vente ... |

Jump to content
Endre søk PrimeFaces.cw("InputText","widget_formSmash_searchField",{id:"formSmash:searchField",widgetVar:"widget_formSmash_searchField"}); Søk $(function(){PrimeFaces.cw("DefaultCommand","widget_formSmash_j_idt123",{id:"formSmash:j_idt123",widgetVar:"widget_formSmash_j_idt123",target:"formSmash:searchButton",scope:"formSmash:simpleSearch"});}); Søk PrimeFaces.cw("CommandButton","widget_formSmash_searchButton",{id:"formSmash:searchButton",widgetVar:"widget_formSmash_searchButton"});
Kun dokumenter med fulltekst i DiVA
PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
PrimeFaces.cw("InputText","widget_formSmash_upper_j_idt526",{id:"formSmash:upper:j_idt526",widgetVar:"widget_formSmash_upper_j_idt526"}); Fler formatPrimeFaces.cw("InputText","widget_formSmash_upper_j_idt536",{id:"formSmash:upper:j_idt536",widgetVar:"widget_formSmash_upper_j_idt536"}); Fler språkSkapa PrimeFaces.cw("CommandButton","widget_formSmash_upper_j_idt545",{id:"formSmash:upper:j_idt545",widgetVar:"widget_formSmash_upper_j_idt545"}); Stäng PrimeFaces.cw("CommandButton","widget_formSmash_upper_j_idt546",{id:"formSmash:upper:j_idt546",widgetVar:"widget_formSmash_upper_j_idt546"});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt515",widgetVar:"citationDialog",width:"800",height:"600"});});
5 10 20 50 100 250 $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_j_idt558",{id:"formSmash:j_idt558",widgetVar:"widget_formSmash_j_idt558",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:j_idt558",e:"change",f:"formSmash",p:"formSmash:j_idt558"},ext);}}});});
Standard (Relevans) Forfatter A-Ø Forfatter Ø-A Tittel A-Ø Tittel Ø-A Type publikasjon A-Ø Type publikasjon Ø-A Eldste først Nyeste først Skapad (Eldste først) Skapad (Nyeste først) Senast uppdaterad (Eldste først) Senast uppdaterad (Nyeste først) Disputationsdatum (tidligste først) Disputationsdatum (siste først) $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_j_idt568",{id:"formSmash:j_idt568",widgetVar:"widget_formSmash_j_idt568",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:j_idt568",e:"change",f:"formSmash",p:"formSmash:j_idt568"},ext);}}});});
Standard (Relevans) Forfatter A-Ø Forfatter Ø-A Tittel A-Ø Tittel Ø-A Type publikasjon A-Ø Type publikasjon Ø-A Eldste først Nyeste først Skapad (Eldste først) Skapad (Nyeste først) Senast uppdaterad (Eldste først) Senast uppdaterad (Nyeste først) Disputationsdatum (tidligste først) Disputationsdatum (siste først) $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_j_idt571",{id:"formSmash:j_idt571",widgetVar:"widget_formSmash_j_idt571",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:j_idt571",e:"change",f:"formSmash",p:"formSmash:j_idt571"},ext);}}});});
alle i siden PrimeFaces.cw("CommandButton","widget_formSmash_j_idt579",{id:"formSmash:j_idt579",widgetVar:"widget_formSmash_j_idt579"}); 250 framåt PrimeFaces.cw("CommandButton","widget_formSmash_j_idt580",{id:"formSmash:j_idt580",widgetVar:"widget_formSmash_j_idt580"});
Rydd valg PrimeFaces.cw("CommandButton","widget_formSmash_j_idt582",{id:"formSmash:j_idt582",widgetVar:"widget_formSmash_j_idt582"});
$(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_j_idt585",{id:"formSmash:j_idt585",widgetVar:"widget_formSmash_j_idt585",target:"formSmash:selectHelpLink",showEffect:"blind",hideEffect:"fade",showCloseIcon:true});});
$(function(){PrimeFaces.cw("DataList","widget_formSmash_items_resultList",{id:"formSmash:items:resultList",widgetVar:"widget_formSmash_items_resultList"});});
PrimeFaces.cw("InputText","widget_formSmash_lower_j_idt949",{id:"formSmash:lower:j_idt949",widgetVar:"widget_formSmash_lower_j_idt949"}); Fler formatPrimeFaces.cw("InputText","widget_formSmash_lower_j_idt959",{id:"formSmash:lower:j_idt959",widgetVar:"widget_formSmash_lower_j_idt959"}); Fler språkSkapa PrimeFaces.cw("CommandButton","widget_formSmash_lower_j_idt968",{id:"formSmash:lower:j_idt968",widgetVar:"widget_formSmash_lower_j_idt968"}); Stäng PrimeFaces.cw("CommandButton","widget_formSmash_lower_j_idt969",{id:"formSmash:lower:j_idt969",widgetVar:"widget_formSmash_lower_j_idt969"});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt938",widgetVar:"citationDialog",width:"800",height:"600"});});

Begrens søket

RefereraExporteraLink til resultatlisten
http://kth.diva-portal.org/smash/resultList.jsf?query=&language=no&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22organisationId%22%3A%226116%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt503_recordPermLink",{id:"formSmash:upper:j_idt503:recordPermLink",widgetVar:"widget_formSmash_upper_j_idt503_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt503_j_idt505",{id:"formSmash:upper:j_idt503:j_idt505",widgetVar:"widget_formSmash_upper_j_idt503_j_idt505",target:"formSmash:upper:j_idt503:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Referera

Referensformatapa ieee modern-language-association-8th-edition vancouver Annet format $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt521",{id:"formSmash:upper:j_idt521",widgetVar:"widget_formSmash_upper_j_idt521",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt521",e:"change",f:"formSmash",p:"formSmash:upper:j_idt521",u:"formSmash:upper:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association-8th-edition
- vancouver
- Annet format

Språkde-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Annet språk $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt532",{id:"formSmash:upper:j_idt532",widgetVar:"widget_formSmash_upper_j_idt532",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt532",e:"change",f:"formSmash",p:"formSmash:upper:j_idt532",u:"formSmash:upper:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Annet språk

Utmatningsformathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt542",{id:"formSmash:upper:j_idt542",widgetVar:"widget_formSmash_upper_j_idt542"});});

- html
- text
- asciidoc
- rtf

Treff pr side

- 5
- 10
- 20
- 50
- 100
- 250

Sortering

- Standard (Relevans)
- Forfatter A-Ø
- Forfatter Ø-A
- Tittel A-Ø
- Tittel Ø-A
- Type publikasjon A-Ø
- Type publikasjon Ø-A
- Eldste først
- Nyeste først
- Skapad (Eldste først)
- Skapad (Nyeste først)
- Senast uppdaterad (Eldste først)
- Senast uppdaterad (Nyeste først)
- Disputationsdatum (tidligste først)
- Disputationsdatum (siste først)

- Standard (Relevans)
- Forfatter A-Ø
- Forfatter Ø-A
- Tittel A-Ø
- Tittel Ø-A
- Type publikasjon A-Ø
- Type publikasjon Ø-A
- Eldste først
- Nyeste først
- Skapad (Eldste først)
- Skapad (Nyeste først)
- Senast uppdaterad (Eldste først)
- Senast uppdaterad (Nyeste først)
- Disputationsdatum (tidligste først)
- Disputationsdatum (siste først)

Merk

Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.

1. The exact phase diagram for a semipermeable TASEP with nonlocal boundary jumps Aas, E.et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt609",{id:"formSmash:items:resultList:0:j_idt609",widgetVar:"widget_formSmash_items_resultList_0_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Ayyer, A.Linusson, SvanteKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).Potka, SamuKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); The exact phase diagram for a semipermeable TASEP with nonlocal boundary jumps2019Inngår i: Journal of Physics A: Mathematical and Theoretical, ISSN 1751-8113, E-ISSN 1751-8121, Vol. 52, nr 35, artikkel-id 355001Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:0:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_0_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We consider a finite one-dimensional totally asymmetric simple exclusion process with four types of particles, {1, 0, 1, }, in contact with reservoirs. Particles of species 0 can neither enter nor exit the lattice, and those of species are constrained to lie at the first and last site. Particles of species 1 enter from the left reservoir into either the first or second site, move rightwards, and leave from either the last or penultimate site. Conversely, particles of species 1 enter from the right reservoir into either the last or penultimate site, move leftwards, and leave from either the first or last site. This dynamics is motivated by a natural random walk on the Weyl group of type D. We compute the exact nonequilibrium steady state distribution using a matrix ansatz building on earlier work of Arita. We then give explicit formulas for the nonequilibrium partition function as well as densities and currents of all species in the steady state, and derive the phase diagram.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:0:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 2. A Markov Process on Cyclic Words Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt606",{id:"formSmash:items:resultList:1:j_idt606",widgetVar:"widget_formSmash_items_resultList_1_j_idt606",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A Markov Process on Cyclic Words2014Doktoravhandling, med artikler (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:1:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_1_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The TASEP (totally asymmetric simple exclusion process) studied here is a Markov chain on cyclic words over the alphabet{1,2,...,n} given by at each time step sorting an adjacent pair of letters chosen uniformly at random. For example, from the word 3124 one may go to 1324, 3124, 3124, 4123 by sorting the pair 31, 12, 24, or 43.

Two words have the sametype if they are permutations of each other. If we restrict TASEP to words of some particular type

**m**we get an ergodic Markov chain whose stationary distribution we denote by ζ_{m}. Soζ_{m }(u) is the asymptotic proportion of time spent in the state*u*if the chain started in some word of type**m**. The distribution ζ is the main object of study in this thesis. This distribution turns out to have several remarkable properties, and alternative characterizations. It has previously been studied both from physical, combinatorial, and probabilitistic viewpoints.In the first chapter we give an extended summary of known results and results in this thesis concerning ζ. The new results are described (and proved) in detail in Papers I - IV.

The new results in Papers I and II include an explicit formula for the value ofζat sorted words and a product formula for decomposable words. We also compute some correlation functions for ζ. In Paper III we study of a generalization of TASEP to Weyl groups. In Paper IV we study a certain scaling limit of ζ, finding several interesting patterns of which we prove some. We also study an inhomogenous version of TASEP, in which different particles get sorted at different rates, which generalizes the homogenous version in several aspects. In the first chapter we compute some correlation functions for ζ

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:1:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)Thesis$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_1_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:1:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_1_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:1:j_idt869:0:fullText"});}); 3. Limit points of the iterative scaling procedure Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt606",{id:"formSmash:items:resultList:2:j_idt606",widgetVar:"widget_formSmash_items_resultList_2_j_idt606",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Limit points of the iterative scaling procedure2014Inngår i: Annals of Operations Research, ISSN 0254-5330, E-ISSN 1572-9338, Vol. 215, nr 1, s. 15-23Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:2:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_2_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The iterative scaling procedure (ISP) is an algorithm which computes a sequence of matrices, starting from some given matrix. The objective is to find a matrix 'proportional' to the given matrix, having given row and column sums. In many cases, for example if the initial matrix is strictly positive, the sequence is convergent. It is known that the sequence has at most two limit points. When these are distinct, convergence to these two points can be slow. We give an efficient algorithm which finds the limit points, invoking the ISP only on subproblems for which the procedure is convergent.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:2:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 4. Stationary probability of the identity for the TASEP on a Ring Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt606",{id:"formSmash:items:resultList:3:j_idt606",widgetVar:"widget_formSmash_items_resultList_3_j_idt606",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Stationary probability of the identity for the TASEP on a Ring2012Annet (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:3:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_3_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Consider the following Markov chain on permutations of length n. At each time step we choose a random position. If the letter at that position is smaller than the letter immediately to the left (cyclically) then these letters swap positions. Otherwise nothing happens, corresponding to a loop in the Markov chain. This is the circular TASEP. We compute the average proportion of time the chain spends at the identity permutation (and, in greater generality, at sorted words). This answers a conjecture by Thomas Lam.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:3:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_3_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:3:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_3_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:3:j_idt869:0:fullText"});}); 5. TASEP in any Weyl group Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt606",{id:"formSmash:items:resultList:4:j_idt606",widgetVar:"widget_formSmash_items_resultList_4_j_idt606",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); TASEP in any Weyl groupManuskript (preprint) (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:4:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_4_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We investigate a Markov chain dened by Thomas Lam [6], whichgeneralizes the multi-type TASEP on a ring to any Weyl group. For groups of typeC we dene an analogue of the multiline queues of Ferrari and Martin (which com-pute the stationary distribution for the classical TASEP). While our constructiondoes not suce for nding the stationary distribution, the construction gives thestationary distribution of a certain projection of Lam's chain. Also, our approach isincremental, in the sense that the construction appears to t into a pattern of 'con-jugation matrices', which remains to be fully worked out. We conjecture an explicitformula for the partition function of the model. Finally, we prove a theorem for theclassical TASEP which ts into the picture of viewing TASEP in a permutation-freeway.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:4:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 6. Limiting directions for random walks in classical affine Weyl groups Aas, Eriket al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt609",{id:"formSmash:items:resultList:5:j_idt609",widgetVar:"widget_formSmash_items_resultList_5_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Ayyer, ArvindLinusson, SvanteKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).Potka, SamuKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Limiting directions for random walks in classical affine Weyl groupsManuskript (preprint) (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:5:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_5_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let be a finite Weyl group and the corresponding affine Weyl group. A random element of can be obtained as a reduced random walk on the alcoves of . By a theorem of Lam (Ann. Probab. 2015), such a walk almost surely approaches one of many directions. We compute these directions when is , and and the random walk is weighted by Kac and dual Kac labels. This settles Lam's questions for types and in the affirmative and for type in the negative. The main tool is a combinatorial two row model for a totally asymmetric simple exclusion process called the -TASEP, with four parameters. By specializing the parameters in different ways, we obtain TASEPs for each of the Weyl groups mentioned above. Computing certain correlations in these TASEPs gives the desired limiting directions.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:5:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_5_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:5:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_5_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:5:j_idt869:0:fullText"});}); 7. Limiting Directions for Random Walks in Classical Affine Weyl Groups Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt606",{id:"formSmash:items:resultList:6:j_idt606",widgetVar:"widget_formSmash_items_resultList_6_j_idt606",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt609",{id:"formSmash:items:resultList:6:j_idt609",widgetVar:"widget_formSmash_items_resultList_6_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Penn State Univ, Dept Math, University Pk, PA 16802 USA..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Ayyer, ArvindIndian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India..Linusson, SvanteKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).Potka, SamuKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Limiting Directions for Random Walks in Classical Affine Weyl Groups2021Inngår i: International mathematics research notices, ISSN 1073-7928, E-ISSN 1687-0247, Vol. 2023, nr 4, s. 3092-3137Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:6:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_6_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let W be a finite Weyl group and (W) over tilde the corresponding affine Weyl group. A random element of (W) over tilde can be obtained as a reduced random walk on the alcoves of (W) over tilde. By a theorem of Lam (Ann. Prob. 2015), such a walk almost surely approaches one of vertical bar W vertical bar many directions. We compute these directions when W is B-n, C-n, and D-n, and the random walk is weighted by Kac and dual Kac labels. This settles Lam's questions for types B and C in the affirmative and for type D in the negative. The main tool is a combinatorial two row model for a totally asymmetric simple exclusion process (TASEP) called the D*-TASEP, with four parameters. By specializing the parameters in different ways, we obtain TASEPs for each of the Weyl groups mentioned above. Computing certain correlations in these TASEPs gives the desired limiting directions.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:6:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 8. Continuous multiline queues and TASEP Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt606",{id:"formSmash:items:resultList:7:j_idt606",widgetVar:"widget_formSmash_items_resultList_7_j_idt606",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt609",{id:"formSmash:items:resultList:7:j_idt609",widgetVar:"widget_formSmash_items_resultList_7_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Linusson, SvanteKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Continuous multiline queues and TASEPManuskript (preprint) (Annet vitenskapelig)Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_7_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:7:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_7_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:7:j_idt869:0:fullText"});}); 9. A product formula for the TASEP on a ring Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt606",{id:"formSmash:items:resultList:8:j_idt606",widgetVar:"widget_formSmash_items_resultList_8_j_idt606",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt609",{id:"formSmash:items:resultList:8:j_idt609",widgetVar:"widget_formSmash_items_resultList_8_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Sjöstrand, JonasKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A product formula for the TASEP on a ring2016Inngår i: Random structures & algorithms (Print), ISSN 1042-9832, E-ISSN 1098-2418, Vol. 48, nr 2, s. 247-259Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:8:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_8_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); For a random permutation sampled from the stationary distributionof the TASEP on a ring, we show that, conditioned on the event that the rstentries are strictly larger than the last entries, the order of the rst entries isindependent of the order of the last entries. The proof uses multi-line queues asdened by Ferrari and Martin, and the theorem has an enumerative combinatorialinterpretation in that setting.As an application we prove a conjecture of Lam and Williams concerningSchubert factors of the stationary probability of certain states.Finally, we present a conjecture for the case where the small and large entriesare not separated.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:8:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 10. A product formula for the TASEP on a ring - Extended Abstract Aas, Erik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt606",{id:"formSmash:items:resultList:9:j_idt606",widgetVar:"widget_formSmash_items_resultList_9_j_idt606",onLabel:"Aas, Erik ",offLabel:"Aas, Erik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt609",{id:"formSmash:items:resultList:9:j_idt609",widgetVar:"widget_formSmash_items_resultList_9_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Sjöstrand, JonasKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A product formula for the TASEP on a ring - Extended Abstract2014Inngår i: Discrete Mathematics and Theoretical Computer Science, Discrete Mathematics and Theoretical Computer Science , 2014, s. 633-641Konferansepaper (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:9:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_9_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); For a random permutation sampled from the stationary distribution of the TASEP on a ring, we show that, conditioned on the event that the first entries are strictly larger than the last entries, the order of the first entries is independent of the order of the last entries. The proof uses multi-line queues as defined by Ferrari and Martin, and the theorem has an enumerative combinatorial interpretation in that setting. Finally, we present a conjecture for the case where the small and large entries are not separated.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:9:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 11. Predicting Stock Price Direction for Asian Small Cap Stocks with Machine Learning Methods Abazari, Tina PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt606",{id:"formSmash:items:resultList:10:j_idt606",widgetVar:"widget_formSmash_items_resultList_10_j_idt606",onLabel:"Abazari, Tina ",offLabel:"Abazari, Tina ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt609",{id:"formSmash:items:resultList:10:j_idt609",widgetVar:"widget_formSmash_items_resultList_10_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Baghchesara, SherwinKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Predicting Stock Price Direction for Asian Small Cap Stocks with Machine Learning Methods2021Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAbstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:10:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_10_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Portfolio managers have a great interest in detecting high-performing stocks early on. Detecting outperforming stocks has for long been of interest from a research as well as financial point of view. Quantitative methods to predict stock movements have been widely studied in diverse contexts, where some present promising results. The quantitative algorithms for such prediction models can be, to name a few, support vector machines, tree-based methods, and regression models, where each one can carry different predictive power. Most previous research focuses on indices such as S&P 500 or large-cap stocks, while small- and micro-cap stocks have been examined to a lesser extent. These types of stocks also commonly share the characteristic of high volatility, with prospects that can be difficult to assess. This study examines to which extent widely studied quantitative methods such as random forest, support vector machine, and logistic regression can produce accurate predictions of stock price directions on a quarterly and yearly basis. The problem is modeled as a binary classification task, where the aim is to predict whether a stock achieves a return above or below a benchmark index. The focus lies on Asian small- and micro-cap stocks. The study concludes that the random forest method for a binary yearly prediction produces the highest accuracy of 69.64%, where all three models produced higher accuracy than a binary quarterly prediction. Although the statistical power of the models can be ruled adequate, more extensive studies are desirable to examine whether other models or variables can increase the prediction accuracy for small- and micro-cap stocks.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:10:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_10_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:10:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_10_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:10:j_idt869:0:fullText"});}); 12. Branch point area methods in conformal mapping Abuzyarova, Nataliaet al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt609",{id:"formSmash:items:resultList:11:j_idt609",widgetVar:"widget_formSmash_items_resultList_11_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hedenmalm, HåkanKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Branch point area methods in conformal mapping2006Inngår i: Journal d'Analyse Mathematique, ISSN 0021-7670, E-ISSN 1565-8538, Vol. 99, s. 177-198Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:11:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_11_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The classical estimate of Bieberbach that vertical bar a(2)vertical bar <= 2 for a given univalent function phi(z) = z + a(2)z(2) +... in the class S leads to the best possible pointwise estimates of the ratio phi''(z)/phi'(z) for phi is an element of S, first obtained by K oe be and Bieberbach. For the corresponding class E of univalent functions in the exterior disk, Goluzin found in 1943 by variational methods the corresponding best possible pointwise estimates of psi(z)/psi'(z) for psi is an element of Sigma. It was perhaps surprising that this time, the expressions involve elliptic integrals. Here, we obtain an area-type theorem which has Goluzin's pointwise estimate as a corollary. This shows that Goluzin's estimate, like the K oe be-Bieberbach estimate, is firmly rooted in area-based methods. The appearance of elliptic integrals finds a natural explanation: they arise because a certain associated covering surface of the Riemann sphere is a torus.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:11:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 13. Convex configurations for solutions to semilinear elliptic problems in convex rings Acker, Andrewet al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt609",{id:"formSmash:items:resultList:12:j_idt609",widgetVar:"widget_formSmash_items_resultList_12_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Poghosyan, MichaelShahgholian, HenrikKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Convex configurations for solutions to semilinear elliptic problems in convex rings2006Inngår i: Communications in Partial Differential Equations, ISSN 0360-5302, E-ISSN 1532-4133, Vol. 31, nr 9, s. 1273-1287Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:12:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_12_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); For a given convex ring Omega = Omega(2)\(Omega) over bar (1) and an L-1 function f : Omega x R -> R+ we show, under suitable assumptions on f, that there exists a solution (in the weak sense) to Delta(p)u = f(x, u) in Omega u = 0 on partial derivative Omega(2) u = M on partial derivative Omega(1) with {x is an element of Omega : u(x) > s} boolean OR Omega(1) convex, for all s is an element of (0, M).

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:12:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 14. FAQ on the g-theorem and the hard Lefschetz theorem for face rings Adiprasito, Karim PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt606",{id:"formSmash:items:resultList:13:j_idt606",widgetVar:"widget_formSmash_items_resultList_13_j_idt606",onLabel:"Adiprasito, Karim ",offLabel:"Adiprasito, Karim ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); FAQ on the g-theorem and the hard Lefschetz theorem for face rings2019Inngår i: Rendiconti di Matematica e delle sue Applicazioni. Serie VII, ISSN 1120-7183, Vol. 40, nr 2, s. 97-111Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:13:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_13_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We discuss the hard Lefschetz theorem for simplicial spheres, as well as the theory at its core: Perturbations of maps, biased Poincaré pairings and a cobordism argument that relates the Lefschetz property of a manifold to the Lefschetz property on its boundary, and sketch an alternative argument based on edge-contractions.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:13:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 15. Face numbers of sequentially Cohen-Macaulay complexes and Betti numbers of componentwise linear ideals Adiprasito, Karimet al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt609",{id:"formSmash:items:resultList:14:j_idt609",widgetVar:"widget_formSmash_items_resultList_14_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Björner, AndersKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).Goodarzi, AfshinFreie Universität, Germany.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Face numbers of sequentially Cohen-Macaulay complexes and Betti numbers of componentwise linear ideals2017Inngår i: Journal of the European Mathematical Society (Print), ISSN 1435-9855, E-ISSN 1435-9863, Vol. 19, nr 12, s. 3851-3865Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:14:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_14_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); A numerical characterization is given of the h-triangles of sequentially Cohen-Macaulay simplicial complexes. This result determines the number of faces of various dimensions and codimensions that are possible in such a complex, generalizing the classical Macaulay-Stanley theorem to the nonpure case. Moreover, we characterize the possible Betti tables of componentwise linear ideals. A key tool in our investigation is a bijection between shifted multicomplexes of degree <= d and shifted pure. (d - 1)-dimensional simplicial complexes.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:14:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 16. Connectivity of pseudomanifold graphs from an algebraic point of view Adiprasito, Karimet al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt609",{id:"formSmash:items:resultList:15:j_idt609",widgetVar:"widget_formSmash_items_resultList_15_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Goodarzi, AfshinKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).Varbaro, MatteoPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Connectivity of pseudomanifold graphs from an algebraic point of view2015Inngår i: Comptes Rendus Mathematiques de l'Academie des Sciences = Mathematical reports of the academy of science, ISSN 0706-1994, Vol. 353, nr 12, s. 1061-1065Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:15:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_15_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The connectivity of graphs of simplicial and polytopal complexes is a classical subject going back at least to Steinitz, and the topic has since been studied by many authors, including Balinski, Barnette, Athanasiadis, and Bjorner. In this note, we provide a unifying approach that allows us to obtain more general results. Moreover, we provide a relation to commutative algebra by relating connectivity problems to graded Betti numbers of the associated Stanley-Reisner rings.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:15:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 17. Data-driven Methods in Inverse Problems Adler, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt606",{id:"formSmash:items:resultList:16:j_idt606",widgetVar:"widget_formSmash_items_resultList_16_j_idt606",onLabel:"Adler, Jonas ",offLabel:"Adler, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Data-driven Methods in Inverse Problems2019Doktoravhandling, med artikler (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:16:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_16_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this thesis on data-driven methods in inverse problems we introduce several new methods to solve inverse problems using recent advancements in machine learning and specifically deep learning. The main goal has been to develop practically applicable methods, scalable to medical applications and with the ability to handle all the complexities associated with them.

In total, the thesis contains six papers. Some of them are focused on more theoretical questions such as characterizing the optimal solutions of reconstruction schemes or extending current methods to new domains, while others have focused on practical applicability. A significant portion of the papers also aim to bringing knowledge from the machine learning community into the imaging community, with considerable effort spent on translating many of the concepts. The papers have been published in a range of venues: machine learning, medical imaging and inverse problems.

The first two papers contribute to a class of methods now called learned iterative reconstruction where we introduce two ways of combining classical model driven reconstruction methods with deep neural networks. The next two papers look forward, aiming to address the question of "what do we want?" by proposing two very different but novel loss functions for training neural networks in inverse problems. The final papers dwelve into the statistical side, one gives a generalization of a class of deep generative models to Banach spaces while the next introduces two ways in which such methods can be used to perform Bayesian inversion at scale.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:16:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_16_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:16:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_16_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:16:j_idt869:0:fullText"});}); 18. Learned Iterative Reconstruction Adler, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt606",{id:"formSmash:items:resultList:17:j_idt606",widgetVar:"widget_formSmash_items_resultList_17_j_idt606",onLabel:"Adler, Jonas ",offLabel:"Adler, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:17:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Learned Iterative Reconstruction2023Inngår i: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision, Springer Nature , 2023, s. 751-771Kapittel i bok, del av antologi (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_17_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:17:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_17_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Learned iterative reconstruction methods have recently emerged as a powerful tool to solve inverse problems. These deep learning techniques for image reconstruction achieve remarkable speed and accuracy by combining hard knowledge about the physics of the image formation process, represented by the forward operator, with soft knowledge about how the reconstructions should look like, represented by deep neural networks. A diverse set of such methods have been proposed, and this chapter seeks to give an overview of their similarities and differences, as well as discussing some of the commonly used methods to improve their performance.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:17:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 19. Banach Wasserstein GAN Adler, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt606",{id:"formSmash:items:resultList:18:j_idt606",widgetVar:"widget_formSmash_items_resultList_18_j_idt606",onLabel:"Adler, Jonas ",offLabel:"Adler, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt609",{id:"formSmash:items:resultList:18:j_idt609",widgetVar:"widget_formSmash_items_resultList_18_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Lunz, SebastianUniv Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:18:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Banach Wasserstein GAN2018Inngår i: Advances in Neural Information Processing Systems 31 (NIPS 2018) / [ed] Bengio, S Wallach, H Larochelle, H Grauman, K CesaBianchi, N Garnett, R, Neural Information Processing Systems (NIPS) , 2018Konferansepaper (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_18_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:18:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_18_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Wasserstein Generative Adversarial Networks (WGANs) can be used to generate realistic samples from complicated image distributions. The Wasserstein metric used in WGANs is based on a notion of distance between individual images, which induces a notion of distance between probability distributions of images. So far the community has considered l(2) as the underlying distance. We generalize the theory of WGAN with gradient penalty to Banach spaces, allowing practitioners to select the features to emphasize in the generator. We further discuss the effect of some particular choices of underlying norms, focusing on Sobolev norms. Finally, we demonstrate a boost in performance for an appropriate choice of norm on CIFAR-10 and CelebA.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:18:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 20. Task adapted reconstruction for inverse problems Adler, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt606",{id:"formSmash:items:resultList:19:j_idt606",widgetVar:"widget_formSmash_items_resultList_19_j_idt606",onLabel:"Adler, Jonas ",offLabel:"Adler, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt609",{id:"formSmash:items:resultList:19:j_idt609",widgetVar:"widget_formSmash_items_resultList_19_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). DeepMind, 6 Pancras Square, London, N1C 4AG, United Kingdom.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Lunz, SebastianUniv Cambridge, Ctr Math Sci, Cambridge CB3 0WA, England..Verdier, OlivierKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). Department of Computing, Mathematics and Physics, Western Norway University of Applied Sciences, Bergen, Norway.Schonlieb, Carola-BibianeUniv Cambridge, Ctr Math Sci, Cambridge CB3 0WA, England..Öktem, OzanKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). Division of Scientific Computing, Department of Information Technology, Uppsala University.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:19:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Task adapted reconstruction for inverse problems2022Inngår i: Inverse Problems, ISSN 0266-5611, E-ISSN 1361-6420, Vol. 38, nr 7, artikkel-id 075006Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_19_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:19:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_19_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The paper considers the problem of performing a post-processing task defined on a model parameter that is only observed indirectly through noisy data in an ill-posed inverse problem. A key aspect is to formalize the steps of reconstruction and post-processing as appropriate estimators (non-randomized decision rules) in statistical estimation problems. The implementation makes use of (deep) neural networks to provide a differentiable parametrization of the family of estimators for both steps. These networks are combined and jointly trained against suitable supervised training data in order to minimize a joint differentiable loss function, resulting in an end-to-end task adapted reconstruction method. The suggested framework is generic, yet adaptable, with a plug-and-play structure for adjusting both the inverse problem and the post-processing task at hand. More precisely, the data model (forward operator and statistical model of the noise) associated with the inverse problem is exchangeable, e.g., by using neural network architecture given by a learned iterative method. Furthermore, any post-processing that can be encoded as a trainable neural network can be used. The approach is demonstrated on joint tomographic image reconstruction, classification and joint tomographic image reconstruction segmentation.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:19:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 21. Task adapted reconstruction for inverse problems Adler, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt606",{id:"formSmash:items:resultList:20:j_idt606",widgetVar:"widget_formSmash_items_resultList_20_j_idt606",onLabel:"Adler, Jonas ",offLabel:"Adler, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt609",{id:"formSmash:items:resultList:20:j_idt609",widgetVar:"widget_formSmash_items_resultList_20_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). Elekta.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Lunz, SebastianCentre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom.Verdier, OlivierDepartment of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden ; Department of Computing, Mathematics and Physics, Western Norway University of Applied Sciences, Bergen, Norway.Schönlieb, Carola-BibianeCentre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom.Öktem, OzanKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:20:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Task adapted reconstruction for inverse problemsManuskript (preprint) (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_20_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:20:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_20_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The paper considers the problem of performing a task defined on a model parameter that is only observed indirectly through noisy data in an ill-posed inverse problem. A key aspect is to formalize the steps of reconstruction and task as appropriate estimators (non-randomized decision rules) in statistical estimation problems. The implementation makes use of (deep) neural networks to provide a differentiable parametrization of the family of estimators for both steps. These networks are combined and jointly trained against suitable supervised training data in order to minimize a joint differentiable loss function, resulting in an end-to-end task adapted reconstruction method. The suggested framework is generic, yet adaptable, with a plug-and-play structure for adjusting both the inverse problem and the task at hand. More precisely, the data model (forward operator and statistical model of the noise) associated with the inverse problem is exchangeable, e.g., by using neural network architecture given by a learned iterative method. Furthermore, any task that is encodable as a trainable neural network can be used. The approach is demonstrated on joint tomographic image reconstruction, classification and joint tomographic image reconstruction segmentation.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:20:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_20_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:20:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_20_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:20:j_idt869:0:fullText"});}); 22. Learning to solve inverse problems using Wasserstein loss Adler, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt606",{id:"formSmash:items:resultList:21:j_idt606",widgetVar:"widget_formSmash_items_resultList_21_j_idt606",onLabel:"Adler, Jonas ",offLabel:"Adler, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt609",{id:"formSmash:items:resultList:21:j_idt609",widgetVar:"widget_formSmash_items_resultList_21_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). Elekta, Box 7593, 103 93 Stockholm, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Ringh, AxelKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Optimeringslära och systemteori.Öktem, OzanKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).Karlsson, JohanKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Optimeringslära och systemteori.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:21:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Learning to solve inverse problems using Wasserstein lossManuskript (preprint) (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_21_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:21:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_21_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We propose using the Wasserstein loss for training in inverse problems. In particular, we consider a learned primal-dual reconstruction scheme for ill-posed inverse problems using the Wasserstein distance as loss function in the learning. This is motivated by miss-alignments in training data, which when using standard mean squared error loss could severely degrade reconstruction quality. We prove that training with the Wasserstein loss gives a reconstruction operator that correctly compensates for miss-alignments in certain cases, whereas training with the mean squared error gives a smeared reconstruction. Moreover, we demonstrate these effects by training a reconstruction algorithm using both mean squared error and optimal transport loss for a problem in computerized tomography.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:21:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 23. Deep Bayesian Inversion Adler, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt606",{id:"formSmash:items:resultList:22:j_idt606",widgetVar:"widget_formSmash_items_resultList_22_j_idt606",onLabel:"Adler, Jonas ",offLabel:"Adler, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt609",{id:"formSmash:items:resultList:22:j_idt609",widgetVar:"widget_formSmash_items_resultList_22_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). Elekta.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Öktem, OzanKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:22:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Deep Bayesian InversionManuskript (preprint) (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_22_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:22:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_22_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Characterizing statistical properties of solutions of inverse problems is essential for decision making. Bayesian inversion offers a tractable framework for this purpose, but current approaches are computationally unfeasible for most realistic imaging applications in the clinic. We introduce two novel deep learning based methods for solving large-scale inverse problems using Bayesian inversion: a sampling based method using a WGAN with a novel mini-discriminator and a direct approach that trains a neural network using a novel loss function. The performance of both methods is demonstrated on image reconstruction in ultra low dose 3D helical CT. We compute the posterior mean and standard deviation of the 3D images followed by a hypothesis test to assess whether a "dark spot" in the liver of a cancer stricken patient is present. Both methods are computationally efficient and our evaluation shows very promising performance that clearly supports the claim that Bayesian inversion is usable for 3D imaging in time critical applications.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:22:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_22_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:22:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_22_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:22:j_idt869:0:fullText"});}); 24. Learned Primal-Dual Reconstruction Adler, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt606",{id:"formSmash:items:resultList:23:j_idt606",widgetVar:"widget_formSmash_items_resultList_23_j_idt606",onLabel:"Adler, Jonas ",offLabel:"Adler, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt609",{id:"formSmash:items:resultList:23:j_idt609",widgetVar:"widget_formSmash_items_resultList_23_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). Elekta Instrument AB, Stockholm, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Öktem, OzanKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:23:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Learned Primal-Dual Reconstruction2018Inngår i: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 37, nr 6, s. 1322-1332Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_23_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:23:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_23_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We propose the Learned Primal-Dual algorithm for tomographic reconstruction. The algorithm accounts for a (possibly non-linear) forward operator in a deep neural network by unrolling a proximal primal-dual optimization method, but where the proximal operators have been replaced with convolutional neural networks. The algorithm is trained end-to-end, working directly from raw measured data and it does not depend on any initial reconstruction such as filtered back-projection (FBP). We compare performance of the proposed method on low dose computed tomography reconstruction against FBP, total variation (TV), and deep learning based post-processing of FBP. For the Shepp-Logan phantom we obtain >6 dB peak signal to noise ratio improvement against all compared methods. For human phantoms the corresponding improvement is 6.6 dB over TV and 2.2 dB over learned post-processing along with a substantial improvement in the structural similarity index. Finally, our algorithm involves only ten forward-back-projection computations, making the method feasible for time critical clinical applications.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:23:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 25. Solving ill-posed inverse problems using iterative deep neural networks Adler, Jonas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt606",{id:"formSmash:items:resultList:24:j_idt606",widgetVar:"widget_formSmash_items_resultList_24_j_idt606",onLabel:"Adler, Jonas ",offLabel:"Adler, Jonas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt609",{id:"formSmash:items:resultList:24:j_idt609",widgetVar:"widget_formSmash_items_resultList_24_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:24:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Öktem, OzanKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:24:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Solving ill-posed inverse problems using iterative deep neural networks2017Inngår i: Inverse Problems, ISSN 0266-5611, E-ISSN 1361-6420, Vol. 33, nr 12, artikkel-id 124007Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_24_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:24:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_24_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We propose a partially learned approach for the solution of ill-posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularisation theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularising functional. The method results in a gradient-like iterative scheme, where the 'gradient' component is learned using a convolutional network that includes the gradients of the data discrepancy and regulariser as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against filtered backprojection and total variation reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the total variation reconstruction while being significantly faster, giving reconstructions of 512 x 512 pixel images in about 0.4 s using a single graphics processing unit (GPU).

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:24:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 26. Tacnode GUE-minor processes and double Aztec diamonds Adler, M.et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_25_j_idt609",{id:"formSmash:items:resultList:25:j_idt609",widgetVar:"widget_formSmash_items_resultList_25_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:25:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Chhita, S.Johansson, KurtKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).van Moerbeke, P.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:25:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tacnode GUE-minor processes and double Aztec diamonds2015Inngår i: Probability theory and related fields, ISSN 0178-8051, E-ISSN 1432-2064, Vol. 162, nr 1-2, s. 275-325Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_25_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:25:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_25_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study determinantal point processes arising in random domino tilings of a double Aztec diamond, a region consisting of two overlapping Aztec diamonds. At a turning point in a single Aztec diamond where the disordered region touches the boundary, the natural limiting process is the GUE-minor process. Increasing the size of a double Aztec diamond while keeping the overlap between the two Aztec diamonds finite, we obtain a new determinantal point process which we call the tacnode GUE-minor process. This process can be thought of as two colliding GUE-minor processes. As part of the derivation of the particle kernel whose scaling limit naturally gives the tacnode GUE-minor process, we find the inverse Kasteleyn matrix for the dimer model version of the Double Aztec diamond.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:25:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 27. Double Aztec diamonds and the tacnode process Adler, Market al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_26_j_idt609",{id:"formSmash:items:resultList:26:j_idt609",widgetVar:"widget_formSmash_items_resultList_26_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:26:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Johansson, KurtKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).van Moerbeke, PierrePrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:26:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Double Aztec diamonds and the tacnode process2014Inngår i: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 252, s. 518-571Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_26_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:26:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_26_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Discrete and continuous non-intersecting random processes have given rise to critical "infinite-dimensional diffusions", like the Airy process, the Pearcey process and variations thereof. It has been known that domino tilings of very large Aztec diamonds lead macroscopically to a disordered region within an inscribed ellipse (arctic circle in the homogeneous case), and a regular brick-like region outside the ellipse. The fluctuations near the ellipse, appropriately magnified and away from the boundary of the Aztec diamond, form an Airy process, run with time tangential to the boundary. This paper investigates the domino tiling of two overlapping Aztec diamonds; this situation also leads to non-intersecting random walks and an induced point process; this process is shown to be determinantal. In the large size limit, when the overlap is such that the two arctic ellipses for the single Aztec diamonds merely touch, a new critical process will appear near the point of osculation (tacnode), which is run with a time in the direction of the common tangent to the ellipses: this is the tacnode process. It is also-shown here that this tacnode process is universal: it coincides with the one found in the context of two groups of non-intersecting random walks or also Brownian motions, meeting momentarily.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:26:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 28. Lozenge Tilings of Hexagons with Cuts and Asymptotic Fluctuations Adler, Market al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_27_j_idt609",{id:"formSmash:items:resultList:27:j_idt609",widgetVar:"widget_formSmash_items_resultList_27_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:27:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Johansson, KurtKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).van Moerbeke, PierrePrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:27:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Lozenge Tilings of Hexagons with Cuts and Asymptotic Fluctuations: a New Universality Class2018Inngår i: Mathematical physics, analysis and geometry, ISSN 1385-0172, E-ISSN 1572-9656, Vol. 21, nr 1, artikkel-id 9Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_27_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:27:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_27_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This paper investigates lozenge tilings of non-convex hexagonal regions and more specifically the asymptotic fluctuations of the tilings within and near the strip formed by opposite cuts in the regions, when the size of the regions tend to infinity, together with the cuts. It leads to a new kernel, which is expected to have universality properties.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:27:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 29. Global and Relative Topological Features from Homological Invariants of Subsampled Datasets Agerberg, Jens PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt606",{id:"formSmash:items:resultList:28:j_idt606",widgetVar:"widget_formSmash_items_resultList_28_j_idt606",onLabel:"Agerberg, Jens ",offLabel:"Agerberg, Jens ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt609",{id:"formSmash:items:resultList:28:j_idt609",widgetVar:"widget_formSmash_items_resultList_28_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:28:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Chachólski, WojciechKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). DatAnon, Corporation.Ramanujam, RyanDatAnon, Corporation, DatAnon, Corporation; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:28:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Global and Relative Topological Features from Homological Invariants of Subsampled Datasets2023Inngår i: Proceedings of the 2nd Annual Topology, Algebra, and Geometry in Machine Learning, TAG-ML 2023, ML Research Press , 2023, s. 302-312Konferansepaper (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_28_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:28:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_28_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Homology-based invariants can be used to characterize the geometry of datasets and thereby gain some understanding of the processes generating those datasets. In this work we investigate how the geometry of a dataset changes when it is subsampled in various ways. In our framework the dataset serves as a reference object; we then consider different points in the ambient space and endow them with a geometry defined in relation to the reference object, for instance by subsampling the dataset proportionally to the distance between its elements and the point under consideration. We illustrate how this process can be used to extract rich geometrical information, allowing for example to classify points coming from different data distributions.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:28:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 30. Supervised Learning Using Homology Stable Rank Kernels Agerberg, Jens PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt606",{id:"formSmash:items:resultList:29:j_idt606",widgetVar:"widget_formSmash_items_resultList_29_j_idt606",onLabel:"Agerberg, Jens ",offLabel:"Agerberg, Jens ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt609",{id:"formSmash:items:resultList:29:j_idt609",widgetVar:"widget_formSmash_items_resultList_29_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:29:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Ramanujam, RyanKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).Scolamiero, MartinaKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).Chachólski, WojciechKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:29:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Supervised Learning Using Homology Stable Rank Kernels2021Inngår i: FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, ISSN 2297-4687, Vol. 7, artikkel-id 668046Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_29_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:29:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_29_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Exciting recent developments in Topological Data Analysis have aimed at combining homology-based invariants with Machine Learning. In this article, we use hierarchical stabilization to bridge between persistence and kernel-based methods by introducing the so-called stable rank kernels. A fundamental property of the stable rank kernels is that they depend on metrics to compare persistence modules. We illustrate their use on artificial and real-world datasets and show that by varying the metric we can improve accuracy in classification tasks.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:29:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 31. Some completeness theorems in the Menger probabilistic metric space Aghajani, A.et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_30_j_idt609",{id:"formSmash:items:resultList:30:j_idt609",widgetVar:"widget_formSmash_items_resultList_30_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:30:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Razani, AbdolrahmanKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). Department of Mathematics, Faculty of Science, Imam Khomeini International University, Iran .PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:30:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Some completeness theorems in the Menger probabilistic metric space2008Inngår i: Applied Sciences: APPS, E-ISSN 1454-5101, Vol. 10, s. 1-8Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_30_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:30:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_30_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this article, some new completeness theorems in probabilistic normed space are proved. Moreover, the existence of a constrictive Monger probabilistic normed space is shown.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:30:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 32. Pointwise estimates for systems of coupled p-laplacian elliptic equations Aghajani, Asadollah PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt606",{id:"formSmash:items:resultList:31:j_idt606",widgetVar:"widget_formSmash_items_resultList_31_j_idt606",onLabel:"Aghajani, Asadollah ",offLabel:"Aghajani, Asadollah ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt609",{id:"formSmash:items:resultList:31:j_idt609",widgetVar:"widget_formSmash_items_resultList_31_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:31:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Shahgholian, HenrikKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:31:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Pointwise estimates for systems of coupled p-laplacian elliptic equations2023Inngår i: Communications on Pure and Applied Analysis, ISSN 1534-0392, E-ISSN 1553-5258, Vol. 22, nr 3, s. 899-921Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_31_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:31:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_31_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This work examines positive solutions of systems of inequalities ±∆pu ≥ ρ(x)f (u), in Ω, where p = (p1, ..., pk), pi > 1 and ∆p is the diagonal-matrix diag(∆p1 , ..., ∆pk ), ∆pi is the pi-Laplace operator, Ω is an arbitrary domain (bounded or not) in RN (N ≥ 2), u = (u1, ..., uk)T and f = (f1, ..., fk)T are vector-valued functions and ρ(x) is a nonnegative function in Ω which is locally bounded. Using a maximum principle-based argument we provide explicit estimates on positive solutions u at each point x ∈ Ω, and as applications we find Liouville type results in unbounded domains such as RN, exterior domains or generally unbounded domains with the property that supx∈Ω dist(x, ∂Ω) = ∞, for various nonlinearities f and weights ρ. We also give explicit upper bounds on extremal parameters of related nonlinear multi-parameter eigenvalue problems in bounded domains.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:31:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 33. Malmheden's theorem revisited Agranovsky, M.et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt609",{id:"formSmash:items:resultList:32:j_idt609",widgetVar:"widget_formSmash_items_resultList_32_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:32:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Khavinson, D.Shapiro, HaroldKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:32:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Malmheden's theorem revisited2010Inngår i: Expositiones mathematicae, ISSN 0723-0869, E-ISSN 1878-0792, Vol. 28, nr 4, s. 337-350Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_32_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:32:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_32_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In 1934 Malmheden [16] discovered an elegant geometric algorithm for solving the Dirichlet problem in a ball. Although his result was rediscovered independently by Duffin (1957) [8] 23 years later, it still does not seem to be widely known. In this paper we return to Malmheden's theorem, give an alternative proof of the result that allows generalization to polyharmonic functions and, also, discuss applications of his theorem to geometric properties of harmonic measures in balls in R-n.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:32:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 34. Building Data for Stacky Covers Ahlqvist, Eric PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt606",{id:"formSmash:items:resultList:33:j_idt606",widgetVar:"widget_formSmash_items_resultList_33_j_idt606",onLabel:"Ahlqvist, Eric ",offLabel:"Ahlqvist, Eric ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:33:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:33:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Building Data for Stacky CoversManuskript (preprint) (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_33_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:33:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_33_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We define

*stacky building data*for*stacky covers*in the spirit of Pardini and give an equivalence of (2,1)-categories between the category of stacky covers and the category of stacky building data. We show that every stacky cover is a flat root stack in the sense of Olsson and Borne–Vistoli and give an intrinsic description of it as a root stack using stacky building data. When the base scheme S is defined over a field, we give a criterion for when a*birational*building datum comes from a tamely ramified cover for a finite abelian group scheme, generalizing a result of Biswas–Borne.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:33:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 35. Building Data for Stacky Covers and the Étale Cohomology Ring of an Arithmetic Curve Ahlqvist, Eric PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt606",{id:"formSmash:items:resultList:34:j_idt606",widgetVar:"widget_formSmash_items_resultList_34_j_idt606",onLabel:"Ahlqvist, Eric ",offLabel:"Ahlqvist, Eric ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:34:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:34:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Building Data for Stacky Covers and the Étale Cohomology Ring of an Arithmetic Curve: Du som saknar dator/datorvana kan kontakta phdadm@math.kth.se för information2020Licentiatavhandling, med artikler (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_34_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:34:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_34_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This thesis consists of two papers with somewhat different flavours. In Paper I we compute the étale cohomology ring H^*(X,Z/nZ) for X the ring of integers of a number field K. As an application, we give a non-vanishing formula for an invariant defined by Minhyong Kim. We also give examples of two distinct number fields whose rings of integers have isomorphic cohomology groups but distinct cohomology ring structures.

In Paper II we define

*stacky building data*for*stacky covers*in the spirit of Pardini and give an equivalence of (2, 1)-categories between the category of stacky covers and the category of stacky building data. We show that every stacky cover is a flat root stack in the sense of Olsson and Borne–Vistoli and give an intrinsic description of it as a root stack using stacky building data. When the base scheme S is defined over a field, we give a criterion for when a stacky building datum comes from a ramified cover for a finite abelian group scheme over k, generalizing a result of Biswas–Borne.PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:34:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_34_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:34:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_34_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:34:j_idt869:0:fullText"});}); 36. Operations on Étale Sheaves of Sets Ahlqvist, Eric PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_35_j_idt606",{id:"formSmash:items:resultList:35:j_idt606",widgetVar:"widget_formSmash_items_resultList_35_j_idt606",onLabel:"Ahlqvist, Eric ",offLabel:"Ahlqvist, Eric ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:35:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:35:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Operations on Étale Sheaves of Sets2016Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAbstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_35_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:35:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_35_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Rydh showed in 2011 that any unramiﬁed morphism ƒof algebraic spaces (algebraic stacks) has a canonical and universal factorization through an algebraic space (algebraic stack) called the étale envelope of ƒ, where the ﬁrst morphism is a closed immersion and the second is étale. We show that when ƒ is étale then the étale envelope can be described by applying the left adjoint of the pullback of ƒ to the constant sheaf deﬁned by a pointed set with two elements. When ƒ is a monomorphism locally of ﬁnite type we have a similar construction using the direct image with proper support.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:35:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_35_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:35:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_35_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:35:j_idt869:0:fullText"});}); 37. Stacky Modifications and Operations in the Étale Cohomology of Number Fields Ahlqvist, Eric PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_36_j_idt606",{id:"formSmash:items:resultList:36:j_idt606",widgetVar:"widget_formSmash_items_resultList_36_j_idt606",onLabel:"Ahlqvist, Eric ",offLabel:"Ahlqvist, Eric ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:36:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:36:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Stacky Modifications and Operations in the Étale Cohomology of Number Fields2022Doktoravhandling, med artikler (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_36_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:36:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_36_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This thesis consists of 4 papers. In Paper A we define stacky building data for stacky covers in the spirit of Pardini and give an equivalence of (2,1)- categories between the category of stacky covers and the category of stacky building data. We show that every stacky cover is a flat root stack in the sense of Olsson and Borne–Vistoli and give an intrinsic description of it as a root stack using stacky building data. When the base scheme S is defined over a field, we give a criterion for when a stacky building datum comes from a ramified cover for a finite abelian group scheme over k, generalizing a result of Biswas–Borne.

In Paper B we compute the étale cohomology ring H*(X,Z/nZ) for X the spectrum of the ring of integers of a number field K. As an application, we give a non-vanishing formula for an invariant defined by Minhyong Kim. We also give examples of two distinct number fields whose rings of integers have isomorphic cohomology groups but distinct cohomology ring structures.

In Paper C we generalize the results of Paper B to include the case when X is replaced by an open subset U ⊆ X, where we have removed a finite number of closed points from X. We show that when U is the complement of two odd primes p and q which are congruent to 1 (mod 4), the Legendre symbol of p over q may be interpreted as a cup product in H*(U,Z/2Z).

In Paper D we find formulas for Massey products in étale cohomology of the ring of integers of a number field. Then we use these formulas to, with the help of a computer, find the first ever known examples of imaginary quadratic fields with p-class group of rank 2 for odd p and infinite class field tower. We also compute examples disproving McLeman’s (3, 3)-conjecture.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:36:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)Kappa$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_36_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:36:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_36_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:36:j_idt869:0:fullText"});}); 38. Massey Products in the Étale Cohomology of Number Fields Ahlqvist, Eric PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt606",{id:"formSmash:items:resultList:37:j_idt606",widgetVar:"widget_formSmash_items_resultList_37_j_idt606",onLabel:"Ahlqvist, Eric ",offLabel:"Ahlqvist, Eric ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt609",{id:"formSmash:items:resultList:37:j_idt609",widgetVar:"widget_formSmash_items_resultList_37_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:37:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Carlson, MagnusKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:37:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Massey Products in the Étale Cohomology of Number FieldsManuskript (preprint) (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_37_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:37:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_37_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We give formulas for 3-fold Massey products in the étale cohomology of the ring of integers of a number field and use these to find the first known examples of imaginary quadratic fields with class group of p-rank two possessing an infinite p-class field tower, where p is an odd prime. We also disprove McLeman's (3,3)-conjecture.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:37:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 39. The Étale Cohomology Ring of a Punctured Arithmetic Curve Ahlqvist, Eric PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_38_j_idt606",{id:"formSmash:items:resultList:38:j_idt606",widgetVar:"widget_formSmash_items_resultList_38_j_idt606",onLabel:"Ahlqvist, Eric ",offLabel:"Ahlqvist, Eric ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_38_j_idt609",{id:"formSmash:items:resultList:38:j_idt609",widgetVar:"widget_formSmash_items_resultList_38_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:38:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Carlson, MagnusKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:38:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); The Étale Cohomology Ring of a Punctured Arithmetic CurveManuskript (preprint) (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_38_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:38:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_38_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We compute the cohomology ring H*(U,ℤ/nℤ) for U=X∖S where X is the spectrum of the ring of integers of a number field K and S is a finite set of finite primes.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:38:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 40. Limit Shapes for q<sup>Volume</sup> Tilings of a Large Hexagon Ahmed, Bako PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_39_j_idt606",{id:"formSmash:items:resultList:39:j_idt606",widgetVar:"widget_formSmash_items_resultList_39_j_idt606",onLabel:"Ahmed, Bako ",offLabel:"Ahmed, Bako ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:39:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:39:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Limit Shapes for q^{Volume}Tilings of a Large Hexagon2020Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAbstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_39_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:39:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_39_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Lozenges are polygons constructed by gluing two equilateral triangles along an edge. We can fit lozenge pieces together to form larger polygons and given an appropriate polygon we can tile it with lozenges. Lozenge tilings of the semi-regular hexagon with sides A,B,C can be viewed as the 2D picture of a stack of cubes in a A x B x C box. In this project we investigate the typical shape of a tiling as the sides A,B,C of the box grow uniformly to infinity and we consider two cases: The uniform case where all tilings occur with equal probability and the q^Volume case where the probability of a tiling is proportional to the volume taken up by the corresponding stack of cubes. To investigate lozenge tilings we transform it into a question on families of non-intersecting paths on a corresponding graph representing the hexagon. Using the Lindström–Gessel–Viennot theorem we can define the probability of a non-intersecting path crossing a particular point in the hexagon both for the uniform and the $q$-Volume case. In each case this probability function is connected to either the Hahn or the $q$-Hahn orthogonal polynomials. The orthogonal polynomials depend on the sides of the hexagon and so we consider the asymptotic behaviour of the polynomials as the sides grow to infinity using a result due to Kuijlaars and Van Assche. This determines the density of non-intersecting paths through every point in the hexagon, which we calculate, and a ``Arctic curve" result which shows that the six corners of the hexagon are (with probability one) tiled with just one type of lozenge.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:39:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_39_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:39:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_39_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:39:j_idt869:0:fullText"});}); 41. On metric Diophantine approximation in matrices and Lie groups Aka, Mennyet al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_40_j_idt609",{id:"formSmash:items:resultList:40:j_idt609",widgetVar:"widget_formSmash_items_resultList_40_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:40:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Breuillard, EmmanuelRosenzweig, LiorKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).de Saxce, NicolasPrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:40:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On metric Diophantine approximation in matrices and Lie groups2015Inngår i: Comptes rendus. Mathematique, ISSN 1631-073X, E-ISSN 1778-3569, Vol. 353, nr 3, s. 185-189Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_40_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:40:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_40_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study the Diophantine exponent of analytic submanifolds of m x n real matrices, answering questions of Beresnevich, Kleinbock, and Margulis. We identify a family of algebraic obstructions to the extremality of such a submanifold, and give a formula for the exponent when the submanifold is algebraic and defined over Q. We then apply these results to the determination of the Diophantine exponent of rational nilpotent Lie groups.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:40:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 42. On the Lang-Trotter conjecture for two elliptic curves Akbary, Amir PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_41_j_idt606",{id:"formSmash:items:resultList:41:j_idt606",widgetVar:"widget_formSmash_items_resultList_41_j_idt606",onLabel:"Akbary, Amir ",offLabel:"Akbary, Amir ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_41_j_idt609",{id:"formSmash:items:resultList:41:j_idt609",widgetVar:"widget_formSmash_items_resultList_41_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Univ Lethbridge, Dept Math & Comp Sci, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:41:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Parks, JamesKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). Univ Lethbridge, Dept Math & Comp Sci, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:41:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On the Lang-Trotter conjecture for two elliptic curves2019Inngår i: Ramanujan Journal, ISSN 1382-4090, Vol. 49, nr 3, s. 585-623Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_41_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:41:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_41_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Following Lang and Trotter, we describe a probabilistic model that predicts the distribution of primes p with given Frobenius traces at p for two fixed elliptic curves over Q. In addition, we propose explicit Euler product representations for the constant in the predicted asymptotic formula and describe in detail the universal component of this constant. A new feature is that in some cases the l-adic limits determining the l-factors of the universal constant, unlike the Lang-Trotter conjecture for a single elliptic curve, do not stabilize. We also prove the conjecture on average over a family of elliptic curves, which extends the main results of Fouvry and Murty (Supersingular primes common to two elliptic curves, number theory (Paris, 1992), London Mathematical Society Lecture Note Series, vol 215, Cambridge University Press, Cambridge, 1995) and Akbary et al. (Acta Arith 111(3):239-268, 2004), following the work of David et al. (Math Ann 368(1-2):685-752, 2017).

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:41:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 43. Universal Signature from Integrability to Chaos in Dissipative Open Quantum Systems Akemann, Gernot PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_42_j_idt606",{id:"formSmash:items:resultList:42:j_idt606",widgetVar:"widget_formSmash_items_resultList_42_j_idt606",onLabel:"Akemann, Gernot ",offLabel:"Akemann, Gernot ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_42_j_idt609",{id:"formSmash:items:resultList:42:j_idt609",widgetVar:"widget_formSmash_items_resultList_42_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:42:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Kieburg, MarioUniv Melbourne, Sch Math & Stat, 813 Swanston St, Melbourne, Vic 3010, Australia..Mielke, AdamBielefeld Univ, Fac Phys, Postfach 100131, D-33501 Bielefeld, Germany..Prosen, TomazUniv Ljubljana, Fac Math & Phys, Phys Dept, Ljubljana 1000, Slovenia..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:42:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Universal Signature from Integrability to Chaos in Dissipative Open Quantum Systems2019Inngår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 123, nr 25, artikkel-id 254101Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_42_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:42:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_42_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study the transition between integrable and chaotic behavior in dissipative open quantum systems, exemplified by a boundary driven quantum spin chain. The repulsion between the complex eigenvalues of the corresponding Lionville operator in radial distance s is used as a universal measure. The corresponding level spacing distribution is well fitted by that of a static two-dimensional Coulomb gas with harmonic potential at inverse temperature beta is an element of [0, 2]. Here, beta = 0 yields the two-dimensional Poisson distribution, matching the integrable limit of the system, and beta = 2 equals the distribution obtained from the complex Ginibre ensemble, describing the fully chaotic limit. Our findings generalize the results of Grobe, Haake, and Sommers, who derived a universal cubic level repulsion for small spacings s. We collect mathematical evidence for the universality of the full level spacing distribution in the fully chaotic limit at beta = 2. It holds for all three Ginibre ensembles of random matrices with independent real, complex, or quatemion matrix elements.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:42:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 44. A Dimension Spectrum for SLE Boundary Collisions Alberts, Tomet al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_43_j_idt609",{id:"formSmash:items:resultList:43:j_idt609",widgetVar:"widget_formSmash_items_resultList_43_j_idt609",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:43:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Binder, IliaViklund, FredrikKTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:43:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A Dimension Spectrum for SLE Boundary Collisions2016Inngår i: Communications in Mathematical Physics, ISSN 0010-3616, E-ISSN 1432-0916, Vol. 343, nr 1, s. 273-298Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_43_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:43:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_43_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We consider chordal SLE curves for , where the intersection of the curve with the boundary is a random fractal of almost sure Hausdorff dimension . We study the random sets of points at which the curve collides with the real line at a specified "angle" and compute an almost sure dimension spectrum describing the metric size of these sets. We work with the forward SLE flow and a key tool in the analysis is Girsanov's theorem, which is used to study events on which moments concentrate. The two-point correlation estimates are proved using the direct method.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:43:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 45. Analysis of blow-ups for the double obstacle problem in dimension two Aleksanyan, Gohar PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_44_j_idt606",{id:"formSmash:items:resultList:44:j_idt606",widgetVar:"widget_formSmash_items_resultList_44_j_idt606",onLabel:"Aleksanyan, Gohar ",offLabel:"Aleksanyan, Gohar ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:44:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:44:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Analysis of blow-ups for the double obstacle problem in dimension twoManuskript (preprint) (Annet vitenskapelig)Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_44_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:44:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_44_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:44:j_idt869:0:fullText"});}); 46. Optimal regularity in the optimal switching problem Aleksanyan, Gohar PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_45_j_idt606",{id:"formSmash:items:resultList:45:j_idt606",widgetVar:"widget_formSmash_items_resultList_45_j_idt606",onLabel:"Aleksanyan, Gohar ",offLabel:"Aleksanyan, Gohar ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:45:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:45:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Optimal regularity in the optimal switching problem2016Inngår i: Annales de l'Institut Henri Poincare. Analyse non linéar, ISSN 0294-1449, E-ISSN 1873-1430, Vol. 33, nr 6, s. 1455-1471Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_45_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:45:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_45_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this article we study the optimal regularity for solutions to the following weakly coupled system with interconnected obstacles{min(−Δu1+f1,u1−u2+ψ1)=0min(−Δu2+f2,u2−u1+ψ2)=0 arising in the optimal switching problem with two modes. We derive the optimal C1,1-regularity for the minimal solution under the assumption that the zero loop set L:={ψ1+ψ2=0} is the closure of its interior. This result is optimal and we provide a counterexample showing that the C1,1-regularity does not hold without the assumption L=L0‾.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:45:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 47. Regularity of the free boundary in the biharmonic obstacle problem Aleksanyan, Gohar PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_46_j_idt606",{id:"formSmash:items:resultList:46:j_idt606",widgetVar:"widget_formSmash_items_resultList_46_j_idt606",onLabel:"Aleksanyan, Gohar ",offLabel:"Aleksanyan, Gohar ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:46:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:46:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Regularity of the free boundary in the biharmonic obstacle problem2019Inngår i: Calculus of Variations and Partial Differential Equations, ISSN 0944-2669, E-ISSN 1432-0835, Vol. 58, nr 6, artikkel-id 206Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_46_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:46:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_46_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In this article we use a flatness improvement argument to study the regularity of the free boundary for the biharmonic obstacle problem with zero obstacle. Assuming that the solution is almost one-dimensional, and that the non-coincidence set is an non-tangentially accessible domain, we derive the C1,a-regularity of the free boundary in a small ball centred at the origin. From the C1,a-regularity of the free boundary we conclude that the solution to the biharmonic obstacle problem is locally C3,a up to the free boundary, and therefore C2,1. In the end we study an example, showing that in general C2, 1 2 is the best regularity that a solution may achieve in dimension n >= 2.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:46:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 48. Regularity of the free boundary in the biharmonic obstacle problem Aleksanyan, Gohar PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_47_j_idt606",{id:"formSmash:items:resultList:47:j_idt606",widgetVar:"widget_formSmash_items_resultList_47_j_idt606",onLabel:"Aleksanyan, Gohar ",offLabel:"Aleksanyan, Gohar ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:47:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:47:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Regularity of the free boundary in the biharmonic obstacle problemManuskript (preprint) (Annet vitenskapelig)Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_47_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:47:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_47_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:47:j_idt869:0:fullText"});}); 49. Regularity results in free boundary problems Aleksanyan, Gohar PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_48_j_idt606",{id:"formSmash:items:resultList:48:j_idt606",widgetVar:"widget_formSmash_items_resultList_48_j_idt606",onLabel:"Aleksanyan, Gohar ",offLabel:"Aleksanyan, Gohar ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:48:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:48:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Regularity results in free boundary problems2016Doktoravhandling, med artikler (Annet vitenskapelig)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_48_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:48:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_48_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This thesis consists of three scientific papers, devoted to the regu-larity theory of free boundary problems. We use iteration arguments to derive the optimal regularity in the optimal switching problem, and to analyse the regularity of the free boundary in the biharmonic obstacle problem and in the double obstacle problem.In Paper A, we study the interior regularity of the solution to the optimal switching problem. We derive the optimal C1,1-regularity of the minimal solution under the assumption that the zero loop set is the closure of its interior.In Paper B, assuming that the solution to the biharmonic obstacle problem with a zero obstacle is suÿciently close-to the one-dimensional solution (xn)3+, we derive the C1,-regularity of the free boundary, under an additional assumption that the noncoincidence set is an NTA-domain.In Paper C we study the two-dimensional double obstacle problem with polynomial obstacles p1 p2, and observe that there is a new type of blow-ups that we call double-cone solutions. We investigate the existence of double-cone solutions depending on the coeÿcients of p1, p2, and show that if the solution to the double obstacle problem with obstacles p1 = −|x|2 and p2 = |x|2 is close to a double-cone solution, then the free boundary is a union of four C1,-graphs, pairwise crossing at the origin.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:48:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fulltekst (pdf)fulltext$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_items_resultList_48_j_idt869_0_j_idt872",{id:"formSmash:items:resultList:48:j_idt869:0:j_idt872",widgetVar:"widget_formSmash_items_resultList_48_j_idt869_0_j_idt872",showEffect:"fade",hideEffect:"fade",target:"formSmash:items:resultList:48:j_idt869:0:fullText"});}); 50. On greedy algorithm by renormed Franklin system Aleksanyan, Hayk PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_49_j_idt606",{id:"formSmash:items:resultList:49:j_idt606",widgetVar:"widget_formSmash_items_resultList_49_j_idt606",onLabel:"Aleksanyan, Hayk ",offLabel:"Aleksanyan, Hayk ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). Yerevan State University, Armenia.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:49:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:49:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On greedy algorithm by renormed Franklin system2010Inngår i: East Journal on Approximations, ISSN 1310-6236, Vol. 16, nr 3, s. 273-296Artikkel i tidsskrift (Fagfellevurdert)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_49_j_idt644_0_j_idt645",{id:"formSmash:items:resultList:49:j_idt644:0:j_idt645",widgetVar:"widget_formSmash_items_resultList_49_j_idt644_0_j_idt645",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We characterize the all weighted greedy algorithms with respect to Franklin system which converge uniformly for continuous functions and almost everywhere for integrable functions. In case, when the algorithm fails to satisfy our classification criteria, we construct a continuous function for which the corresponding approximation diverges unboundedly almost everywhere. Some applications to wavelet systems are also discussed.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:49:j_idt644:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500});

RefereraExporteraLink til resultatlisten
http://kth.diva-portal.org/smash/resultList.jsf?query=&language=no&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22organisationId%22%3A%226116%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_lower_j_idt926_recordPermLink",{id:"formSmash:lower:j_idt926:recordPermLink",widgetVar:"widget_formSmash_lower_j_idt926_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt926_j_idt928",{id:"formSmash:lower:j_idt926:j_idt928",widgetVar:"widget_formSmash_lower_j_idt926_j_idt928",target:"formSmash:lower:j_idt926:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Referera

Referensformatapa ieee modern-language-association-8th-edition vancouver Annet format $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt944",{id:"formSmash:lower:j_idt944",widgetVar:"widget_formSmash_lower_j_idt944",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt944",e:"change",f:"formSmash",p:"formSmash:lower:j_idt944",u:"formSmash:lower:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association-8th-edition
- vancouver
- Annet format

Språkde-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Annet språk $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt955",{id:"formSmash:lower:j_idt955",widgetVar:"widget_formSmash_lower_j_idt955",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt955",e:"change",f:"formSmash",p:"formSmash:lower:j_idt955",u:"formSmash:lower:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Annet språk

Utmatningsformathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt965",{id:"formSmash:lower:j_idt965",widgetVar:"widget_formSmash_lower_j_idt965"});});

- html
- text
- asciidoc
- rtf