and the condensed liquid product was found to contain 67 ppmw sulfur, while the sulfur concentration in the gas was 19 ppmv. The gas phase was found to contain mainly COS and H2S, while the liquid phase contained methanethiol (13.8 ppmw S), ethanethiol (10.6 ppmw S), dimethyl sulfide (21.3 ppmw S), ethyl methyl sulfide (12.2 ppmw S), unidentified sulfur compounds (7.9 ppmw S) together with some dissolved COS (0.5 ppmw S) and H2S (1.2 ppmw S). In the second experimental part, the effect of feeding syngas containing 170 ppm H2S compared to a sulfur-free syngas was studied, while all products were carefully monitored online. The presence of H2S in the syngas was found to increase CO conversion, but the largest change was found in product selectivity. The hydrocarbon selectivity greatly increased at the expense of alcohol selectivity, while the alcohol distribution shifted towards longer alcohols (increased C2+OH/MeOH ratio). From product yields it became clear that most of the increased CO conversion with H2S in the feed was due to increased methane formation (and CO2 formation due to the water-gas shift reaction). The presence of H2S in the feed greatly increased the concentration of all sulfur compounds. Together with COS, formation of thiols (methanethiol and ethanethiol) was especially favored by the presence of H2S. The thioether concentration also increased, however, to a much lower extent.

  • 32.
    Andersson, Robert
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    On-line gas chromatographic analysis of higher alcohol synthesis products from syngas2012In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1247, p. 134-145Article in journal (Refereed)
    Abstract [en]

    An on-line gas chromatographic (GC) system has been developed for rapid and accurate product analysis in catalytic conversion of syngas (a mixture of H-2 and CO) to alcohols, so called "higher alcohol synthesis (HAS)". Conversion of syngas to higher alcohols is an interesting second step in the route of converting coal, natural gas and possibly biomass to liquid alcohol fuel and chemicals. The presented GC system and method are developed for analysis of the products formed from syngas using alkali promoted MoS2 catalysts, however it is not limited to these types of catalysts. During higher alcohol synthesis not only the wanted short alcohols (similar to C-2-C-5) are produced, but also a great number of other products in smaller or greater amounts, they are mainly short hydrocarbons (olefins, paraffins, branched, non-branched), aldehydes, esters and ketones as well as CO2, H2O. Trace amounts of sulfur-containing compounds can also be found in the product effluent when sulfur-containing catalysts are used and/or sulfur-containing syngas is feed. In the presented GC system, most of them can be separated and analyzed within 60 min without the use of cryogenic cooling. Previously, product analysis in "higher alcohol synthesis" has in most cases been carried out partly on-line and partly off-line, where the light gases (gases at room temp) are analyzed on-line and liquid products (liquid at room temp) are collected in a trap for later analysis off-line. This method suffers from many drawbacks compared to a complete on-line GC system. In this paper an on-line system using an Agilent 7890 gas chromatograph equipped with two flame ionization detectors (FID) and a thermal conductivity detector (TCD), together with an Agilent 6890 with sulfur chemiluminescence dual plasma detector (SCD) is presented. A two-dimensional GC system with Deans switch (heart-cut) and two capillary columns (HP-FFAP and HP-Al2O3) was used for analysis of the organic products on the FIDs. Light inorganic gases (H-2, CO, CO2, N-2) and methane were separated on packed columns and quantified with the TCD. The "sulfur GC" was optimized for on-line trace level sulfur analysis in hydrocarbon matrices and used to understand to which degree sulfur is released from the catalyst and incorporated into the liquid product, and if so in which form. The method provides excellent quantitative measurements with a carbon material balance near 99.5% (carbon in/carbon out) for individual measurement points.

  • 33.
    Andrae, Johan C. G.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Head, R. A.
    HCCl experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model2009In: Combustion and Flame, ISSN 0010-2180, E-ISSN 1556-2921, Vol. 156, no 4, p. 842-851Article in journal (Refereed)
    Abstract [en]

    Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the Surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p(in) = 0.1 and 0.2 MPa, T-in = 80 and 250 degrees C, phi = 0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline Surrogate fuel blends at 1.0 <= p <= 5.0 MPa, 700 <= T <= 1200 K and 0 = 1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent oil the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel sensitivity and single-stage fuel content generally gives a lower value of the pressure exponent. This helps to explain the results obtained while boosting the intake pressure in the HCCI engine.

  • 34.
    Andrae, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Reaction Engineering.
    Johansson, David
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Reaction Engineering.
    Björnbom, Pehr
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Reaction Engineering.
    Risberg, Per
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Kalghatgi, Gautam
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Cooxidation in the auto-ignition of primary reference fuels and n-heptane/toluene blends2005In: Combustion and Flame, ISSN 0010-2180, E-ISSN 1556-2921, Vol. 140, no 4, p. 267-286Article in journal (Refereed)
    Abstract [en]

    Auto-ignition of fuel mixtures was investigated both theoretically and experimentally to gain further understanding of the fuel chemistry. A homogeneous charge compression ignition (HCCI) engine was run under different operating conditions with fuels of different RON and MON and different chemistries. Fuels considered were primary reference fuels and toluene/n-heptane blends. The experiments were modeled with a single-zone adiabatic model together with detailed chemical kinetic models. In the model validation, co-oxidation reactions between the individual fuel components were found to be important in order to predict HCCI experiments, shock-tube ignition delay time data, and ignition delay times in rapid compression machines. The kinetic models with added co-oxidation reactions further predicted that an n-heptane/toluene fuel with the same RON as the corresponding primary reference fuel had higher resistance to auto-ignition in HCCI combustion for lower intake temperatures and higher intake pressures. However, for higher intake temperatures and lower intake pressures the n-heptane/toluene fuel and the PRF fuel had similar combustion phasing.

  • 35.
    Andrae, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Johansson, David
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Bursell, Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Fakhrai, Reza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Jayasuriya, Jeevan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Manrique Carrera, Arturo
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    High-pressure catalytic combustion of gasified biomass in a hybrid combustor2005In: Applied Catalysis A: General, ISSN 0926-860X, E-ISSN 1873-3875, Vol. 293, no 1-2, p. 129-136Article in journal (Refereed)
    Abstract [en]

    Catalytic combustion of synthetic gasified biomass was conducted in a high-pressure facility at pressures ranging from 5 to 16 bars. The catalytic combustor design considered was a hybrid monolith (400 cpsi, diameter 3.5 cm, length 3.6 cm and every other channel coated). The active phase consisted of 1 wt.% Pt/gamma-Al2O3 With wash coat loading of total monolith 15 wt.%. In the interpretation of the experiments, a twodimensional boundary layer model was applied successfully to model a single channel of the monolith. At constant inlet velocity to the monolith the combustion efficiency decreased with increasing pressure. A multi-step surface mechanism predicted that the flux of carbon dioxide and water from the surface increased with pressure. However, as the pressure (i.e. the Reynolds number) was increased, unreacted gas near the center of the channel penetrated significantly longer into the channel compared to lower pressures. For the conditions studied (lambda = 46, T-in = 218-257 degrees C and residence time similar to 5 ms), conversion of hydrogen and carbon monoxide were diffusion limited after ignition, while methane never ignited and was kinetically controlled. According to the kinetic model surface coverage of major species changed from CO, H and CO2 before ignition to O, OH, CO2 and free surface sites after ignition. The model predicted further that for constant mass flow combustion efficiency increased with pressure, and was more pronounced at lower pressures (2.5-10 bar) than at higher pressures (> 10 bar).

  • 36.
    André, Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    New Methods for the Determination of Sorption Capacities and Sorption-Related Properties of Intact Rock2009Doctoral thesis, comprehensive summary (Other academic)
  • 37.
    André, Magnus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Malmström, Maria E.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Determining sorption coefficients in intact rock using an electrical potential gradient as a driving force for migration2006In: Scientific Basis for Nuclear Waste Management XXIX / [ed] VanIseghem, P, WARRENDALE, PA: MATERIALS RESEARCH SOCIETY , 2006, Vol. 932, p. 975-982Conference paper (Refereed)
    Abstract [en]

    The transport of radionuclides in indigenous rock is greatly affected by the sorption of cations in the porous rock matrix. For the determination of sorption coefficients, batch experiments have traditionally been used. For these experiments, the rock sample is crushed into fine particles to reduce the experimental time. However, this procedure increases the specific surface area of the sample and the new surfaces created could have different sorption qualities than the naturally occurring surfaces, which may impair the results of sorption coefficient determinations. A new method for determining sorption coefficients in intact rock is being developed, using electromigration as a means to speed up the transport process, thereby allowing for faster equilibration between the rock sample and the tracer solution. Here, we report results from preliminary experiments, using cesium as a sorbing tracer, showing a consistent difference between sorption coefficients obtained using electromigration methods on intact rock samples and traditional batch experiments on crushed samples.

  • 38.
    André, Magnus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Malmström, Maria
    KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
    Neretnieks, Ivar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Determination of sorption properties of intact rock samples: New methods based on electromigration2009In: Journal of Contaminant Hydrology, ISSN 0169-7722, E-ISSN 1873-6009, Vol. 103, no 3-4, p. 71-81Article in journal (Refereed)
    Abstract [en]

    Two new methods for determining sorption coefficients in large rock samples have been developed. The methods use electromigration as a means to speed up the transport process, allowing for fast equilibration between rock sample and tracer solution. An electrical potential gradient acts as a driving force for transport in addition to the concentration gradient and forces the cations through the rock sample towards the cathode. The electrical potential gradient induces both electromigration and electroosmotic flow with a resulting solute transport that is large compared to diffusive fluxes. In one of the methods, the solute is driven through the sample and collected at the cutlet side. In the other, simpler method, the rock sample is equilibrated by circulating the solute through the sample. The equilibration of rock samples, up to 5 cm in length, with an aqueous solution has been accomplished within days to months. Experiments using cesium as a sorbing tracer yield results consistent with considerably more time demanding in-diffusion experiments. These methods give lower distribution coefficients than those obtained using traditional batch experiments with crushed rock. (C) 2008 Elsevier B.V. All rights reserved.

  • 39.
    André, Magnus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Malmström, Maria
    KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
    Neretnieks, Ivar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Rapid surface area determination of crystalline rock using impedance spectroscopyManuscript (preprint) (Other academic)
  • 40.
    André, Magnus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Malmström, Maria
    KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
    Neretnieks, Ivar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Specific surface area determinations on intact drillcores and evaluation of extrapolation methods for rock matrix surfaces2009In: Journal of Contaminant Hydrology, ISSN 0169-7722, E-ISSN 1873-6009, Vol. 110, no 1-2, p. 1-8Article in journal (Refereed)
    Abstract [en]

    Permanent storage of spent nuclear fuel in crystalline bedrock is investigated in several countries. For this storage scenario, the host rock is the third and final barrier for radionuclide migration. Sorption reactions in the crystalline rock matrix have strong retardative effects on the transport of radionuclides. To assess the barrier properties of the host rock it is important to have sorption data representative of the undisturbed host rock conditions. Sorption data is in the majority of reported cases determined using crushed rock. Crushing has been shown to increase a rock samples sorption capacity by creating additional surfaces. There are several problems with such an extrapolation. In studies where this problem is addressed, simple models relating the specific surface area to the particle size are used to extrapolate experimental data to a value representative of the host rock conditions. In this article, we report and compare surface area data of five size fractions of crushed granite and of 100 mm long drillcores as determined by the Brunauer Emmet Teller (BET)-method using N-2-gas. Special sample holders that could hold large specimen were developed for the BET measurements. Surface area data on rock samples as large as the drillcore has not previously been published. An analysis of this data show that the extrapolated value for intact rock obtained from measurements on crushed material was larger than the determined specific surface area of the drillcores, in some cases with more than 1000%. Our results show that the use of data from crushed material and current models to extrapolate specific surface areas for host rock conditions can lead to over estimation interpretations of sorption ability. The shortcomings of the extrapolation model are discussed and possible explanations for the deviation from experimental data are proposed.

  • 41.
    André, Magnus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Neretnieks, Ivar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Malmström, Maria
    KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
    Measuring sorption coefficients and BET surface areas on intact drillcore and crushed granite samples2008In: Radiochimica Acta, ISSN 0033-8230, E-ISSN 2193-3405, Vol. 96, no 9-11, p. 673-677Article in journal (Refereed)
    Abstract [en]

    In general sorption coefficients, K-d cat ion exchange capacity, CEC, and BET surface areas are measured on crushed rock samples because it is very time consuming to measure K-d and CEC on larger rock pieces as it takes a long time for the sorbing species to penetrate into and equilibrate a large sample. Also conventional sample holders for BET measurements are too small to hold a large sample. We have manufactured large sample holders for BET measurements and modified the equipment so that it is possible to measure BET surface areas on samples with 50 mm diameter and LIP to 100 mm length. Results are presented for intact pieces and compared to results on crushed material from the same drillcore. For K-d and CEC measurements we have developed a technique and equipment by which ions can be made to rapidly intrude into and equilibrate the internal surfaces of the same size samples as mentioned above. The method is based on electro-migration where the sample is placed between two vessels one with an anode and other with a cathode. The electric potential gradient drives the ions into and through the sample very much faster than molecular diffusion does. With Cs as the sorbing ion a few weeks were sufficient to equilibrate the 50 mm long sample. In previous diffusion experiments it took more than a year to equilibrate a 15 mm thick sample. A special mixing technique eliminates the development of low and high PH in the electrode compartments. K-d results from measurements on an intact drillcore are presented and comparison is made with results obtained on crushed material from the same bore core. The results from the sorption experiments are compared with the results from the BET surface area determinations in an attempt to evaluate the use of the BET surface area as a proxy for sorption behaviour.

  • 42.
    Arjmand, Mehdi
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Liu, Longcheng
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Exergetic efficiency of high-temperature-lift chemical heat pump (CHP) based on CaO/CO2 and CaO/H2O working pairs2013In: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, Vol. 37, no 9, p. 1122-1131Article in journal (Refereed)
    Abstract [en]

    The use of reversible chemical reactions in recuperation of heat has gained significant interest due to higher magnitude of reaction heat compared to that of the latent or sensible heat. To implement chemical reactions for upgrading heat, a chemical heat pump (CHP) may be used. A CHP uses a reversible chemical reaction where the forward and the reverse reactions take place at two different temperatures, thus allowing heat to be upgraded or degraded depending on the mode of operation. In this work, an exergetic efficiency model for a CHP operating in the temperature-level amplification mode has been developed. The first law and the exergetic efficiencies are compared for two working pairs, namely, CaO/CO2 and CaO/H2O for high-temperature high-lift CHPs. The exergetic efficiency increases for both working pairs with increase in task, TH, decrease in heat source, TM, and increase in condenser, TL, temperatures. It is also observed that the difference in reaction enthalpies and specific heats of the involving reactants affects the extent of increase or decrease in the exergetic efficiency of the CHP operating for temperature-level amplification.

  • 43.
    Arjmand, Mehdi
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Liu, Longcheng
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Energy Saving in Crude Oil Atmospheric Distillation Columns by Modifying the Vapor Feed Inlet Tray2011In: Chemical Engineering & Technology, ISSN 0930-7516, E-ISSN 1521-4125, Vol. 34, no 8, p. 1359-1367Article in journal (Refereed)
    Abstract [en]

    Optimization of a typical crude oil atmospheric distillation unit and reduction of energy conservation were carried out through modifying the implementation and change in the flash zone of the tower. A conventional procedure in such units involves the combination of liquid and vapor product of the prefractionation train surge drum upon introduction to the tower. However, it is theoretically illustrated and represented by simulation means that introducing the vapor feed into the upper stages of the distillation column separately can lead to an energy saving of 12.6% in the condenser duty, an increased liquid-to-gas flow (L/G) at certain points of the column, and hence to a reduction in diameter and investment costs of new tower designs of approximately US$ 0.7 million a(-1). The proposal can be put into practice without the need of additional equipments or additional cost of difficult rerouting the streams. An industrial case study of a steadystate crude oil distillation unit is given by simulation provision of AspenHysys (TM).

  • 44.
    Arjmand, Mehdi
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Liu, Longcheng
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Optimization for energy conservation of crude oil atmospheric distillation columns by modifying vapour feed inlet tray from pre-fractionation train2010In: 2010 AIChE Annual Meeting, 2010Conference paper (Refereed)
    Abstract [en]

    Optimization of a typical crude oil atmospheric distillation unit and reduction of energy conservation were carried out through modifying the implementation and change in the flash zone of the tower. Conventional procedure in such units involves combination of liquid and vapour product of the pre-fractionation train surge drum upon insertion to the tower. However it is theoretically illustrated and represented by simulation means that introducing the vapour feed into the upper stages of the distillation column separately can lead to an energy saving of 12.6% in the condenser duty, increased liquid to gas flow (L/G) at certain points of the column and hence a reduction in diameter and investment costs of new tower designs of approximately 0.7 × 10 6 $/y. The proposal can be put into practice without the need of additional equipments or additional cost of difficult re-routing the streams. An industrial case study of a steady-state crude oil distillation unit is given by simulation provision of AspenHysys™.

  • 45.
    Arjmand, Mehdi
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Motahari, K.
    Energy conservation in atmospheric distillation columns by modifying vapour feed inlet tray2010In: 19th International Congress of Chemical and Process Engineering, CHISA 2010 and 7th European Congress of Chemical Engineering, ECCE-7, 2010Conference paper (Refereed)
    Abstract [en]

    A discussion on energy conservation in atmospheric distillation columns by modifying vapor feed inlet tray covers the basic equipment required for standard continuous industrial distillation; proposal to insert the vapor product of the flash drum into upper trays of the column separately; side stream products; investment costs; and case study involving an atmospheric distillation of a mixture of benzene and toluene. This is an abstract of a paper presented at the 7th European Congress of Chemical Engineering-7 and 19th International Congress of Chemical and Process Engineering CHISA (Prague, Czech Republic 8/28/2010-9/1/2010).

  • 46.
    Ashour, Radwa M.
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM. Nuclear Materials Authority, Egypt.
    El-sayed, R.
    Abdel-Magied, A. F.
    Abdel-khalek, A. A.
    Ali, M. M.
    Forsberg, Kerstin
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Uheida, Abdusalam
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Dutta, Joydeep
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: kinetic and thermodynamic studies2017In: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 327, p. 286-296Article in journal (Refereed)
    Abstract [en]

    Separation of rare earth ions (RE3+) from aqueous solution is a tricky problem due to their physico-chemical similarities of properties. In this study, we investigate the influence of the functionalized ligands on the adsorption efficiency and selective adsorption of La3+, Nd3+, Gd3+ and Y3+ from aqueous solution using Magnetite (Fe3O4) nanoparticles (NPs) functionalized with citric acid (CA@Fe3O4 NPs) or L-cysteine (Cys@Fe3O4 NPs). The microstructure, thermal behavior and surface functionalization of the synthesized nanoparticles were studied. The general adsorption capacity of Cys@Fe3O4 NPs was found to be high (98 mg g−1) in comparison to CA@Fe3O4 NPs (52 mg g−1) at neutral pH 7.0. The adsorption kinetic studies revealed that the adsorption of RE3+ ions follows a pseudo second-order model and the adsorption equilibrium data fits well to the Langmuir isotherm. Thermodynamic studies imply that the adsorption process was endothermic and spontaneous in nature. Controlled desorption within 30 min of the adsorbed RE3+ ions from both Cys@Fe3O4 NPs and CA@Fe3O4 NPs was achieved with 0.5 M HNO3. Furthermore, Cys@Fe3O4 NPs exhibited a higher separation factor (SF) in the separation of Gd3+/La3+, Gd3+/Nd3+, Gd3+/Y3+ ions compared to CA@Fe3O4 NPs.

  • 47.
    Assefa, Getachew
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    On sustainability assessment of technical systems: experience from systems analysis with the ORWARE and ecoeffect tools2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Engineering research and development work is undergoing a reorientation from focusing on specific parts of different systems to a broader perspective of systems level, albeit at a slower pace. This reorientation should be further developed and enhanced with the aim of organizing and structuring our technical systems in meeting sustainability requirements in face of global ecological threats that have far-reaching social and economic implications, which can no longer be captured using conventional approach of research. Until a list of universally acceptable, clear, and measurable indicators of sustainable development is developed, the work with sustainability metrics should continue to evolve as a relative measure of ecological, economic, and social performance of human activities in general, and technical systems in particular. This work can be done by comparing the relative performance of alternative technologies of providing the same well-defined function or service; or by characterizing technologies that enjoy different levels of societal priorities using relevant performance indicators. In both cases, concepts and methods of industrial ecology play a vital role.

    This thesis is about the development and application of a systematic approach for the assessment of the performance of technical systems from the perspective of systems analysis, sustainability, sustainability assessment, and industrial ecology.

    The systematic approach developed and characterized in this thesis advocates for a simultaneous assessment of the ecological, economic, and social dimensions of performance of technologies in avoiding sub-optimization and problem shifting between dimensions. It gives a holistic picture by taking a life cycle perspective of all important aspects. The systematic assessment of technical systems provides an even-handed assessment resulting in a cumulative knowledge. A modular structure of the approach makes it flexible enough in terms of comparing a number of alternatives at the same time, and carrying out the assessment of the three dimensions independently. It should give way to transparent system where the level of quality of input data can be comprehended. The assessment approach should focus on a selected number of key input data, tested calculation procedures, and comprehensible result presentation.

    The challenge in developing and applying this approach is the complexity of method integration and information processing. The different parts to be included in the same platform come in with additional uncertainties hampering result interpretations. The hitherto tendency of promoting disciplinary lines will continue to challenge further developments of such interdisciplinary approaches.

    The thesis draws on the experience from ORWARE, a Swedish technology assessment tool applied in the assessment of waste management systems and energy systems; and from the EcoEffect tool used in the assessment of building properties; all assessed as components of a larger system. The thesis underlines the importance of sustainability considerations beginning from the research and development phase of technical systems. The core message of this thesis is that technical systems should be researched as indivisible parts of a complex whole that includes society and the natural environment. Results from such researches can then be transformed into design codes and specifications for use in the research and development, planning and structuring, and implementation and management of technical systems.

  • 48.
    Assefa, Getachew
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Systems analysis of technology chains for energy recovery from waste2006In: WMSCI 2006: 10TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL VII, PROCEEDINGS / [ed] Callaos N; Lesso W; Tremante A; Baralt J; Rebielak J, ORLANDO: INT INST INFORMATICS & SYSTEMICS , 2006, p. 183-188Conference paper (Refereed)
    Abstract [en]

    This contribution is based on the result of a project entitled "Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration" is financed by The Swedish National Energy Administration. The aim of the project was to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. Four technology scenarios are be studied: (1) Gasification followed by low temperature fuel cells (i.e. Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (i.e. Solid Oxide fuel cells (SOFC)) (3) Gasification followed by catalytic combustion (CC) and (4) Incineration with energy recovery. Looking at the result of the four technology chains in terms of the impact categories considered with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second and third best respectively with incinerations as the least of all. On other hand, looking at the three important emissions (CO,. NOx and SOx) from the total systems (include both the core system and the external system), SOFC is the best technology equally followed PEM and CC as the second best. A comparison of the same emissions from the core systems places CC on equal level with SOFC as the best technologies with PEM as the second best.

  • 49.
    Assefa, Getachew
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Glaumann, Mauritz
    Department of Technology and Built Environment, University of Gävle.
    Malmqvist, Tove
    KTH, School of Architecture and the Built Environment (ABE), Architecture. KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Environmental Strategies (moved 20130630).
    Kindembe, Beatrice Isampete
    Department of Technology and Built Environment, University of Gävle.
    Hult, M.
    Swedish University of Agricultural Sciences, Landscape Architecture, Uppsala.
    Myhr, U.
    Swedish University of Agricultural Sciences, Landscape Architecture, Uppsala.
    Eriksson, O.
    Department of Technology and Built Environment, University of Gävle.
    Environmental assessment of building properties — Where natural and social sciences meet: the case of EcoEffect2007In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 42, no 3, p. 1458-1464Article in journal (Refereed)
    Abstract [en]

    The EcoEffect method of assessing external and internal impacts of building properties is briefly described. The external impacts of manufacturing and transport of the building materials, the generation of power and heat consumed during the operation phase are assessed using life-cycle methodology. Emissions and waste; natural resource depletion and toxic substances in building materials are accounted for. Here methodologies from natural sciences are employed. The internal impacts involve the assessment of the risk for discomfort and ill-being due to features and properties of both the indoor environment and outdoor environment within the boundary of the building properties. This risk is calculated based on data and information from questionnaires; measurements and inspection where methodologies mainly from social sciences are used. Life-cycle costs covering investment and utilities costs as well as maintenance costs summed up over the lifetime of the building are also calculated.

    The result presentation offers extensive layers of diagrams and data tables ranging from an aggregated diagram of environmental efficiency to quantitative indicators of different aspects and factors. Environmental efficiency provides a relative measure of the internal quality of a building property in relation to its external impact vis-à-vis its performance relative to other building properties.

  • 50.
    Aziz, Baroz
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Nordström, Fredrik
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Fischer, Andreas
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry.
    (2/1) p-Aminobenzoic acid-Acetone SolvateManuscript (Other academic)
1234567 1 - 50 of 1473
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf