Please wait ... |

Refine search result

CiteExportLink to result list
http://kth.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22organisationId%22%3A%226116%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt482_recordPermLink",{id:"formSmash:upper:j_idt482:recordPermLink",widgetVar:"widget_formSmash_upper_j_idt482_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt482_j_idt484",{id:"formSmash:upper:j_idt482:j_idt484",widgetVar:"widget_formSmash_upper_j_idt482_j_idt484",target:"formSmash:upper:j_idt482:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa harvard1 ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt500",{id:"formSmash:upper:j_idt500",widgetVar:"widget_formSmash_upper_j_idt500",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt500",e:"change",f:"formSmash",p:"formSmash:upper:j_idt500",u:"formSmash:upper:otherStyle"},ext);}}});});

- apa
- harvard1
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt511",{id:"formSmash:upper:j_idt511",widgetVar:"widget_formSmash_upper_j_idt511",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt511",e:"change",f:"formSmash",p:"formSmash:upper:j_idt511",u:"formSmash:upper:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt521",{id:"formSmash:upper:j_idt521",widgetVar:"widget_formSmash_upper_j_idt521"});});

- html
- text
- asciidoc
- rtf

Rows per page

- 5
- 10
- 20
- 50
- 100
- 250

Sort

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

Select

The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.

1. Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt583",{id:"formSmash:items:resultList:0:j_idt583",widgetVar:"widget_formSmash_items_resultList_0_j_idt583",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A Markov Process on Cyclic Words2014Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:0:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_0_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The TASEP (totally asymmetric simple exclusion process) studied here is a Markov chain on cyclic words over the alphabet{1,2,...,n} given by at each time step sorting an adjacent pair of letters chosen uniformly at random. For example, from the word 3124 one may go to 1324, 3124, 3124, 4123 by sorting the pair 31, 12, 24, or 43.

Two words have the sametype if they are permutations of each other. If we restrict TASEP to words of some particular type

**m**we get an ergodic Markov chain whose stationary distribution we denote by ζ_{m}. Soζ_{m }(u) is the asymptotic proportion of time spent in the state*u*if the chain started in some word of type**m**. The distribution ζ is the main object of study in this thesis. This distribution turns out to have several remarkable properties, and alternative characterizations. It has previously been studied both from physical, combinatorial, and probabilitistic viewpoints.In the first chapter we give an extended summary of known results and results in this thesis concerning ζ. The new results are described (and proved) in detail in Papers I - IV.

The new results in Papers I and II include an explicit formula for the value ofζat sorted words and a product formula for decomposable words. We also compute some correlation functions for ζ. In Paper III we study of a generalization of TASEP to Weyl groups. In Paper IV we study a certain scaling limit of ζ, finding several interesting patterns of which we prove some. We also study an inhomogenous version of TASEP, in which different particles get sorted at different rates, which generalizes the homogenous version in several aspects. In the first chapter we compute some correlation functions for ζ

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:0:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 2. Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt583",{id:"formSmash:items:resultList:1:j_idt583",widgetVar:"widget_formSmash_items_resultList_1_j_idt583",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Limit points of the iterative scaling procedure2014In: Annals of Operations Research, ISSN 0254-5330, E-ISSN 1572-9338, Vol. 215, no 1, p. 15-23Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:1:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_1_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The iterative scaling procedure (ISP) is an algorithm which computes a sequence of matrices, starting from some given matrix. The objective is to find a matrix 'proportional' to the given matrix, having given row and column sums. In many cases, for example if the initial matrix is strictly positive, the sequence is convergent. It is known that the sequence has at most two limit points. When these are distinct, convergence to these two points can be slow. We give an efficient algorithm which finds the limit points, invoking the ISP only on subproblems for which the procedure is convergent.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:1:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 3. Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt583",{id:"formSmash:items:resultList:2:j_idt583",widgetVar:"widget_formSmash_items_resultList_2_j_idt583",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Stationary probability of the identity for the TASEP on a Ring2012Other (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:2:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_2_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Consider the following Markov chain on permutations of length n. At each time step we choose a random position. If the letter at that position is smaller than the letter immediately to the left (cyclically) then these letters swap positions. Otherwise nothing happens, corresponding to a loop in the Markov chain. This is the circular TASEP. We compute the average proportion of time the chain spends at the identity permutation (and, in greater generality, at sorted words). This answers a conjecture by Thomas Lam.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:2:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 4. Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt583",{id:"formSmash:items:resultList:3:j_idt583",widgetVar:"widget_formSmash_items_resultList_3_j_idt583",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); TASEP in any Weyl groupManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:3:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_3_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We investigate a Markov chain dened by Thomas Lam [6], whichgeneralizes the multi-type TASEP on a ring to any Weyl group. For groups of typeC we dene an analogue of the multiline queues of Ferrari and Martin (which com-pute the stationary distribution for the classical TASEP). While our constructiondoes not suce for nding the stationary distribution, the construction gives thestationary distribution of a certain projection of Lam's chain. Also, our approach isincremental, in the sense that the construction appears to t into a pattern of 'con-jugation matrices', which remains to be fully worked out. We conjecture an explicitformula for the partition function of the model. Finally, we prove a theorem for theclassical TASEP which ts into the picture of viewing TASEP in a permutation-freeway.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:3:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 5. Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt583",{id:"formSmash:items:resultList:4:j_idt583",widgetVar:"widget_formSmash_items_resultList_4_j_idt583",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt586",{id:"formSmash:items:resultList:4:j_idt586",widgetVar:"widget_formSmash_items_resultList_4_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Linusson, SvanteKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Continuous multiline queues and TASEPManuscript (preprint) (Other academic)6. Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt583",{id:"formSmash:items:resultList:5:j_idt583",widgetVar:"widget_formSmash_items_resultList_5_j_idt583",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt586",{id:"formSmash:items:resultList:5:j_idt586",widgetVar:"widget_formSmash_items_resultList_5_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Sjöstrand, JonasKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A product formula for the TASEP on a ring2016In: Random structures & algorithms (Print), ISSN 1042-9832, E-ISSN 1098-2418, Vol. 48, no 2, p. 247-259Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:5:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_5_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); For a random permutation sampled from the stationary distributionof the TASEP on a ring, we show that, conditioned on the event that the rstentries are strictly larger than the last entries, the order of the rst entries isindependent of the order of the last entries. The proof uses multi-line queues asdened by Ferrari and Martin, and the theorem has an enumerative combinatorialinterpretation in that setting.As an application we prove a conjecture of Lam and Williams concerningSchubert factors of the stationary probability of certain states.Finally, we present a conjecture for the case where the small and large entriesare not separated.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:5:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 7. Abuzyarova, Natalia et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt586",{id:"formSmash:items:resultList:6:j_idt586",widgetVar:"widget_formSmash_items_resultList_6_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hedenmalm, HåkanKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Branch point area methods in conformal mapping2006In: Journal d'Analyse Mathematique, ISSN 0021-7670, E-ISSN 1565-8538, Vol. 99, p. 177-198Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:6:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_6_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The classical estimate of Bieberbach that vertical bar a(2)vertical bar <= 2 for a given univalent function phi(z) = z + a(2)z(2) +... in the class S leads to the best possible pointwise estimates of the ratio phi''(z)/phi'(z) for phi is an element of S, first obtained by K oe be and Bieberbach. For the corresponding class E of univalent functions in the exterior disk, Goluzin found in 1943 by variational methods the corresponding best possible pointwise estimates of psi(z)/psi'(z) for psi is an element of Sigma. It was perhaps surprising that this time, the expressions involve elliptic integrals. Here, we obtain an area-type theorem which has Goluzin's pointwise estimate as a corollary. This shows that Goluzin's estimate, like the K oe be-Bieberbach estimate, is firmly rooted in area-based methods. The appearance of elliptic integrals finds a natural explanation: they arise because a certain associated covering surface of the Riemann sphere is a torus.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:6:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 8. Acker, Andrew et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt586",{id:"formSmash:items:resultList:7:j_idt586",widgetVar:"widget_formSmash_items_resultList_7_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Poghosyan, MichaelShahgholian, HenrikKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Convex configurations for solutions to semilinear elliptic problems in convex rings2006In: Communications in Partial Differential Equations, ISSN 0360-5302, E-ISSN 1532-4133, Vol. 31, no 9, p. 1273-1287Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:7:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_7_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); For a given convex ring Omega = Omega(2)\(Omega) over bar (1) and an L-1 function f : Omega x R -> R+ we show, under suitable assumptions on f, that there exists a solution (in the weak sense) to Delta(p)u = f(x, u) in Omega u = 0 on partial derivative Omega(2) u = M on partial derivative Omega(1) with {x is an element of Omega : u(x) > s} boolean OR Omega(1) convex, for all s is an element of (0, M).

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:7:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 9. Adiprasito, Karim et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt586",{id:"formSmash:items:resultList:8:j_idt586",widgetVar:"widget_formSmash_items_resultList_8_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Björner, AndersKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Goodarzi, AfshinFreie Universität, Germany.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Face numbers of sequentially Cohen-Macaulay complexes and Betti numbers of componentwise linear ideals2017In: Journal of the European Mathematical Society (Print), ISSN 1435-9855, E-ISSN 1435-9863, Vol. 19, no 12, p. 3851-3865Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:8:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_8_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); A numerical characterization is given of the h-triangles of sequentially Cohen-Macaulay simplicial complexes. This result determines the number of faces of various dimensions and codimensions that are possible in such a complex, generalizing the classical Macaulay-Stanley theorem to the nonpure case. Moreover, we characterize the possible Betti tables of componentwise linear ideals. A key tool in our investigation is a bijection between shifted multicomplexes of degree <= d and shifted pure. (d - 1)-dimensional simplicial complexes.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:8:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 10. Adiprasito, Karim et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt586",{id:"formSmash:items:resultList:9:j_idt586",widgetVar:"widget_formSmash_items_resultList_9_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Goodarzi, AfshinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Varbaro, MatteoPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Connectivity of pseudomanifold graphs from an algebraic point of view2015In: Comptes Rendus Mathematiques de l'Academie des Sciences = Mathematical reports of the academy of science, ISSN 0706-1994, Vol. 353, no 12, p. 1061-1065Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:9:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_9_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The connectivity of graphs of simplicial and polytopal complexes is a classical subject going back at least to Steinitz, and the topic has since been studied by many authors, including Balinski, Barnette, Athanasiadis, and Bjorner. In this note, we provide a unifying approach that allows us to obtain more general results. Moreover, we provide a relation to commutative algebra by relating connectivity problems to graded Betti numbers of the associated Stanley-Reisner rings.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:9:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 11. Adler, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt583",{id:"formSmash:items:resultList:10:j_idt583",widgetVar:"widget_formSmash_items_resultList_10_j_idt583",onLabel:"Adler, Jonas ",offLabel:"Adler, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt586",{id:"formSmash:items:resultList:10:j_idt586",widgetVar:"widget_formSmash_items_resultList_10_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Öktem, OzanKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Solving ill-posed inverse problems using iterative deep neural networks2017In: Inverse Problems, ISSN 0266-5611, E-ISSN 1361-6420, Vol. 33, no 12, article id 124007Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:10:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_10_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We propose a partially learned approach for the solution of ill-posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularisation theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularising functional. The method results in a gradient-like iterative scheme, where the 'gradient' component is learned using a convolutional network that includes the gradients of the data discrepancy and regulariser as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against filtered backprojection and total variation reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the total variation reconstruction while being significantly faster, giving reconstructions of 512 x 512 pixel images in about 0.4 s using a single graphics processing unit (GPU).

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:10:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 12. Adler, M. et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt586",{id:"formSmash:items:resultList:11:j_idt586",widgetVar:"widget_formSmash_items_resultList_11_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Chhita, S.Johansson, KurtKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).van Moerbeke, P.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tacnode GUE-minor processes and double Aztec diamonds2015In: Probability theory and related fields, ISSN 0178-8051, E-ISSN 1432-2064, Vol. 162, no 1-2, p. 275-325Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:11:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_11_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study determinantal point processes arising in random domino tilings of a double Aztec diamond, a region consisting of two overlapping Aztec diamonds. At a turning point in a single Aztec diamond where the disordered region touches the boundary, the natural limiting process is the GUE-minor process. Increasing the size of a double Aztec diamond while keeping the overlap between the two Aztec diamonds finite, we obtain a new determinantal point process which we call the tacnode GUE-minor process. This process can be thought of as two colliding GUE-minor processes. As part of the derivation of the particle kernel whose scaling limit naturally gives the tacnode GUE-minor process, we find the inverse Kasteleyn matrix for the dimer model version of the Double Aztec diamond.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:11:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 13. Adler, Mark et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt586",{id:"formSmash:items:resultList:12:j_idt586",widgetVar:"widget_formSmash_items_resultList_12_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Johansson, KurtKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).van Moerbeke, PierrePrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Double Aztec diamonds and the tacnode process2014In: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 252, p. 518-571Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:12:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_12_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Discrete and continuous non-intersecting random processes have given rise to critical "infinite-dimensional diffusions", like the Airy process, the Pearcey process and variations thereof. It has been known that domino tilings of very large Aztec diamonds lead macroscopically to a disordered region within an inscribed ellipse (arctic circle in the homogeneous case), and a regular brick-like region outside the ellipse. The fluctuations near the ellipse, appropriately magnified and away from the boundary of the Aztec diamond, form an Airy process, run with time tangential to the boundary. This paper investigates the domino tiling of two overlapping Aztec diamonds; this situation also leads to non-intersecting random walks and an induced point process; this process is shown to be determinantal. In the large size limit, when the overlap is such that the two arctic ellipses for the single Aztec diamonds merely touch, a new critical process will appear near the point of osculation (tacnode), which is run with a time in the direction of the common tangent to the ellipses: this is the tacnode process. It is also-shown here that this tacnode process is universal: it coincides with the one found in the context of two groups of non-intersecting random walks or also Brownian motions, meeting momentarily.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:12:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 14. Adler, Mark et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt586",{id:"formSmash:items:resultList:13:j_idt586",widgetVar:"widget_formSmash_items_resultList_13_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Johansson, KurtKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).van Moerbeke, PierrePrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Lozenge Tilings of Hexagons with Cuts and Asymptotic Fluctuations: a New Universality Class2018In: Mathematical physics, analysis and geometry, ISSN 1385-0172, E-ISSN 1572-9656, Vol. 21, no 1, article id 9Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:13:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_13_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This paper investigates lozenge tilings of non-convex hexagonal regions and more specifically the asymptotic fluctuations of the tilings within and near the strip formed by opposite cuts in the regions, when the size of the regions tend to infinity, together with the cuts. It leads to a new kernel, which is expected to have universality properties.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:13:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 15. Aghajani, A. et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt586",{id:"formSmash:items:resultList:14:j_idt586",widgetVar:"widget_formSmash_items_resultList_14_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Razani, AbdolrahmanKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.). Department of Mathematics, Faculty of Science, Imam Khomeini International University, Iran .PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Some completeness theorems in the Menger probabilistic metric space2008In: Applied Sciences: APPS, ISSN 1454-5101, E-ISSN 1454-5101, Vol. 10, p. 1-8Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:14:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_14_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this article, some new completeness theorems in probabilistic normed space are proved. Moreover, the existence of a constrictive Monger probabilistic normed space is shown.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:14:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 16. Agranovsky, M. et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt586",{id:"formSmash:items:resultList:15:j_idt586",widgetVar:"widget_formSmash_items_resultList_15_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Khavinson, D.Shapiro, HaroldKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Malmheden's theorem revisited2010In: Expositiones mathematicae, ISSN 0723-0869, E-ISSN 1878-0792, Vol. 28, no 4, p. 337-350Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:15:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_15_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In 1934 Malmheden [16] discovered an elegant geometric algorithm for solving the Dirichlet problem in a ball. Although his result was rediscovered independently by Duffin (1957) [8] 23 years later, it still does not seem to be widely known. In this paper we return to Malmheden's theorem, give an alternative proof of the result that allows generalization to polyharmonic functions and, also, discuss applications of his theorem to geometric properties of harmonic measures in balls in R-n.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:15:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 17. Ahlqvist, Eric PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt583",{id:"formSmash:items:resultList:16:j_idt583",widgetVar:"widget_formSmash_items_resultList_16_j_idt583",onLabel:"Ahlqvist, Eric ",offLabel:"Ahlqvist, Eric ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Operations on Étale Sheaves of Sets2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAbstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:16:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_16_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Rydh showed in 2011 that any unramiﬁed morphism ƒof algebraic spaces (algebraic stacks) has a canonical and universal factorization through an algebraic space (algebraic stack) called the étale envelope of ƒ, where the ﬁrst morphism is a closed immersion and the second is étale. We show that when ƒ is étale then the étale envelope can be described by applying the left adjoint of the pullback of ƒ to the constant sheaf deﬁned by a pointed set with two elements. When ƒ is a monomorphism locally of ﬁnite type we have a similar construction using the direct image with proper support.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:16:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 18. Aka, Menny et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt586",{id:"formSmash:items:resultList:17:j_idt586",widgetVar:"widget_formSmash_items_resultList_17_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Breuillard, EmmanuelRosenzweig, LiorKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).de Saxce, NicolasPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On metric Diophantine approximation in matrices and Lie groups2015In: Comptes rendus. Mathematique, ISSN 1631-073X, E-ISSN 1778-3569, Vol. 353, no 3, p. 185-189Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:17:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_17_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study the Diophantine exponent of analytic submanifolds of m x n real matrices, answering questions of Beresnevich, Kleinbock, and Margulis. We identify a family of algebraic obstructions to the extremality of such a submanifold, and give a formula for the exponent when the submanifold is algebraic and defined over Q. We then apply these results to the determination of the Diophantine exponent of rational nilpotent Lie groups.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:17:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 19. Alberts, Tom et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt586",{id:"formSmash:items:resultList:18:j_idt586",widgetVar:"widget_formSmash_items_resultList_18_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Binder, IliaViklund, FredrikKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A Dimension Spectrum for SLE Boundary Collisions2016In: Communications in Mathematical Physics, ISSN 0010-3616, E-ISSN 1432-0916, Vol. 343, no 1, p. 273-298Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:18:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_18_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We consider chordal SLE curves for , where the intersection of the curve with the boundary is a random fractal of almost sure Hausdorff dimension . We study the random sets of points at which the curve collides with the real line at a specified "angle" and compute an almost sure dimension spectrum describing the metric size of these sets. We work with the forward SLE flow and a key tool in the analysis is Girsanov's theorem, which is used to study events on which moments concentrate. The two-point correlation estimates are proved using the direct method.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:18:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 20. Aleksanyan, Gohar PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt583",{id:"formSmash:items:resultList:19:j_idt583",widgetVar:"widget_formSmash_items_resultList_19_j_idt583",onLabel:"Aleksanyan, Gohar ",offLabel:"Aleksanyan, Gohar ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Analysis of blow-ups for the double obstacle problem in dimension twoManuscript (preprint) (Other academic)21. Aleksanyan, Gohar PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt583",{id:"formSmash:items:resultList:20:j_idt583",widgetVar:"widget_formSmash_items_resultList_20_j_idt583",onLabel:"Aleksanyan, Gohar ",offLabel:"Aleksanyan, Gohar ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Optimal regularity in the optimal switching problem2016In: Annales de l'Institut Henri Poincare. Analyse non linéar, ISSN 0294-1449, E-ISSN 1873-1430Article in journal (Refereed)22. Aleksanyan, Gohar PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt583",{id:"formSmash:items:resultList:21:j_idt583",widgetVar:"widget_formSmash_items_resultList_21_j_idt583",onLabel:"Aleksanyan, Gohar ",offLabel:"Aleksanyan, Gohar ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Regularity of the free boundary in the biharmonic obstacle problemManuscript (preprint) (Other academic)23. Aleksanyan, Gohar PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt583",{id:"formSmash:items:resultList:22:j_idt583",widgetVar:"widget_formSmash_items_resultList_22_j_idt583",onLabel:"Aleksanyan, Gohar ",offLabel:"Aleksanyan, Gohar ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Regularity results in free boundary problems2016Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:22:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_22_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This thesis consists of three scientific papers, devoted to the regu-larity theory of free boundary problems. We use iteration arguments to derive the optimal regularity in the optimal switching problem, and to analyse the regularity of the free boundary in the biharmonic obstacle problem and in the double obstacle problem.In Paper A, we study the interior regularity of the solution to the optimal switching problem. We derive the optimal C1,1-regularity of the minimal solution under the assumption that the zero loop set is the closure of its interior.In Paper B, assuming that the solution to the biharmonic obstacle problem with a zero obstacle is suÿciently close-to the one-dimensional solution (xn)3+, we derive the C1,-regularity of the free boundary, under an additional assumption that the noncoincidence set is an NTA-domain.In Paper C we study the two-dimensional double obstacle problem with polynomial obstacles p1 p2, and observe that there is a new type of blow-ups that we call double-cone solutions. We investigate the existence of double-cone solutions depending on the coeÿcients of p1, p2, and show that if the solution to the double obstacle problem with obstacles p1 = −|x|2 and p2 = |x|2 is close to a double-cone solution, then the free boundary is a union of four C1,-graphs, pairwise crossing at the origin.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:22:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 24. Aleksanyan, Hayk PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt583",{id:"formSmash:items:resultList:23:j_idt583",widgetVar:"widget_formSmash_items_resultList_23_j_idt583",onLabel:"Aleksanyan, Hayk ",offLabel:"Aleksanyan, Hayk ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.). Yerevan State University, Armenia.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On greedy algorithm by renormed Franklin system2010In: East Journal on Approximations, ISSN 1310-6236, Vol. 16, no 3, p. 273-296Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:23:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_23_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We characterize the all weighted greedy algorithms with respect to Franklin system which converge uniformly for continuous functions and almost everywhere for integrable functions. In case, when the algorithm fails to satisfy our classification criteria, we construct a continuous function for which the corresponding approximation diverges unboundedly almost everywhere. Some applications to wavelet systems are also discussed.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:23:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 25. Aleksanyan, Hayk PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt583",{id:"formSmash:items:resultList:24:j_idt583",widgetVar:"widget_formSmash_items_resultList_24_j_idt583",onLabel:"Aleksanyan, Hayk ",offLabel:"Aleksanyan, Hayk ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.). The University of Edinburgh, UK.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:24:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:24:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Regularity of boundary data in periodic homogenization of elliptic systems in layered media2017In: Manuscripta mathematica, ISSN 0025-2611, E-ISSN 1432-1785, Vol. 154, no 1-2, p. 225-256Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:24:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_24_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this note we study periodic homogenization of Dirichlet problem for divergence type elliptic systems when both the coefficients and the boundary data are oscillating. One of the key difficulties here is the determination of the fixed boundary data corresponding to the limiting (homogenized) problem. This issue has been addressed in recent papers by Gérard-Varet and Masmoudi (Acta Math. 209:133–178, 2012), and by Prange (SIAM J. Math. Anal. 45(1):345–387, 2012), however, not much is known about the regularity of this fixed data. The main objective of this note is to initiate a study of this problem, and to prove several regularity results in this connection.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:24:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 26. Aleksanyan, Hayk PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_25_j_idt583",{id:"formSmash:items:resultList:25:j_idt583",widgetVar:"widget_formSmash_items_resultList_25_j_idt583",onLabel:"Aleksanyan, Hayk ",offLabel:"Aleksanyan, Hayk ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.). University of Edinburgh, United Kingdom.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:25:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:25:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Slow convergence in periodic homogenization problems for divergence-type elliptic operators2016In: SIAM Journal on Mathematical Analysis, ISSN 0036-1410, E-ISSN 1095-7154, Vol. 48, no 5, p. 3345-3382Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_25_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:25:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_25_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We introduce a new constructive method for establishing lower bounds on convergence rates of periodic homogenization problems associated with divergence-type elliptic operators. The construction is applied in two settings. First, we show that solutions to boundary layer problems for divergence-type elliptic equations set in halfspaces and with in finitely smooth data may converge to their corresponding boundary layer tails as slowly as one wishes depending on the position of the hyperplane. Second, we construct a Dirichlet problem for divergence-type elliptic operators set in a bounded domain, and with all data being C-infinity-smooth, for which the boundary value homogenization holds with arbitrarily slow speed.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:25:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 27. Aleksanyan, Hayk PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_26_j_idt583",{id:"formSmash:items:resultList:26:j_idt583",widgetVar:"widget_formSmash_items_resultList_26_j_idt583",onLabel:"Aleksanyan, Hayk ",offLabel:"Aleksanyan, Hayk ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_26_j_idt586",{id:"formSmash:items:resultList:26:j_idt586",widgetVar:"widget_formSmash_items_resultList_26_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:26:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Karakhanyan, AramThe University of Edinburgh.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:26:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); K-surfaces with free boundaries2017Article in journal (Refereed)28. Aleksanyan, Hayk PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_27_j_idt583",{id:"formSmash:items:resultList:27:j_idt583",widgetVar:"widget_formSmash_items_resultList_27_j_idt583",onLabel:"Aleksanyan, Hayk ",offLabel:"Aleksanyan, Hayk ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_27_j_idt586",{id:"formSmash:items:resultList:27:j_idt586",widgetVar:"widget_formSmash_items_resultList_27_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:27:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Shahgholian, HenrikKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:27:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Discrete balayage and boundary sandpile2016In: Journal d'Analyse Mathematique, ISSN 0021-7670, E-ISSN 1565-8538Article in journal (Refereed)29. Aleksanyan, Hayk PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt583",{id:"formSmash:items:resultList:28:j_idt583",widgetVar:"widget_formSmash_items_resultList_28_j_idt583",onLabel:"Aleksanyan, Hayk ",offLabel:"Aleksanyan, Hayk ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt586",{id:"formSmash:items:resultList:28:j_idt586",widgetVar:"widget_formSmash_items_resultList_28_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:28:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Shahgholian, HenrikPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:28:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Perturbed divisible sandpiles and quadrature surfaces2017Article in journal (Refereed)30. Aleksanyan, Hayk PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt583",{id:"formSmash:items:resultList:29:j_idt583",widgetVar:"widget_formSmash_items_resultList_29_j_idt583",onLabel:"Aleksanyan, Hayk ",offLabel:"Aleksanyan, Hayk ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt586",{id:"formSmash:items:resultList:29:j_idt586",widgetVar:"widget_formSmash_items_resultList_29_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.). The University of Edinburgh.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:29:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Shahgholian, HenrikKTH, School of Engineering Sciences (SCI), Mathematics (Dept.).Sjölin, PerKTH, School of Engineering Sciences (SCI), Mathematics (Dept.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:29:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Applications of Fourier analysis in homogenization of Dirichlet problem I. Pointwise estimates2013In: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 254, no 6, p. 2626-2637Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:29:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_29_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper we prove convergence results for homogenization problem for solutions of partial differential system with rapidly oscillating Dirichlet data. Our method is based on analysis of oscillatory integrals. In the uniformly convex and smooth domain, and smooth operator and boundary data, we prove pointwise convergence results, namely vertical bar u(epsilon)(x) - u(0)(x)vertical bar <= C-kappa epsilon((d-1)/2) 1/d(x)(kappa), for all x is an element of D, for all kappa > d - 1, where u(epsilon) and u(0) are solutions of respectively oscillating and homogenized Dirichlet problems, and d(x) is the distance of x from the boundary of D. As a corollary for all 1 <= p < infinity we obtain L-P convergence rate as well.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:29:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 31. Aleksanyan, Hayk PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_30_j_idt583",{id:"formSmash:items:resultList:30:j_idt583",widgetVar:"widget_formSmash_items_resultList_30_j_idt583",onLabel:"Aleksanyan, Hayk ",offLabel:"Aleksanyan, Hayk ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_30_j_idt586",{id:"formSmash:items:resultList:30:j_idt586",widgetVar:"widget_formSmash_items_resultList_30_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.). The University of Edinburgh.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:30:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Shahgholian, HenrikKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Sjölin, PerKTH, School of Engineering Sciences (SCI), Mathematics (Dept.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:30:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Applications of Fourier Analysis in Homogenization of Dirichlet Problem III: Polygonal Domains2014In: Journal of Fourier Analysis and Applications, ISSN 1069-5869, E-ISSN 1531-5851, Vol. 20, no 3, p. 524-546Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_30_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:30:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_30_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this paper we prove convergence results for the homogenization of the Dirichlet problem for elliptic equations in divergence form with rapidly oscillating boundary data and non oscillating coefficients in convex polygonal domains. Our analysis is based on integral representation of solutions. Under a certain Diophantine condition on the boundary of the domain and smooth coefficients we prove pointwise, as well as convergence results. For larger exponents we prove that the convergence rate is close to optimal. We also suggest several directions of possible generalization of the results in this paper.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:30:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 32. Aleksanyan, Hayk PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt583",{id:"formSmash:items:resultList:31:j_idt583",widgetVar:"widget_formSmash_items_resultList_31_j_idt583",onLabel:"Aleksanyan, Hayk ",offLabel:"Aleksanyan, Hayk ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt586",{id:"formSmash:items:resultList:31:j_idt586",widgetVar:"widget_formSmash_items_resultList_31_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.). The University of Edinburgh.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:31:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Shahgholian, HenrikKTH, School of Engineering Sciences (SCI), Mathematics (Dept.).Sjölin, PerKTH, School of Engineering Sciences (SCI), Mathematics (Dept.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:31:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Applications of Fourier Analysis in Homogenization of the Dirichlet Problem: L-p Estimates2015In: Archive for Rational Mechanics and Analysis, ISSN 0003-9527, E-ISSN 1432-0673, Vol. 215, no 1, p. 65-87Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:31:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_31_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let u(epsilon) be a solution to the system div(A(epsilon)(x)del u(epsilon)(x)) = 0 in D, u(epsilon)(x) = g(x, x/epsilon) on partial derivative D, where D subset of R-d (d >= 2), is a smooth uniformly convex domain, and g is 1-periodic in its second variable, and both A(epsilon) and g are sufficiently smooth. Our results in this paper are twofold. First we prove L-p convergence results for solutions of the above system and for the non-oscillating operator A(epsilon)(x) = A(x), with the following convergence rate for all 1 <= p < infinity parallel to u(epsilon) - u(0)parallel to (LP(D)) <= C-P {epsilon(1/2p), d = 2, (epsilon vertical bar ln epsilon vertical bar)(1/p), d = 3, epsilon(1/p), d >= 4, which we prove is (generically) sharp for d >= 4. Here u(0) is the solution to the averaging problem. Second, combining our method with the recent results due to Kenig, Lin and Shen (Commun Pure Appl Math 67(8): 1219-1262, 2014), we prove (for certain class of operators and when d >= 3) ||u(epsilon) - u(0)||(Lp(D)) <= C-p[epsilon(ln(1/epsilon))(2)](1/p) for both the oscillating operator and boundary data. For this case, we take A(epsilon) = A(x/epsilon), where A is 1-periodic as well. Some further applications of the method to the homogenization of the Neumann problem with oscillating boundary data are also considered.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:31:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 33. Aleksanyan, Hayk PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt583",{id:"formSmash:items:resultList:32:j_idt583",widgetVar:"widget_formSmash_items_resultList_32_j_idt583",onLabel:"Aleksanyan, Hayk ",offLabel:"Aleksanyan, Hayk ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt586",{id:"formSmash:items:resultList:32:j_idt586",widgetVar:"widget_formSmash_items_resultList_32_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:32:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Shahgholian, HenrikKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Sjölin, PerKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:32:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); L2-estimates for singular oscillatory integral operators2016In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 441, no 2, p. 529-548Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:32:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_32_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this note we study singular oscillatory integrals with linear phase function over hypersurfaces which may oscillate, and prove estimates of L2L2 type for the operator, as well as for the corresponding maximal function. If the hypersurface is flat, we consider a particular class of a nonlinear phase functions, and apply our analysis to the eigenvalue problem associated with the Helmholtz equation in R3.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:32:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 34. Alexandersson, Per PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt583",{id:"formSmash:items:resultList:33:j_idt583",widgetVar:"widget_formSmash_items_resultList_33_j_idt583",onLabel:"Alexandersson, Per ",offLabel:"Alexandersson, Per ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt586",{id:"formSmash:items:resultList:33:j_idt586",widgetVar:"widget_formSmash_items_resultList_33_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:33:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Sawhney, MehtaabPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:33:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A Major-Index Preserving Map on Fillings2017In: The Electronic Journal of Combinatorics, ISSN 1097-1440, E-ISSN 1077-8926, Vol. 24, no 4, article id P4.3Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:33:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_33_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We generalize a map by S. Mason regarding two combinatorial models for key polynomials, in a way that accounts for the major index. Furthermore we define a similar variant of this map, that regards alternative models for the modified Macdonald polynomials at t = 0, and thus partially answers a question by J. Haglund. These maps together imply a certain uniqueness property regarding inversion- and coinversion-free fillings. These uniqueness properties allow us to generalize the notion of charge to a non-symmetric setting, thus answering a question by A. Lascoux and the analogous question in the symmetric setting proves a conjecture by K. Nelson.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:33:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 35. Alm, Sven Erick et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt586",{id:"formSmash:items:resultList:34:j_idt586",widgetVar:"widget_formSmash_items_resultList_34_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:34:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Janson, SvanteLinusson, SvanteKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:34:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Correlations for Paths in Random Orientations of G(n, p) and G(n, m)2011In: Random structures & algorithms (Print), ISSN 1042-9832, E-ISSN 1098-2418, Vol. 39, no 4, p. 486-506Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:34:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_34_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study random graphs, both G(n, p) and G(n, m), with random orientations on the edges. For three fixed distinct vertices s, a, b we study the correlation, in the combined probability space, of the events {a -> s} and {s -> b}. For G(n, p), we prove that there is a p(c) = 1/2 such that for a fixed p < p(c) the correlation is negative for large enough n and for p > p(c) the correlation is positive for large enough n. We conjecture that for a fixed n >= 27 the correlation changes sign three times for three critical values of p. For G(n, m) it is similarly proved that, with p = m/((n)(2)), there is a critical p(c) that is the solution to a certain equation and approximately equal to 0.7993. A lemma, which computes the probability of non existence of any l directed edges in G(n, m), is thought to be of independent interest. We present exact recursions to compute P(a -> s) and P(a -> s, s -> b). We also briefly discuss the corresponding question in the quenched version of the problem.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:34:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 36. Alm, Sven Erick et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_35_j_idt586",{id:"formSmash:items:resultList:35:j_idt586",widgetVar:"widget_formSmash_items_resultList_35_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:35:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Janson, SvanteLinusson, SvanteKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:35:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); First critical probability for a problem on random orientations in G(n,p)2014In: Electronic Journal of Probability, ISSN 1083-6489, E-ISSN 1083-6489, Vol. 19, p. 69-Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_35_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:35:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_35_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study the random graph G (n,p) with a random orientation. For three fixed vertices s, a, b in G(n,p) we study the correlation of the events {a -> s} (there exists a directed path from a to s) and {s -> b}. We prove that asymptotically the correlation is negative for small p, p < C-1/n, where C-1 approximate to 0.3617, positive for C-1/n < p < 2/n and up to p = p(2)(n). Computer aided computations suggest that p(2)(n) = C-2/n, with C-2 approximate to 7.5. We conjecture that the correlation then stays negative for p up to the previously known zero at 1/2; for larger p it is positive.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:35:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 37. Alm, Sven Erick et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_36_j_idt586",{id:"formSmash:items:resultList:36:j_idt586",widgetVar:"widget_formSmash_items_resultList_36_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:36:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Linusson, SvanteKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:36:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A Counter-Intuitive Correlation in a Random Tournament2011In: Combinatorics, probability & computing, ISSN 0963-5483, E-ISSN 1469-2163, Vol. 20, no 1, p. 1-9Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_36_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:36:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_36_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Consider a randomly oriented graph G = (V, E) and let a, s and b be three distinct vertices in V. We study the correlation between the events {a -> s} and {s -> b}. We show that, counter-intuitively, when G is the complete graph K-n, n >= 5, then the correlation is positive. (It is negative for n = 3 and zero for n = 4.) We briefly discuss and pose problems for the same question on other graphs.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:36:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 38. Altafi, Nasrin PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt583",{id:"formSmash:items:resultList:37:j_idt583",widgetVar:"widget_formSmash_items_resultList_37_j_idt583",onLabel:"Altafi, Nasrin ",offLabel:"Altafi, Nasrin ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:37:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:37:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); The Weak Lefschetz Property of Equigenerated Monomial IdealsIn: Article in journal (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:37:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_37_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We determine the sharp lower bound for the Hilbert function in degree d of a

monomial algebra failing the WLP over a polynomial ring with n variables and generated in

degree d. We consider artinian ideals in the polynomial ring with

n variables generated by homogeneous polynomials of degree d invariant under an action of

the cyclic group Z/dZ. We give a complete classification of

such ideals in terms of the WLP depending on the action.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:37:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 39. Aluffi, Paolo et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_38_j_idt586",{id:"formSmash:items:resultList:38:j_idt586",widgetVar:"widget_formSmash_items_resultList_38_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:38:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Faber, CarelKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:38:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Limits of PGL(3)-translates of plane curves, I2010In: Journal of Pure and Applied Algebra, ISSN 0022-4049, E-ISSN 1873-1376, Vol. 214, no 5, p. 526-547Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_38_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:38:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_38_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We classify all possible limits of families of translates of a fixed, arbitrary complex plane curve. We do this by giving a set-theoretic description of the projective normal cone (PNC) of the base scheme of a natural rational map, determined by the curve, from the P-8 of 3 x 3 matrices to the P-N of plane curves of degree d. In a sequel to this paper we determine the multiplicities of the components of the PNC. The knowledge of the PNC as a cycle is essential in our computation of the degree of the PGL(3)-orbit closure of an arbitrary plane curve, performed in [P. Aluffi, C. Faber, Linear orbits of arbitrary plane curves, Michigan Math. J. 48(2000) 1-37].

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:38:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 40. Ameur, Yacin PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_39_j_idt583",{id:"formSmash:items:resultList:39:j_idt583",widgetVar:"widget_formSmash_items_resultList_39_j_idt583",onLabel:"Ameur, Yacin ",offLabel:"Ameur, Yacin ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_39_j_idt586",{id:"formSmash:items:resultList:39:j_idt586",widgetVar:"widget_formSmash_items_resultList_39_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:39:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hedenmalm, HåkanKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Makarov, NikolaiPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:39:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Berezin Transform in Polynomial Bergman Spaces2010In: Communications on Pure and Applied Mathematics, ISSN 0010-3640, E-ISSN 1097-0312, Vol. 63, no 12, p. 1533-1584Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_39_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:39:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_39_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Fix a smooth weight function Q in the plane, subject to a growth condition from below Let K-m,K-n denote the reproducing kernel for the Hilbert space of analytic polynomials of degree at most n - 1 of finite L-2-norm with respect to the measure e-(mQ) dA Here dA is normalized area measure, and m is a positive real scaling parameter The (polynomial) Berezin measure dB(m,n)(< z0 >) (z) = K-m,K-n(z(0).z(0))(-1) vertical bar K-m,K-n(z.z(0))vertical bar(2)e(-mQ(z)) dA(z) for the point z(0) is a probability measure that defines the (polynomial) Berezin transform B-m,B-n f(z(0)) = integral(C) f dB(m,n)(< z0 >) for continuous f is an element of L-infinity (C). We analyze the semiclassical limit of the Berezin measure (and transform) as m -> +infinity while n = m tau + o(1), where tau is fixed, positive, and real We find that the Berezin measure for z(0) converges weak-star to the unit point mass at the point z(0) provided that Delta Q(z(0)) > 0 and that z(0) is contained in the interior of a compact set f(tau). defined as the coincidence set for an obstacle problem. As a refinement, we show that the appropriate local blowup of the Berezin measure converges to the standardized Gaussian measure in the plane For points z(0) is an element of C\f(tau), the Berezin measure cannot converge to the point mass at z(0) In the model case Q(z) = vertical bar z vertical bar(2), when f(tau) is a closed disk, we find that the Berezin measure instead converges to harmonic measure at z(0) relative to C\f(tau) Our results have applications to the study of the cigenvalues of random normal matrices The auxiliary results include weighted L-2-estimates for the equation partial derivative u = f when f is a suitable test function and the solution u is restricted by a polynomial growth bound at infinity.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:39:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 41. Ameur, Yacin et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_40_j_idt586",{id:"formSmash:items:resultList:40:j_idt586",widgetVar:"widget_formSmash_items_resultList_40_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:40:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hedenmalm, HåkanKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Makarov, NikolaiPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:40:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); FLUCTUATIONS OF EIGENVALUES OF RANDOM NORMAL MATRICES2011In: Duke mathematical journal, ISSN 0012-7094, E-ISSN 1547-7398, Vol. 159, no 1, p. 31-81Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_40_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:40:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_40_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this article, we consider a fairly general potential in the plane and the corresponding Boltzmann-Gibbs distribution of eigenvalues of random normal matrices. As the order of the matrices tends to infinity, the eigenvalues condensate on a certain compact subset of the plane-the "droplet." We prove that fluctuations of linear statistics of eigenvalues of random normal matrices converge on compact subsets of the interior of the droplet to a Gaussian field, and we discuss various ramifications of this result.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:40:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 42. Ameur, Yacin et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_41_j_idt586",{id:"formSmash:items:resultList:41:j_idt586",widgetVar:"widget_formSmash_items_resultList_41_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:41:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hedenmalm, HåkanKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Makarov, NikolaiPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:41:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Random normal matrices and ward identities2015In: Annals of Probability, ISSN 0091-1798, E-ISSN 2168-894X, Vol. 43, no 3, p. 1157-1201Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_41_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:41:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_41_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We consider the random normal matrix ensemble associated with a potential in the plane of sufficient growth near infinity. It is known that asymptotically as the order of the random matrix increases indefinitely, the eigenvalues approach a certain equilibrium density, given in terms of Frostman's solution to the minimum energy problem of weighted logarithmic potential theory. At a finer scale, we may consider fluctuations of eigenvalues about the equilibrium. In the present paper, we give the correction to the expectation of the fluctuations, and we show that the potential field of the corrected fluctuations converge on smooth test functions to a Gaussian free field with free boundary conditions on the droplet associated with the potential.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:41:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 43. Ammann, B. et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_42_j_idt586",{id:"formSmash:items:resultList:42:j_idt586",widgetVar:"widget_formSmash_items_resultList_42_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:42:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dahl, MattiasKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Humbert, E.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:42:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); The conformal Yamabe constant of product manifolds2013In: Proceedings of the American Mathematical Society, ISSN 0002-9939, E-ISSN 1088-6826, Vol. 141, no 1, p. 295-307Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_42_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:42:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_42_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let (V, g) and (W, h) be compact Riemannian manifolds of dimension at least 3. We derive a lower bound for the conformal Yamabe constant of the product manifold (V × W, g + h) in terms of the conformal Yamabe constants of (V, g) and (W, h).

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:42:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 44. Ammann, Bernd et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_43_j_idt586",{id:"formSmash:items:resultList:43:j_idt586",widgetVar:"widget_formSmash_items_resultList_43_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:43:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dahl, MattiasKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Hermann, AndreasHumbert, EmmanuelPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:43:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Mass endomorphism, surgery and perturbations2014In: Annales de l'Institut Fourier, ISSN 0373-0956, E-ISSN 1777-5310, Vol. 64, no 2, p. 467-487Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_43_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:43:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_43_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We prove that the mass endomorphism associated to the Dirac operator on a Riemannian manifold is non-zero for generic Riemannian metrics. The proof involves a study of the mass endomorphism under surgery, its behavior near metrics with harmonic spinors, and analytic perturbation arguments.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:43:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 45. Ammann, Bernd et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_44_j_idt586",{id:"formSmash:items:resultList:44:j_idt586",widgetVar:"widget_formSmash_items_resultList_44_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:44:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dahl, MattiasKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Humbert, EmmanuelPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:44:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Harmonic spinors and local deformations of the metric2011In: Mathematical Research Letters, ISSN 1073-2780, E-ISSN 1945-001X, Vol. 18, no 5, p. 927-936Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_44_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:44:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_44_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let (M, g) be a compact Riemannian spin manifold. The Atiyah-Singer index theorem yields a lower bound for the dimension of the kernel of the Dirac operator. We prove that this bound can be attained by changing the Riemannian metric g on an arbitrarily small open set.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:44:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 46. Ammann, Bernd et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_45_j_idt586",{id:"formSmash:items:resultList:45:j_idt586",widgetVar:"widget_formSmash_items_resultList_45_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:45:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dahl, MattiasKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Humbert, EmmanuelPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:45:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Low-dimensional surgery and the Yamabe invariant2015In: Journal of the Mathematical Society of Japan, ISSN 0025-5645, E-ISSN 1881-1167, Vol. 67, no 1, p. 159-182Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_45_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:45:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_45_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Assume that M is a compact n-dimensional manifold and that N is obtained by surgery along a k-dimensional sphere, k <= n - 3. The smooth Yamabe invariants sigma(M) and sigma(N) satisfy sigma(N) >= min(sigma(M), Lambda) for a constant Lambda > 0 depending only on n and k. We derive explicit positive lower bounds for A in dimensions where previous methods failed, namely for (n, k) is an element of {(4, 1), (5, 1), (5, 2), (6, 3), (9, 1), (10, 1)}. With methods from surgery theory and bordism theory several gap phenomena for smooth Yamabe invariants can be deduced.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:45:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 47. Ammann, Bernd et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_46_j_idt586",{id:"formSmash:items:resultList:46:j_idt586",widgetVar:"widget_formSmash_items_resultList_46_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:46:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dahl, MattiasKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Humbert, EmmanuelPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:46:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Square-integrability of solutions of the Yamabe equation2013In: Communications in analysis and geometry, ISSN 1019-8385, E-ISSN 1944-9992, Vol. 21, no 5, p. 891-916Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_46_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:46:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_46_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We show that solutions of the Yamabe equation on certain n-dimensional non-compact Riemannian manifolds, which are bounded and L-p for p = 2n/(n -2) are also L-2. This L-p-L-2 implication provides explicit constants in the surgery-monotonicity formula for the smooth Yamabe invariant in our paper [4]. As an application we see that the smooth Yamabe invariant of any two-connected compact seven-dimensional manifold is at least 74.5. Similar conclusions follow in dimension 8 and in dimensions >= 11.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:46:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 48. Ammann, Bernd et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_47_j_idt586",{id:"formSmash:items:resultList:47:j_idt586",widgetVar:"widget_formSmash_items_resultList_47_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:47:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dahl, MattiasKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Humbert, EmmanuelPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:47:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Surgery and harmonic spinors2009In: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 220, no 2, p. 523-539Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_47_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:47:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_47_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let M he a compact spin manifold with a chosen spin structure. The Atiyah-Singer index theorem implies that for any Riemannian metric on M the dimension of the kernel of the Dirac operator is bounded from below by a topological quantity depending only on M and the spin structure. We show that for generic metrics on M this bound is attained.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:47:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 49. Ammann, Bernd et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_48_j_idt586",{id:"formSmash:items:resultList:48:j_idt586",widgetVar:"widget_formSmash_items_resultList_48_j_idt586",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:48:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Dahl, MattiasKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).Humbert, EmmanuelPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:48:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Surgery and the Spinorial tau-Invariant2009In: Communications in Partial Differential Equations, ISSN 0360-5302, E-ISSN 1532-4133, Vol. 34, no 10, p. 1147-1179Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_48_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:48:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_48_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We associate to a compact spin manifold M a real-valued invariant (M) by taking the supremum over all conformal classes of the infimum inside each conformal class of the first positive Dirac eigenvalue, when the metrics are normalized to unit volume. This invariant is a spinorial analogue of Schoen's sigma-constant, also known as the smooth Yamabe invariant. We prove that if N is obtained from M by surgery of codimension at least 2 then (N) epsilon min{(M), n}, where n is a positive constant depending only on n=dim M. Various topological conclusions can be drawn, in particular that is a spin-bordism invariant below n. Also, below n the values of cannot accumulate from above when varied over all manifolds of dimension n.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:48:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 50. Ammar, Ofir PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_49_j_idt583",{id:"formSmash:items:resultList:49:j_idt583",widgetVar:"widget_formSmash_items_resultList_49_j_idt583",onLabel:"Ammar, Ofir ",offLabel:"Ammar, Ofir ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:49:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:49:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A thesis submitted in fulfilment of the requirements for the degree of Masters of Mathematics2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAbstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_49_j_idt621_0_j_idt622",{id:"formSmash:items:resultList:49:j_idt621:0:j_idt622",widgetVar:"widget_formSmash_items_resultList_49_j_idt621_0_j_idt622",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); An open problem introduced by J. Haglund was to find a bijective proof over Dyck paths that would interchange two of its statistics. This problem was known to be The Symmetry Problem of the q,t-Catalan polynomial and was proven by other means to be true. This project is an attempt to find a bijection, where we provide the bijection's behaviour under certain constrains. Then, we introduce an attempt to translate the problem from Dyck paths to other combinatorial structures. Finally we try to solve a related conjecture, called The Symmetry Problem of parking functions, which generalizes the previous problem. Some results we obtained from The Symmetry Problem of parking functions helped us characterize part of a bijective proof for Dyck paths.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:49:j_idt621:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500});

CiteExportLink to result list
http://kth.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22organisationId%22%3A%226116%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_lower_j_idt901_recordPermLink",{id:"formSmash:lower:j_idt901:recordPermLink",widgetVar:"widget_formSmash_lower_j_idt901_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt901_j_idt903",{id:"formSmash:lower:j_idt901:j_idt903",widgetVar:"widget_formSmash_lower_j_idt901_j_idt903",target:"formSmash:lower:j_idt901:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa harvard1 ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt919",{id:"formSmash:lower:j_idt919",widgetVar:"widget_formSmash_lower_j_idt919",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt919",e:"change",f:"formSmash",p:"formSmash:lower:j_idt919",u:"formSmash:lower:otherStyle"},ext);}}});});

- apa
- harvard1
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt930",{id:"formSmash:lower:j_idt930",widgetVar:"widget_formSmash_lower_j_idt930",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt930",e:"change",f:"formSmash",p:"formSmash:lower:j_idt930",u:"formSmash:lower:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt940",{id:"formSmash:lower:j_idt940",widgetVar:"widget_formSmash_lower_j_idt940"});});

- html
- text
- asciidoc
- rtf