Endre søk
Begrens søket
1234567 1 - 50 of 1055
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aho-Mantila, L.
    et al.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland.;VTT Tech Res Ctr Finland, FIN-02044 Espoo, Finland..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET2017Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, nr 3, artikkel-id 035003Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.

  • 2. Aiba, N
    et al.
    Giroud, C
    Honda, M
    Delabie, E
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Saarelma, S
    Hillesheim, J
    Pamela, S
    Wiesen, S
    Maggi, C
    Urano, H
    Drewelow, P
    Leyland, M
    Moulton, D
    Menmuir, S
    Diamagnetic MHD Equations for Plasmas with Fast Flow and its Application to ELM Analysis in JT-60U and JET-ILW2016Inngår i: 26th IAEA Fusion Energy Conference, 17-22 October 2016, 2016Konferansepaper (Fagfellevurdert)
  • 3. Aiba, N.
    et al.
    Giroud, C.
    Honda, M.
    Delabie, E.
    Saarelma, S.
    Frassinetti, L
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Lupelli, I.
    Casson, F. J.
    Pamela, S.
    Urano, H.
    Maggi, C. F.
    Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET2017Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, nr 12, artikkel-id 126001Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Stability to the type-I edge localized mode (ELM) in JET plasmas was investigated numerically by analyzing the stability to a peeling-ballooning mode with the effects of plasma rotation and ion diamagnetic drift. The numerical analysis was performed by solving the extended Frieman-Rotenberg equation with the MINERVA-DI code. To take into account these effects in the stability analysis self-consistently, the procedure of JET equilibrium reconstruction was updated to include the profiles of ion temperature and toroidal rotation, which are determined based on the measurement data in experiments. With the new procedure and MINERVA-DI, it was identified that the stability analysis including the rotation effect can explain the ELM trigger condition in JET with ITER like wall (JET-ILW), though the stability in JET with carbon wall (JET-C) is hardly affected by rotation. The key difference is that the rotation shear in JET-ILW plasmas analyzed in this study is larger than that in JET-C ones, the shear which enhances the dynamic pressure destabilizing a peeling-ballooning mode. In addition, the increase of the toroidal mode number of the unstable MHD mode determining the ELM trigger condition is also important when the plasma density is high in JET-ILW. Though such modes with high toroidal mode number are strongly stabilized by the ion diamagnetic drift effect, it was found that plasma rotation can sometimes overcome this stabilizing effect and destabilizes the peeling-ballooning modes in JET-ILW.

  • 4. Aiba, N
    et al.
    Giroud, C
    Honda, M
    Delabie, E
    Saarelma, S
    Lupelli, I
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Maggi, C
    Impact of rotation and ion diamagnetic drift on ELM stability in JET-ILW2016Inngår i: 33rd Annual meeting of Japan society of plasma science and nuclear fusion research JSPF, Nov 2016. Japan, 2016Konferansepaper (Annet vitenskapelig)
  • 5. Aiba, N.
    et al.
    Pamela, S.
    Honda, M.
    Urano, H.
    Giroud, C.
    Delabie, E.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Lupelli, I.
    Hayashi, N.
    Huijsmans, G.
    Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas2018Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 60, nr 1, artikkel-id 014032Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift (omega(*i)), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and omega(*i) effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in omega(*i). The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and w*i effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.

  • 6. Airila, M. I.
    et al.
    Aho-Mantila, L.
    Brezinsek, S.
    Coad, J. P.
    Kirschner, A.
    Likonen, J.
    Matveev, D.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Centra, Alfvénlaboratoriet. KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Strachan, J. D.
    Widdowson, A.
    Wiesen, S.
    ERO modelling of local deposition of injected C-13 tracer at the outer divertor of JET2009Inngår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T138, s. 014021-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The 2004 tracer experiment of JET with the injection of (CH4)-C-13 into H-mode plasma at the outer divertor has been modelled with the Monte Carlo impurity transport code ERO. EDGE2D solutions for inter-ELM and ELM-peak phases were used as plasma backgrounds. Local two-dimensional (2D) deposition patterns at the vertical outer divertor target plate were obtained for comparison with post-mortem surface analyses. ERO also provides emission profiles for comparison with radially resolved spectroscopic measurements. Modelling indicates that enhanced re-erosion of deposited carbon layers is essential in explaining the amount of local deposition. Assuming negligible effective sticking of hydrocarbons, the measured local deposition of 20-34% is reproduced if re-erosion of deposits is enhanced by a factor of 2.5-7 compared to graphite erosion. If deposits are treated like the substrate, the modelled deposition is 55%. Deposition measurements at the shadowed area around injectors can be well explained by assuming negligible re-erosion but similar sticking behaviour there as on plasma-wetted surfaces.

  • 7. Airila, M. I.
    et al.
    Jarvinen, A.
    Groth, M.
    Belo, P.
    Wiesen, S.
    Brezinsek, S.
    Lawson, K.
    Borodin, D.
    Kirschner, A.
    Coad, J. P.
    Heinola, K.
    Likonen, J.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Widdowson, A.
    Preliminary Monte Carlo simulation of beryllium migration during JET ITER-like wall divertor operation2015Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 463, s. 800-804Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Migration of beryllium into the divertor and deposition on tungsten in the final phase of the first ITER-like-wall campaign of JET are modelled with the 3D Monte Carlo impurity transport code ERO. The simulation covers the inner wall and the inner divertor. To generate the plasma background for Monte Carlo tracing of impurity particles, we use the EDGE2D/EIRENE code set. At the relevant regions of the wall, the estimated plasma conditions vary around T-e approximate to 5eV and n(e) 2 x 10(17) m(-3) (far-scrape-off layer; more than 10 cm away from the LCFS). We calculate impurity distributions in the plasma using the main chamber source as a free parameter in modelling and attempt to reproduce inter-ELM spectroscopic BeII line (527 nm) profiles at the divertor. The present model reproduces the level of emission close to the inner wall, but further work is needed to match also the measured emission peak values and ultimately link the modelled poloidal net deposition profiles of beryllium to post mortem data.

  • 8. Airila, M. I.
    et al.
    Makkonen, T.
    Järvinen, A.
    Groth, M.
    Brezinsek, S.
    Coad, J. P.
    Jachmich, S.
    Kirschner, A.
    Likonen, J.
    Meigs, A.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Widdowson, A.
    Re-deposition dynamics of trace 13C in H-mode divertor conditions2013Inngår i: 40th EPS Conference on Plasma Physics, EPS 2013, 2013, s. 629-632Konferansepaper (Fagfellevurdert)
  • 9. Alegre, Daniel
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Gasior, Pawel
    Kubkowska, Monika
    Kowalska-Strzeciwilk, Ewa
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tabares, Francisco L.
    Study of correlation of deuterium content in a-C:D dust induced by laser irradiation from the co-deposited surface with the grain size and velocity2014Inngår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T161, s. 014010-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the study described here, the laser ablation method was applied to clean thick (40-60 m) a-C: D co-deposits on the ALT-II limiter blade from the TEXTOR tokamak, and at the same time to characterize the ejected particles formed during ablation and measure the amount of fuel carried by them. Ablation was accomplished by similar to 3.5 ns, 0.5 J Nd: YAG laser pulses in either vacuum or an O-2 atmosphere at different pressures. Fast camera tracking of the process provided an estimate of the population and velocity of up to 100ms(-1) for larger dust particles. In the same experiment, the dust particles were caught using ultra-light Si aerogel collectors placed in front of the ablation target. SEM analysis of aerogel surfaces verified the speed estimate, providing the trapped particles' size distribution and particle yield during ablation. The D/C atomic concentration ratio was measured with the 3HE ion beam nuclear reaction analysis method in deposited layers before ablation and with a micro-ion beam in individual particles on aerogel collectors. This indicated that most of the D was thermally released during ablation, leaving no more than 5% of its original amount in the particles. The effect of ablation conditions on the acceleration of ejected particles, their population, composition and D content is the main subject of this paper.

  • 10. Alfier, A.
    et al.
    Pasqualotto, R.
    Spizzo, G.
    Canton, A.
    Fassina, A.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Electron temperature profiles in RFX-mod2008Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 50, nr 3, s. 035013-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electron temperature profiles have been measured by the main Thomson scattering ( TS) diagnostic on the RFX-mod reversed field pinch experiment in Padova, Italy. The increased accuracy and spatial and temporal resolution permits one to measure in detail the improvements in T-e profiles, obtained with the active saddle coil system, which allows one to obtain core temperature 30% higher and scaling stronger with plasma current, steeper gradients in the core (+30%) and at the edge (+60%). 1D power balance calculations show that the active control of MHD modes largely reduces the values of electron heat diffusivity along the whole plasma radius, with similar to 50% reduction at the edge and similar to 30% in the core. The resulting electron energy confinement time is doubled. Further improvements occur during quasi-single helicity (QSH) states: the new TS allows one to study in detail the hot island that develops in the core. A characterization of the island electron thermal profile is presented, in terms of width, temperature increase, gradients and asymmetry; the effect on density profile is also discussed. A 2D transport code has been applied to calculate the heat diffusivity inside the magnetic island corresponding to the QSH state, also considering the correlation between temperature increase and pressure gradient with the chaos level around the island. Finally, electron energy confinement time during QSH states is compared with that in MH states.

  • 11. Allen, S. L.
    et al.
    Wampler, W. R.
    McLean, A. G.
    Whyte, D. G.
    West, W. P.
    Stangeby, P. C.
    Brooks, N. H.
    Rudakov, D. L.
    Phillips, V.
    Rubel, Marek J.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Centra, Alfvénlaboratoriet.
    Matthews, G. F.
    Nagy, A.
    Ellis, R.
    Bozek, A. S.
    C-13 transport studies in L-mode divertor plasmas on DIII-D2005Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 337-39, nr 03-jan, s. 30-34Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    (CH4)-C-13 was injected with a toroidally-symmetric gas system into 22 identical lower-single-null L-mode discharges on DIII-D. The injection level was adjusted so that it did not significantly perturb the core or divertor plasmas, with a duration of similar to 3 s on each shot, for a total of similar to 300 T L of injected particles. The plasma shape remained very constant; the divertor strike points were controlled to similar to 1 cm at the divertor plate. At the beginning of the subsequent machine vent, 29 carbon tiles were removed for nuclear reaction analysis of C-13 content to determine regions of carbon deposition. It was found that only the tiles inboard of the inner strike point had appreciable 1 3 C above background. Visible spectroscopy measurements of the carbon injection and comparisons with modeling are consistent with carbon transport by means of scrape-off layer flow.

  • 12.
    Anderson, Taurug
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Iterative Learning Control model for a Resistive Wall Mode Active Controller2013Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
    Abstract [en]

    The EXTRAP T2R is a Reversed Field Pinch (RFP) device purposed to conduct magnetic confinement fusion research. Magnetic confinement works on the principle of isolating the hot plasma from the cool walls by locking in the plasma onto the magnetic field lines. Due to the generally unstable nature of plasma, the plasma column will shift off its centered position and encroach upon the cooling walls. To counteract this, a series of magnetic sensor coil are placed around the torus that serve as the input for another set of coils that will generate a magnetic field to force the plasma column back in place. This is a feedback mechanism that uses a Proportional-Integral-Derivative (PID) as the loop gain control mechanisms. While this was effective in stabilizing the system it was discovered that during the start up phase of the experiment there was a repeatable pattern of disturbance. As such it offers the opportunity to make use of a feedforward Iterative Learning Control (ILC) that could provide a much more precise stabilization and occlude the possibility of saturating the feedback coils. In this thesis an ILC system will be built upon the existing PID system, it will be modeled in MATLAB and SIMULINK then run to simulate and gauge its performance.

    Fulltekst (pdf)
    MSc_Thesis_Anderson
  • 13.
    Angioni, C.
    et al.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes2017Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, nr 2, artikkel-id 022009Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.

  • 14. Angioni, C.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    et al.,
    The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas2015Inngår i: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 22, nr 5, artikkel-id 055902Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Recent progress in the understanding and prediction of the tungsten behaviour in the core of JET H-mode plasmas with ITER-like wall is presented. Particular emphasis is given to the impact of poloidal asymmetries of the impurity density. In particular, it is shown that the predicted reduction of temperature screening induced by the presence of low field side localization of the tungsten density produced by the centrifugal force is consistent with the observed tungsten behaviour in a JET discharge in H-mode baseline scenario. This provides first evidence of the role of poloidal asymmetries in reducing the strength of temperature screening. The main differences between plasma parameters in JET baseline and hybrid scenario discharges which affect the impact of poloidally asymmetric density on the tungsten radial transport are identified. This allows the conditions by which tungsten accumulation can be avoided to be more precisely defined.

  • 15.
    Angioni, C.
    et al.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bergsåker, Henrik
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Stefániková, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zhou, Yushan
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Dependence of the turbulent particle flux on hydrogen isotopes induced by collisionality2018Inngår i: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 25, nr 8, artikkel-id 082517Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The impact of the change of the mass of hydrogen isotopes on the turbulent particle flux is studied. The trapped electron component of the turbulent particle convection induced by collisionality, which is outward in ion temperature gradient turbulence, increases with decreasing thermal velocity of the isotope. Thereby, the lighter is the isotope, the stronger is the turbulent pinch, and the larger is the predicted density gradient at the null of the particle flux. The passing particle component of the flux increases with decreasing mass of the isotope and can also affect the predicted density gradient. This effect is however subdominant for usual core plasma parameters. The analytical results are confirmed by means of both quasi-linear and nonlinear gyrokinetic simulations, and an estimate of the difference in local density gradient produced by this effect as a function of collisionality has been obtained for typical plasma parameters at mid-radius. Analysis of currently available experimental data from the JET and the ASDEX Upgrade tokamaks does not show any clear and general evidence of inconsistency with this theoretically predicted effect outside the errorbars and also allows the identification of cases providing weak evidence of qualitative consistency.

  • 16. Antoni, V.
    et al.
    Drake, James R.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Centra, Alfvénlaboratoriet.
    Spada, E.
    Spolaore, M.
    Vianello, N.
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Centra, Alfvénlaboratoriet.
    Cavazzana, R.
    Cecconello, Marco
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Centra, Alfvénlaboratoriet.
    Martines, E.
    Serianni, G.
    Coherent structures and anomalous transport in reversed field pinch plasmas2006Inngår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T122, s. 1-7Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The results leading to the identification of coherent structures emerging from the background turbulence in the edge region of the reversed field pinch experiments EXTRAP-T2R and RFX are reviewed. These structures have traits of vortices in velocity field and blobs in density, and the reconstruction of their spatial structure and of their time evolution is discussed focusing on the analysis tools applied. The role of these structures in the particle anomalous transport is addressed, showing that their collisions can contribute up to 50% the total particle losses. This process is shown to be responsible for bursts in particle flux and it is found to set a characteristic collision time, which is in agreement with the statistical properties of laminar times for particle flux bursts.

  • 17.
    Appel, L. C.
    et al.
    Culham Sci Ctr, CCFE, Abingdon 0X14 3DB, Oxon, England..
    Appel, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushan
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Equilibrium reconstruction in an iron core tokamak using a deterministic magnetisation model2018Inngår i: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 223, s. 1-17Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In many tokamaks ferromagnetic material, usually referred to as an iron-core, is present in order to improve the magnetic coupling between the solenoid and the plasma. The presence of the iron core in proximity to the plasma changes the magnetic topology with consequent effects on the magnetic field structure and the plasma boundary. This paper considers the problem of obtaining the free-boundary plasma equilibrium solution in the presence of ferromagnetic material based on measured constraints. The current approach employs, a model described by O'Brien et al. (1992) in which the magnetisation currents at the iron-air boundary are represented by a set of free parameters and appropriate boundary conditions are enforced via a set of quasi-measurements on the material boundary. This can lead to the possibility of overfitting the data and hiding underlying issues with the measured signals. Although the model typically achieves good fits to measured magnetic signals there are significant discrepancies in the inferred magnetic topology compared with other plasma diagnostic measurements that are independent of the magnetic field. An alternative approach for equilibrium reconstruction in iron-core tokamaks, termed the deterministic magnetisation model is developed and implemented in EFIT++. The iron is represented by a boundary current with the gradients in the magnetisation dipole state generating macroscopic internal magnetisation currents. A model for the boundary magnetisation currents at the iron-air interface is developed using B-Splines enabling continuity to arbitrary order; internal magnetisation currents are allocated to triangulated regions within the iron, and a method to enable adaptive refinement is implemented. The deterministic model has been validated by comparing it with a synthetic 2-D electromagnetic model of JET. It is established that the maximum field discrepancy is less than 1.5 mT throughout the vacuum region enclosing the plasma. The discrepancies of simulated magnetic probe signals are accurate to within 1% for signals with absolute magnitude greater than 100 mT; in all other cases agreement is to within 1 mT. The effect of neglecting the internal magnetisation currents increases the maximum discrepancy in the vacuum region to >20 mT, resulting in errors of 5%-10% in the simulated probe signals. The fact that the previous model neglects the internal magnetisation currents (and also has additional free parameters when fitting the measured data) makes it unsuitable for analysing data in the absence of plasma current. The discrepancy of the poloidal magnetic flux within the vacuum vessel is to within 0.1 Wb. Finally the deterministic model is applied to an equilibrium force-balance solution of a JET discharge using experimental data. It is shown that the discrepancies of the outboard separatrix position, and the outer strike-point position inferred from Thomson Scattering and Infrared camera data are much improved beyond the routine equilibrium reconstruction, whereas the discrepancy of the inner strike-point position is similar.

  • 18.
    Arnichand, H.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas J.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Discriminating the trapped electron modes contribution in density fluctuation spectra2015Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 9, artikkel-id 093021Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Quasi-coherent (QC) modes have been reported for more than 10 years in reflectometry fluctuations spectra in the core region of fusion plasmas. They have characteristics in-between coherent and broadband fluctuations as they oscillate at a marked frequency but have a wide spectrum. This work presents further evidences of the link recently established between QC modes and the trapped electron modes (TEM) instabilities (Arnichand et al 2014 Nucl. Fusion 54 123017). In electron cyclotron resonance heated discharges of Tore Supra, an enhancement of QC modes amplitude is observed in a region where TEM cause impurity transport and turbulence. In JET Ohmic plasmas, QC modes disappear during density ramp-up and current ramp-down. This is reminiscent of Tore Supra and TEXTOR observations during transitions from the linear Ohmic confinement (LOC) to the saturated Ohmic confinement (SOC) regimes. Evidencing TEM activity then becomes experimentally possible via analysis of fluctuation spectra.

  • 19. Arnoux, G.
    et al.
    Loenen, J.
    Bazylev, B.
    Corre, Y.
    Matthews, G. F.
    Balboa, I.
    Clever, M.
    Dejarnac, R.
    Devaux, S.
    Eich, T.
    Gauthier, E.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Horacek, J.
    Jachmich, S.
    Kinna, D.
    Marsen, S.
    Mertens, Ph.
    Pitts, R. A.
    Rack, M.
    Sergienko, G.
    Sieglin, B.
    Stamp, M.
    Thompson, V.
    Thermal analysis of an exposed tungsten edge in the JET divertor2015Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 463, s. 415-419Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the recent melt experiments with the JET tungsten divertor, we observe that the heat flux impacting on a leading edge is 3-10 times lower than a geometrical projection would predict. The surface temperature, tungsten vaporisation rate and melt motion measured during these experiments is consistent with the simulations using the MEMOS code, only if one applies the heat flux reduction. This unexpected observation is the result of our efforts to demonstrate that the tungsten lamella was melted by ELM induced transient heat loads only. This paper describes in details the measurements and data analysis method that led us to this strong conclusion. The reason for the reduced heat flux are yet to be clearly established and we provide some ideas to explore. Explaining the physics of this heat flux reduction would allow to understand whether it can be extrapolated to ITER.

  • 20.
    Askari, Sadegh
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Evaluation of a New Resampling Scheme for f Monte Carlo Methods2011Independent thesis Advanced level (degree of Master (One Year)), 10 poäng / 15 hpOppgave
    Abstract [en]

    A new class of methods for reducing the number of particles in delta-f Monte Carlo simulations is presented. The reduction of particles is necessary when there is a continuous growth of the number of particles during the simulation. The method is based on resampling the particles distribution in local partitions of the phase-space. The resampling is accomplished by replacing particles with fewer numbers of new particles in each partition while ensuring that the moments of distribution are conserved. It’s demonstrated that the method well preserves the distribution function.

    Fulltekst (pdf)
    fulltext
  • 21. Askinazi, L. G.
    et al.
    Khrebtov, S.
    Komarov, A. D.
    Komev, V. A.
    Krikunov, S. V.
    Krupnik, L. I.
    Lebedev, S. V.
    Rozhdestvensky, V. V.
    Tendler, Michael B.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tukachinsky, A. S.
    Vildjunas, M. I.
    Zhubr, N. A.
    GAM evolution in the H-mode discharge in the TUMAN-3M tokamak2011Inngår i: 38th EPS Conference on Plasma Physics 2011, EPS 2011 - Europhysics Conference Abstracts, 2011, s. 529-532Konferansepaper (Fagfellevurdert)
  • 22. Askinazi, L. G.
    et al.
    Kornev, V. A.
    Krikunov, S. V.
    Krupnik, L. I.
    Lebedev, S. V.
    Smirnov, A. I.
    Tendler, Michael
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Centra, Alfvénlaboratoriet.
    Tukachinsky, A. S.
    Vildjunas, M. I.
    Zhubr, N. A.
    Plasma potential evolution in various operational modes in the TUMAN-3M tokamak2007Inngår i: 34th EPS Conference on Plasma Physics 2007, EPS 2007 - Europhysics Conference Abstracts, 2007, nr 3, s. 2010-2013Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In a scenario with Counter-NBI it was found using HIBP that, due to the NBI effect (most probably, orbit loss with some heating and momentum impact), core plasma potential plasma gradually became more negative (for ∼200V). Strong positive perturbation of the core plasma potential was registered by the HIBP during the burst of peripheral MHDs with low m, n. If such a burst takes place in the H-mode (both ohmic and counter-NBI heated), the positive potential perturbation leads to H-mode termination. The most probable mechanism of the positive field build-up during MHD burst is though to be a loss of fast electrons along partly disturbed magnetic field lines near the island's separatrix [3,4]. This mechanism is similar to the ergodic divertor's action on the TEXTOR [6], where radial electric field modification by the electron loses was also discussed. A quantitative analysis of the subject may be found in [7]. Similar mechanism may be responsible for a positive perturbation of central plasma potential registered in the sawtooth crashes. The GAM with δφ/φ∼0.3 and δφ/φ≫δn/n∼0.05 where observed with HIBP in a core region of the TUMAN-3M r/a∼0.33 in the current ramp phase. Further studies are needed to reveal a possible connection between the GAM evolution and plasma confinement in the TUMAN-3M.

  • 23. Askinazi, L. G.
    et al.
    Kornev, V. A.
    Krikunov, S. V.
    Krupnik, L. I.
    Lebedev, S. V.
    Smirnov, A. I.
    Tendler, Michael
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Centra, Alfvénlaboratoriet.
    Tukachinsky, A. S.
    Vildjunas, M. I.
    Zhubr, N. A.
    Radial electric field evolution in various operational modes in the TUMAN-3M tokamak2008Inngår i: Journal of Physics, Conference Series, ISSN 1742-6588, E-ISSN 1742-6596, Vol. 123, s. 012010-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Radial electric field evolution has been studied on the TUAMN-3M tokamak in different modes of operation: ohmic and NBI heating, L- and H-modes, with and without strong MHD activity. Peripheral radial electric field was measured using Langmuire probes, which were inserted up to 2cm inside LCFS, while core plasma potential evolution was measured using HIBP diagnostic. It was found, that in presence of strong MHD activity radial electric field in a vicinity of the island changed sign from negative to positive and could reach up to 4kV/m. Central plasma potential exhibited a positive perturbation of ∼700V during the MHD burst. This positive radial electric field might lead to H-mode termination, both in ohmic and NBI heating cases. Possible mechanism of the positive Er generation, namely the electron losses along ergodized magnetic field lines in the presence of MHD-island, is discussed. The same mechanism might be responsible for the positive potential spikes during a saw-tooth crash, also observed using HIBP. Another phenomenon observed using HIBP was quasi-coherent potential oscillations with the frequency close to one of the GAM. Possible location of these oscillations in the core region r/a ∼ 0.33 is discussed.

  • 24. Askinazi, L. G.
    et al.
    Vildjunas, M. I.
    Zhubr, N. A.
    Komarov, A. D.
    Kornev, V. A.
    Krikunov, S. V.
    Krupnik, L. I.
    Lebedev, S. V.
    Rozhdestvensky, V. V.
    Tendler, Michael
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tukachinsky, A. S.
    Khrebtov, S. M.
    Evolution of geodesic acoustic mode in ohmic H-mode in TUMAN-3M tokamak2012Inngår i: Technical physics letters, ISSN 1063-7850, E-ISSN 1090-6533, Vol. 38, nr 3, s. 268-271Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The behavior of a geodesic acoustic mode (GAM) in the TUMAN-3M tokamak has been experimentally studied using the heavy-ion beam probing technique. Oscillations of the electric potential under the action of a GAM localized at the plasma periphery have been detected. The GAM was observed in the regime of low confinement (L-mode) with low plasma density (similar to 0.8 x 10(19) m(-3)) and disappeared upon the transition to a high confinement regime (H-mode). The possible role of GAM as a precursor of the improved confinement (LH-transition) is discussed.

  • 25.
    Aslanyan, V
    et al.
    MIT PSFC, 175 Albany St, Cambridge, MA 02139 USA..
    Aslanyan, V.
    MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Gyrokinetic simulations of toroidal Alfven eigenmodes excited by energetic ions and external antennas on the Joint European Torus2019Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 2, artikkel-id 026008Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The gyrokinetic toroidal code (GTC) has been used to study toroidal Alfven eigenmodes (TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus (JET), where TAEs were driven by energetic particles arising from neutral beams, ion cyclotron resonant heating, and resonantly excited by dedicated external antennas, have been simulated. Modes driven by populations of energetic particles are observed, matching the TAE frequency seen with magnetic probes in JET experiments. A synthetic antenna, composed of one toroidal and two neighboring poloidal harmonics has been used to probe the modes' damping rates and quantify mechanisms for this damping in GTC simulations. This method was also applied to frequency and damping rate measurements of stable TAEs made by the Alfven eigenmode active diagnostic in these discharges.

  • 26. Asunta, O.
    et al.
    Coelho, R.
    Kalupin, D.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Franke, T.
    Predictions of neutral beam current drive in DEMO using BBNBI and ASCOT within the European Transport Simulator2015Inngår i: 42nd European Physical Society Conference on Plasma Physics, EPS 2015, European Physical Society (EPS) , 2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    It was demonstrated that BBNBI and ASCOT are capable of flexible and sophisticated modelling of NBI as a part of an ETS simulation. The simulations showed that tilting the DEMO beam vertically results in a few per cent higher current drive than comparable horizontal tilts.

  • 27. Badziak, J.
    et al.
    Czarnecka, A.
    Gasior, P.
    Parys, P.
    Philipps, V.
    Rosinski, M.
    Rubel, Marek J.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Wolowski, J.
    Application of ion diagnostics to control the laser-induced removal of surface layer of a carbon substrate2006Inngår i: Plasma 2005, 2006, Vol. 812, s. 295-298Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Among other methods of detritiation of in-vessel tokamak components the application of lasers for removal of fuel trapped in co-deposited layers is under investigation. The paper presents preparation and tests of ion diagnostic methods for on-line measurement of the amount and characteristics of ablated carbon, hydrogen/deuterium and contaminant species from the graphite target (plate) of the main toroidal limiter of the TEXTOR tokamak. For removal of the surface layer from the graphite limiter plate Nd:YAG laser was used. Determination of the characteristics of laser-produced ions has been performed by means of ion collectors and an electrostatic ion-energy analyser. The main ion stream parameters were measured depending on the number of laser shots and the laser power density on the target surface. The properties of modified carbon sample surface were determined with the use of optical methods and compared with the results of the ion measurements.

  • 28. Bailescu, V.
    et al.
    Burcea, G.
    Balan, N.
    Dinuta, G.
    Serban, G.
    Lungu, C. P.
    Mustata, I.
    Lungu, A. M.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Centra, Alfvénlaboratoriet.
    Coad, P.
    Pedrick, L.
    Handley, R.
    Inconel tiles coated with beryllium by thermal evaporation2008Inngår i: EPS Conf. Plasma Phys., EPS - Europhys. Conf. Abstr., 2008, nr 3Konferansepaper (Fagfellevurdert)
  • 29.
    Baiocchi, B.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid2015Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 57, nr 3, artikkel-id 035003Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The physical transport processes at the basis of JET typical inductive H-mode scenarios and advanced hybrid regimes, with improved thermal confinement, are analyzed by means of some of the newest and more sophisticated quasi-linear transport models: trapped gyro Landau fluid (TGLF) and QuaLiKiz. The temporal evolution of JET pulses is modelled by CRONOS where the turbulent transport is modelled by either QuaLiKiz or TGLF. Both are first principle models with a more comprehensive physics than the models previously developed and therefore allow the analysis of the physics at the basis of the investigated scenarios. For H-modes, ion temperature gradient (ITG) modes are found to be dominant and the transport models are able to properly reproduce temperature profiles in self-consistent simulations. However, for hybrid regimes, in addition to ITG trapped electron modes (TEM) are also found to be important and different physical mechanisms for turbulence reduction play a decisive role. Whereas E x B flow shear and plasma geometry have a limited impact on turbulence, the presence of a large population of fast ions, quite important in low density regimes, can stabilize core turbulence mainly when the electromagnetic effects are taken into account. The TGLF transport model properly captures these mechanisms and correctly reproduces temperatures.

  • 30.
    Baiocchi, B.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France. EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    --.
    et al.,
    Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER2015Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 12, artikkel-id 123001Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The density evolution during the transient phase just after the L-H transition is investigated using theoretical transport models. Cases characterized by core densities which evolve in longer timescales than the edge densities, leading to hollow density profiles (R/L-n = -R del n/n < 0) are modelled. This density evolution is particularly interesting because it has been shown to be beneficial in the view of the access to burning plasma conditions in ITER (Loarte et al 2013 Nucl. Fusion 53 083031). Self-consistent simulations of the JET discharge 79676 of the density-only, and of the density and the temperatures are carried out using a quasilinear gyrokinetic code, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), coupled with a transport code CRONOS (Artaud et al 2010 Nucl. Fusion 50 043001). The slow evolution of the hollow density, associated with the self-consistently calculated hollow NBI particle deposition, is well reproduced in the plasma core. Indeed, QuaLiKiz is shown to reproduce nonlinear gyrokinetic heat and particle fluxes well for both positive and negative R/L-n. That gives a theoretical and general basis for the persistence of the hollowness, laying the groundwork for the extrapolation to ITER.

  • 31. Baiocchi, B.
    et al.
    Calabrò, G.
    Lauro-Taroni, L.
    Mantica, P.
    Cardinali, A.
    Corrigan, G.
    Crisanti, F.
    Farina, D.
    Figini, L.
    Giruzzi, G.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Marinucci, M.
    Parail, V.
    Predictive modelling of H-mode and steady-state scenarios in FAST2010Inngår i: 37th EPS Conference on Plasma Physics 2010, EPS 2010: Volume 1, 2010, s. 293-296Konferansepaper (Fagfellevurdert)
  • 32. Baiocchi, B.
    et al.
    Mantica, P.
    Giroud, C.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Naulin, V.
    Salmi, A.
    Tala, T.
    Tsalas, M.
    Discriminating the role of rotation and its gradient in determining ion stiffness mitigation in JET2013Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 55, nr 2, s. 025010-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Starting from recent JET experimental results that show a significant reduction of ion stiffness in the plasma core region due to plasma rotation in the presence of low magnetic shear, an experiment was carried out at JET in order to separate the role of rotation and rotation gradient in mitigating the ion stiffness level. Enhanced toroidal field ripple (up to 1.5%) and external resonant magnetic fields are the two mechanisms used to try and decouple the rotation value from its gradient. In addition, shots with reversed toroidal field and plasma current, yielding counter-current neutral beam injection, were compared with standard co-injection cases. These tools also allowed varying the rotation independently of the injected power. Shots with high rotation gradient are found to maintain their low stiffness level even when the absolute value of the rotation was significantly reduced. Conversely, high but flat rotation yields much less peaked ion temperature profiles than a peaked rotation profile with lower values. This behaviour suggests the rotation gradient as the main player in reducing the ion stiffness level. In addition, it is found that inverting the rotation gradient sign does not suppress its effect on ion stiffness.

  • 33.
    Baron-Wiechec, A.
    et al.
    UK Atom Energy Author, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Thermal desorption spectrometry of beryllium plasma facing tiles exposed in the JET tokamak2018Inngår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 133, s. 135-141Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The phenomena of retention and de-trapping of deuterium (D) and tritium (T) in plasma facing components (PFC) and supporting structures must be understood in order to limit or control total T inventory in larger future fusion devices such as ITER, DEMO and commercial machines. The goal of this paper is to present details of the thermal desorption spectrometry (TDS) system applied in total fuel retention assessment of PFC at the Joint European Torus (JET). Examples of TDS results from beryllium (Be) wall tile samples exposed to JET plasma in PFC configuration mirroring the planned ITER PFC is shown for the first time. The method for quantifying D by comparison of results from a sample of known D content was confirmed acceptable. The D inventory calculations obtained from Ion Beam Analysis (IBA) and TDS agree well within an error associated with the extrapolation from very few data points to a large surface area.

  • 34. Baron-Wiechec, A.
    et al.
    Fortuna-Zalesna, E.
    Grzonka, J.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Widdowson, A.
    Ayres, C.
    Coad, J. P.
    Hardie, C.
    Heinola, K.
    Matthews, G. F.
    First dust study in JET with the ITER-like wall: sampling, analysis and classification2015Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 11, artikkel-id 113033Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Results of the first dust survey in JET with the ITER-Like Wall (JET-ILW) are presented. The sampling was performed using adhesive stickers from the divertor tiles where the greatest material deposition was detected after the first JET-ILW campaign in 2011-2012. The emphasis was especially on sampling and analysis of metal particles (Be and W) with the aim to determine the composition, size, surface topography and internal dust structure using a large set of methods: high-resolution scanning and transmission electron microscopy, focused ion beam, electron diffraction and also wavelength and energy dispersive x-ray spectroscopy. The most important was the identification of beryllium dust both in the form of flakes and droplets with dimensions in the micrometer range. Tungsten, molybdenum, inconel constituents were identified along with many impurity species. The particles are categorised and the origin of the various constituents discussed.

  • 35. Baron-Wiechec, A.
    et al.
    Widdowson, A.
    Alves, E.
    Ayres, C. F.
    Barradas, N. P.
    Brezinsek, S.
    Coad, J. P.
    Catarino, N.
    Heinola, K.
    Likonen, J.
    Matthews, G. F.
    Mayer, M.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    van Renterghem, W.
    Uytdenhouwen, I.
    Global erosion and deposition patterns in JET with the ITER-like wall2015Inngår i: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 463, s. 157-161Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A set of Be and W tiles removed after the first ITER-like wall campaigns (JET-ILW) from 2011 to 2012 has been analysed. The results indicate that the primary erosion site is in the main chamber (Be) as in previous carbon campaigns (JET-C). In particular the limiters tiles near the mid-plane are eroded probably during the limiter phases of discharges. W is found at low concentrations on all plasma-facing surfaces of the vessel indicating deposition via plasma transport initially from the W divertor and from main chamber W-coated tiles; there are also traces of Mo (used as an interlayer for these coatings). Deposited films in the inner divertor have a layered structure, and every layer is dominated by Be with some W and O content.

  • 36.
    Basiuk, V.
    et al.
    CEA Cadarache, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients2017Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, nr 12, artikkel-id 125012Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.

  • 37.
    Batistoni, P.
    et al.
    ENEA, Dept Fus & Nucl Safety Technol, I-00044 Frascati, Rome, Italy.;EUROfus Consortium, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;ENEA CR Frascati, Unita Tecn Fus, I-00044 Rome, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Technical preparations for the in-vessel 14 MeV neutron calibration at JET2017Inngår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 117, s. 107-114Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is 10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the calibration, optimise the measurements and other provisions, and to provide corrections for perturbing factors (e.g., anisotropy of the neutron generator, neutron energy spectrum dependence on emission angle). Much of this work has been based on an extensive programme of Monte-Carlo calculations which provide support and guidance in developing the calibration strategy.

  • 38.
    Batistoni, P.
    et al.
    ENEA, Dipartimento Fus & Sicurezza Nucl, Via E Fermi 45, I-00044 Frascati, Roma, Italy.;ENEA CR Frascati, Unita Tecn Fus, I-00044 Rome, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Technological exploitation of Deuterium-Tritium operations at JET in support of ITER design, operation and safety2016Inngår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 109, s. 278-285Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Within the framework of the EUROfusion programme, a work-package of technology projects (WPJET3) is being carried out in conjunction with the planned Deuterium-Tritium experiment on JET (DTE2) with the objective of maximising the scientific and technological return of DT operations at JET in support of ITER. This paper presents the progress since the start of the project in 2014 in the preparatory experiments, analyses and studies in the areas of neutronics, neutron induced activation and damage in ITER materials, nuclear safety, tritium retention, permeation and outgassing, and waste production in preparation of DTE2.

  • 39.
    Batistoni, P.
    et al.
    Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;ENEA, Dept Fus & Nucl Safety Technol, I-00044 Rome, Italy.;ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    14 MeV calibration of JET neutron detectors-phase 1: calibration and characterization of the neutron source2018Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 2, artikkel-id UNSP 026012Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is +/- 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4 pi sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within +/- 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.

  • 40. Batistoni, P.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    et al.,
    14 MeV calibration of JET neutron detectors-phase 2: in-vessel calibration2018Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 10, artikkel-id 106016Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay gamma-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the U-235 fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified. MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with +/- 4.2%' experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally <= +/- 3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the Nb-93(n,2n)Nb-92m and Al-27(n,a)Na-24 activation reactions (energy thresholds 10 MeV and 5 MeV respectively). The total uncertainty on the calibration factors is +/- 6% for Nb-93(n,2n)Nb-92m and +/- 8% Al-27(n,a)Na-24 (1 sigma). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.

  • 41.
    Batistoni, P.
    et al.
    ENEA, Dept Fus & Technol Nucl Safety & Secur, I-00044 Rome, Italy.;ENEA, Dept Fus & Technol Nucl Safety & Secur, I-00123 Rome, Italy.;ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Overview of neutron measurements in jet fusion device2018Inngår i: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 180, nr 1-4, s. 102-108Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation.

  • 42. Batistoni, P.
    et al.
    Likonen, J.
    Bekris, N.
    Brezinsek, S.
    Coad, P.
    Horton, L.
    Matthews, G.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Sips, G.
    Syme, B.
    Widdowson, A.
    The JET technology program in support of ITER2014Inngår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 89, nr 7-8, s. 896-900Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper presents an overview of the current and planned technological activities at JET in support of ITER operation and safety. The scope is very broad and it ranges from analysis of components from the ITER-like Wall (ILW) to determine material erosion and deposition, dust generation and fuel retention to neutronics measurements and analyses. Preliminary results are given of the post-mortem analyses of samples exposed to JET plasmas during the first JET-ILW operation in 2011-2012, and retrieved during the following in-vessel intervention. JET is the only fusion machine capable of producing significant neutron yields, up to nearly 10(19) n/s (14.1 MeV) in DT operations. Recently, the technological potential of a new DT campaign at JET in support of ITER has been explored and the outcome of this assessment is presented. The expected 14 MeV neutron yield, the use of tritium, the preparation and implementation of safety measures will provide a unique occasion to gain experience in several ITER relevant technological areas. A number of projects and experiments to be conducted in conjunction with the DT operation have been identified and they are described in this paper.

  • 43.
    Batistoni, Paola
    et al.
    ENEA, Dept Fus & Technol Nucl Safety & Secur, I-00044 Frascati, Rome, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Calibration of neutron detectors on the Joint European Torus2017Inngår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 88, nr 10, artikkel-id 103505Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a Cf-252 source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) Cf-252 source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.

  • 44. Beal, J.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall2016Inngår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, artikkel-id 014052Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Rotating collectors and quartz microbalances (QMBs) are used in JET to provide time-dependent measurements of erosion and deposition. Rotation of collector discs behind apertures allows recording of the long term evolution of deposition. QMBs measure mass change via the frequency deviations of vibrating quartz crystals. These diagnostics are used to investigate erosion/deposition during JET-C carbon operation and JET-ILW (ITER-like wall) beryllium/tungsten operation. A simple geometrical model utilising experimental data is used to model the time-dependent collector deposition profiles, demonstrating good qualitative agreement with experimental results. Overall, the JET-ILW collector deposition is reduced by an order of magnitude relative to JET-C, with beryllium replacing carbon as the dominant deposit. However, contrary to JET-C, in JET-ILW there is more deposition on the outer collector than the inner. This reversal of deposition asymmetry is investigated using an analysis of QMB data and is attributed to the different chemical properties of carbon and beryllium.

  • 45.
    Bergkvist, Tommy
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Non-linear dynamics of Alfvén eigenmodes excited by fast ions in tokamaks2007Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The tokamak is so far the most promising magnetic configuration for achieving a net production of fusion energy. The D-T fusion reactions result in 3.5 MeV alpha-particles, which may destabilize Alfvén eigenmodes through wave-particle interaction. These instabilities redistribute the alpha-particles from the central region of the plasma towards the edge, where they are thermalized, and hence result in a reduced heating efficiency. The high-energy alpha-particles may even be thrown out of the plasma and may damage the wall.

    To investigate the destabilization of Alfvén eigenmodes by high-energy ions, ion cyclotron resonance heating (ICRH) and neutral beam injection (NBI) are often used to create a high-energy tail on the distribution function. The ICRH does not only produce high-energy anisotropic tails, it also decorrelates the wave-particle interaction with the Alfvén eigenmodes. Without decorrelation of the wave-particle interaction an ion will undergo a superadiabatic oscillation in phase space and there will be no net transfer of energy to the mode. For the thermal ions the decorrelation from collisions dominates while for the high-energy ions the decorrelation from ICRH dominates. As the unstable modes grow up, the gradients in phase space, which drive the mode, are reduced, resulting in a weaker drive. The dynamics of the system becomes non-linear due to a continuous restoration of the gradients by D-T reactions and ICRH.

    In this thesis the non-linear dynamics of toroidal Alfvén eigenmodes (TAEs) during ICRH has been investigated using the SELFO code. The SELFO code, which calculates the distribution function during ICRH self-consistently using a Monte-Carlo metod, has been upgraded to include interactions with TAEs. The fast decay of the mode amplitude as the ICRH is switched off, which is seen in experiments, as well as the oscillation of the mode amplitude as the distribution function is repetetively built up by the ICRH and flattened by the TAE has been reproduced using numerical simulations. In the presence of several unstable modes the dynamics become more complicated. The redistribution of an alpha-particle slowing down distribution function as well as the reduced heating efficiency in the presence of several modes has also been investigated.

    Fulltekst (pdf)
    FULLTEXT01
  • 46.
    Bergkvist, Tommy
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Centra, Alfvénlaboratoriet.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Centra, Alfvénlaboratoriet.
    Holmström, Kerstin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. KTH, Skolan för elektro- och systemteknik (EES), Centra, Alfvénlaboratoriet.
    Effects of ICRH on the dynamics of fast particle excited alfven eigenmodes2007Inngår i: Radio Frequency Power in Plasmas, American Institute of Physics (AIP), 2007, Vol. 933, s. 455-458Konferansepaper (Fagfellevurdert)
    Abstract [en]

    ICRH is often used in experiments to simulate destabilization of Alfvén eigenmodes by thermonuclear α-particles. Whereas the slowing down distribution of α-particles is nearly isotropic, the ICRH creates an anisotropic distribution function with non-standard orbits. The ICRH does not only build up gradients in phase space, which destabilizes the AEs, but it also provides a strong phase decorrelation mechanism between ions and AEs. Renewal of the distribution function by thermonuclear reactions and losses of α-particles to the wall lead to a continuous drive of the AEs. Simulations of the non-linear dynamics of AEs and the impact they have on the heating profile due to particle redistribution are presented.

  • 47.
    Bergkvist, Tommy
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Holmström, Kerstin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Non-linear dynamics of Alfvén eigenmodes excited by thermonulcear alpha particles in the presence of ion cyclotron resonance heating2007Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 47, nr 9, s. 1131-1141Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Alfvén eigenmodes (AEs) excited by thermonuclear α-particles can degrade the heating efficiency by spatial redistribution of the resonant α-particles. Changes of the orbit invariants in phase space by collisions and interactions with other waves, such as magnetosonic waves during ion cyclotron resonance heating (ICRH), lead to changes in the phase between the α-particles and AEs, causing a decorrelation of the interactions and stronger redistribution of the α-particles. Cyclotron interactions increase the decorrelation of the AE interactions with the high-energy ions and hence a stronger radial redistribution of the high-energy α-particles by the AEs. Renewal of the distribution function by thermonuclear reactions and losses of α-particles to the wall lead to a continuous drive of the AEs and a radial redistribution of the α-particles. The condition for excitation of AEs is shown to depend on the heating scenario where heating at the low field side creates a significant population of high-energy non-standard orbits which drive the modes. The redistribution results in a reduction in the averaged α-particle energy and a degradation of the heating efficiency. The effect on the distribution function in the presence of several unstable modes is not additive and the particle redistribution is found to saturate with an increasing number of modes.

  • 48.
    Bergkvist, Tommy
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, T.
    Laxåback, Martin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Non-linear study of fast particle excitation of global Alfvén eigenmodes during ICRH2005Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 45, s. 485-493Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High-power ion–cyclotron resonance heating (ICRH) can produce centrally peaked fast ion distributions with wide non-standard drift orbits exciting Alfvén eigenmodes (AEs). The dynamics of the AE excitation depends not only on the anisotropy and the peaking of the fast ion distribution but also on the decorrelation of the AE interactions and the renewal of the fast ions resonant with the AE by ion–cyclotron interactions. A method of self-consistently including the evolution of the distribution function of fast ions during excitation of AEs and ICRH has been developed and implemented in the SELFO code. Numerical simulations of the AE dynamics and ICRH give a variation of the AE amplitude consistent with the experimentally observed splitting of the mode frequency. The experimentally observed fast damping of the mode as the ICRH is switched off is also evident in the simulations.

  • 49.
    Bergkvist, Tommy
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Self-consistent study of fast particle redistribution by Alfvén eigenmodes during Ion cyclotron resonance heating2005Inngår i: Proceedings of the 9th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, 2005, s. 14-20Konferansepaper (Fagfellevurdert)
  • 50.
    Bergsåker, B. Henric M.
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. EUROfusion Consortium, Culham Science Centre, JET, Abingdon, United Kingdom.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. EUROfusion Consortium, Culham Science Centre, JET, Abingdon, United Kingdom.
    Zhou, Yushan
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. EUROfusion Consortium, Culham Science Centre, JET, Abingdon, United Kingdom.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik. EUROfusion Consortium, Culham Science Centre, JET, Abingdon, United Kingdom.
    Possnert, G.
    Likonen, J.
    Pettersson, J.
    Koivuranta, S.
    Widdowson, A. M.
    Deep deuterium retention and Be/W mixing at tungsten coated surfaces in the JET divertor2016Inngår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, artikkel-id 014061Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Surface samples from a full poloidal set of divertor tiles exposed in JET through operations 2010-2012 with ITER-like wall have been investigated using SEM, SIMS, ICP-AES analysis and micro beam nuclear reaction analysis (μ-NRA). Deposition of Be and retention of D is microscopically inhomogeneous. With careful overlaying of μ-NRA elemental maps with SEM images, it is possible to separate surface roughness effects from depth profiles at microscopically flat surface regions, without pits. With (3He, p) μ-NRA at 3-5 MeV beam energy the accessible depth for D analysis in W is about 9 μm, sufficient to access the W/Mo and Mo/W interfaces in the coatings and beyond, while for Be in W it is about 6 μm. In these conditions, at all plasma wetted surfaces, D was found throughout the whole accessible depth at concentrations in the range 0.2-0.7 at% in W. Deuterium was found to be preferentially trapped at the W/Mo and Mo/W interfaces. Comparison is made with SIMS profiling, which also shows significant D trapping at the W/Mo interface. Mixing of Be and W occurs mainly in deposited layers.

1234567 1 - 50 of 1055
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf