kth.sePublications
Change search
Refine search result
1234567 1 - 50 of 477
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aho-Mantila, L.
    et al.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland.;VTT Tech Res Ctr Finland, FIN-02044 Espoo, Finland..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET2017In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, no 3, article id 035003Article in journal (Refereed)
    Abstract [en]

    The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.

  • 2. Angioni, C.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    et al.,
    The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas2015In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 22, no 5, article id 055902Article in journal (Refereed)
    Abstract [en]

    Recent progress in the understanding and prediction of the tungsten behaviour in the core of JET H-mode plasmas with ITER-like wall is presented. Particular emphasis is given to the impact of poloidal asymmetries of the impurity density. In particular, it is shown that the predicted reduction of temperature screening induced by the presence of low field side localization of the tungsten density produced by the centrifugal force is consistent with the observed tungsten behaviour in a JET discharge in H-mode baseline scenario. This provides first evidence of the role of poloidal asymmetries in reducing the strength of temperature screening. The main differences between plasma parameters in JET baseline and hybrid scenario discharges which affect the impact of poloidally asymmetric density on the tungsten radial transport are identified. This allows the conditions by which tungsten accumulation can be avoided to be more precisely defined.

  • 3.
    Angioni, C.
    et al.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Yushan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Dependence of the turbulent particle flux on hydrogen isotopes induced by collisionality2018In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 25, no 8, article id 082517Article in journal (Refereed)
    Abstract [en]

    The impact of the change of the mass of hydrogen isotopes on the turbulent particle flux is studied. The trapped electron component of the turbulent particle convection induced by collisionality, which is outward in ion temperature gradient turbulence, increases with decreasing thermal velocity of the isotope. Thereby, the lighter is the isotope, the stronger is the turbulent pinch, and the larger is the predicted density gradient at the null of the particle flux. The passing particle component of the flux increases with decreasing mass of the isotope and can also affect the predicted density gradient. This effect is however subdominant for usual core plasma parameters. The analytical results are confirmed by means of both quasi-linear and nonlinear gyrokinetic simulations, and an estimate of the difference in local density gradient produced by this effect as a function of collisionality has been obtained for typical plasma parameters at mid-radius. Analysis of currently available experimental data from the JET and the ASDEX Upgrade tokamaks does not show any clear and general evidence of inconsistency with this theoretically predicted effect outside the errorbars and also allows the identification of cases providing weak evidence of qualitative consistency.

  • 4.
    Appel, L. C.
    et al.
    Culham Sci Ctr, CCFE, Abingdon 0X14 3DB, Oxon, England..
    Appel, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Equilibrium reconstruction in an iron core tokamak using a deterministic magnetisation model2018In: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 223, p. 1-17Article in journal (Refereed)
    Abstract [en]

    In many tokamaks ferromagnetic material, usually referred to as an iron-core, is present in order to improve the magnetic coupling between the solenoid and the plasma. The presence of the iron core in proximity to the plasma changes the magnetic topology with consequent effects on the magnetic field structure and the plasma boundary. This paper considers the problem of obtaining the free-boundary plasma equilibrium solution in the presence of ferromagnetic material based on measured constraints. The current approach employs, a model described by O'Brien et al. (1992) in which the magnetisation currents at the iron-air boundary are represented by a set of free parameters and appropriate boundary conditions are enforced via a set of quasi-measurements on the material boundary. This can lead to the possibility of overfitting the data and hiding underlying issues with the measured signals. Although the model typically achieves good fits to measured magnetic signals there are significant discrepancies in the inferred magnetic topology compared with other plasma diagnostic measurements that are independent of the magnetic field. An alternative approach for equilibrium reconstruction in iron-core tokamaks, termed the deterministic magnetisation model is developed and implemented in EFIT++. The iron is represented by a boundary current with the gradients in the magnetisation dipole state generating macroscopic internal magnetisation currents. A model for the boundary magnetisation currents at the iron-air interface is developed using B-Splines enabling continuity to arbitrary order; internal magnetisation currents are allocated to triangulated regions within the iron, and a method to enable adaptive refinement is implemented. The deterministic model has been validated by comparing it with a synthetic 2-D electromagnetic model of JET. It is established that the maximum field discrepancy is less than 1.5 mT throughout the vacuum region enclosing the plasma. The discrepancies of simulated magnetic probe signals are accurate to within 1% for signals with absolute magnitude greater than 100 mT; in all other cases agreement is to within 1 mT. The effect of neglecting the internal magnetisation currents increases the maximum discrepancy in the vacuum region to >20 mT, resulting in errors of 5%-10% in the simulated probe signals. The fact that the previous model neglects the internal magnetisation currents (and also has additional free parameters when fitting the measured data) makes it unsuitable for analysing data in the absence of plasma current. The discrepancy of the poloidal magnetic flux within the vacuum vessel is to within 0.1 Wb. Finally the deterministic model is applied to an equilibrium force-balance solution of a JET discharge using experimental data. It is shown that the discrepancies of the outboard separatrix position, and the outer strike-point position inferred from Thomson Scattering and Infrared camera data are much improved beyond the routine equilibrium reconstruction, whereas the discrepancy of the inner strike-point position is similar.

  • 5.
    Arbina, I. L.
    et al.
    Barcelona Supercomputer Center (BSC), Barcelona, Spain.
    Mantsinen, M. J.
    Barcelona Supercomputer Center (BSC), Barcelona, Spain.
    Sáez, X.
    Barcelona Supercomputer Center (BSC), Barcelona, Spain.
    Gallart, D.
    Barcelona Supercomputer Center (BSC), Barcelona, Spain.
    Gutiérrez, A.
    Barcelona Supercomputer Center (BSC), Barcelona, Spain.
    Taylor, D.
    Jonsson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Pinches, S. D.
    TER Organization, Route de Vinon-sur-Verdon, CS 90 046, St Paul-lez-Durance Cedex, 13067, France.
    Schneider, M.
    TER Organization, Route de Vinon-sur-Verdon, CS 90 046, St Paul-lez-Durance Cedex, 13067, France.
    First applications of the ICRF modelling code PION in the ITER Integrated Modelling and Analysis Suite2019In: Proceedings of the 46th EPS Conference on Plasma Physics, 2019Conference paper (Refereed)
  • 6.
    Ashikawa, N.
    et al.
    National Institute for Fusion Science, Toki, 509-5292 Japan.
    Torikai, Y.
    Ibaraki University Mito, 310-8512 Japan.
    Asakura, N.
    National Institute for Quantum and Radiological Science and Technology, Rokkasho, 039-3212 Japan.
    Otsuka, T.
    Kindai University, Higashi-Osaka, 577-8502, Japan.
    Widdowson, A.
    CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Oyaizu, M.
    Hara, M.
    University of Toyama, Toyama, Japan.
    Masuzaki, S.
    Isobe, K.
    National Institute for Quantum and Radiological Science and Technology, Rokkasho, 039-3212 Japan.
    Hatano, Y.
    University of Toyama, Toyama, Japan.
    Heinola, K.
    University of Helsinki, Helsinki, Finland.
    Baron-Wiechec, A.
    CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK.
    Jachmich, S.
    CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK.
    Hayashi, T.
    National Institute for Quantum and Radiological Science and Technology, Rokkasho, 039-3212 Japan.
    Determination of retained tritium from ILW dust particles in JET2020In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 22, article id 100673Article in journal (Refereed)
    Abstract [en]

    Quantitative tritium inventory in dust particles from campaigns in the JET tokamak with the carbon wall (2007–2009) and the ITER-like wall (ILW 2011–2012) were determined by the liquid scintillation counter and the full combustion method. A feature of this full combustion method is that dust particles were covered by a tin (Sn) which reached 2100 K during combustion under oxygen flow. The specific tritium inventory for samples from JET with carbon and with metal walls was measured and found to be similar. However, the total tritium inventory in dust particles from the ILW experiment was significantly smaller in comparison to the carbon wall due to the lower amount of dust particles generated in the presence of metal walls.

  • 7.
    Aslanyan, V
    et al.
    MIT PSFC, 175 Albany St, Cambridge, MA 02139 USA..
    Aslanyan, V.
    MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Gyrokinetic simulations of toroidal Alfven eigenmodes excited by energetic ions and external antennas on the Joint European Torus2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 2, article id 026008Article in journal (Refereed)
    Abstract [en]

    The gyrokinetic toroidal code (GTC) has been used to study toroidal Alfven eigenmodes (TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus (JET), where TAEs were driven by energetic particles arising from neutral beams, ion cyclotron resonant heating, and resonantly excited by dedicated external antennas, have been simulated. Modes driven by populations of energetic particles are observed, matching the TAE frequency seen with magnetic probes in JET experiments. A synthetic antenna, composed of one toroidal and two neighboring poloidal harmonics has been used to probe the modes' damping rates and quantify mechanisms for this damping in GTC simulations. This method was also applied to frequency and damping rate measurements of stable TAEs made by the Alfven eigenmode active diagnostic in these discharges.

  • 8. Auriemma, F.
    et al.
    Challis, C.
    Casson, F. J.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    García, José
    Lorenzini, R.
    Maggi, C. F.
    Maslov, M.
    Schneider, P. A.
    Vincenzi, P.
    contributors, JET
    Self-consistent predictive transport simulations of JET-ILW plasmas with different isotopes: A core performance sensitivity study to boundary conditions2021In: 47th EPS Conference on Plasma Physics, EPS 2021, European Physical Society (EPS) , 2021, p. 932-935Conference paper (Refereed)
  • 9.
    Baiocchi, B.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid2015In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 57, no 3, article id 035003Article in journal (Refereed)
    Abstract [en]

    The physical transport processes at the basis of JET typical inductive H-mode scenarios and advanced hybrid regimes, with improved thermal confinement, are analyzed by means of some of the newest and more sophisticated quasi-linear transport models: trapped gyro Landau fluid (TGLF) and QuaLiKiz. The temporal evolution of JET pulses is modelled by CRONOS where the turbulent transport is modelled by either QuaLiKiz or TGLF. Both are first principle models with a more comprehensive physics than the models previously developed and therefore allow the analysis of the physics at the basis of the investigated scenarios. For H-modes, ion temperature gradient (ITG) modes are found to be dominant and the transport models are able to properly reproduce temperature profiles in self-consistent simulations. However, for hybrid regimes, in addition to ITG trapped electron modes (TEM) are also found to be important and different physical mechanisms for turbulence reduction play a decisive role. Whereas E x B flow shear and plasma geometry have a limited impact on turbulence, the presence of a large population of fast ions, quite important in low density regimes, can stabilize core turbulence mainly when the electromagnetic effects are taken into account. The TGLF transport model properly captures these mechanisms and correctly reproduces temperatures.

  • 10.
    Baiocchi, B.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France. EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    --.
    et al.,
    Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 12, article id 123001Article in journal (Refereed)
    Abstract [en]

    The density evolution during the transient phase just after the L-H transition is investigated using theoretical transport models. Cases characterized by core densities which evolve in longer timescales than the edge densities, leading to hollow density profiles (R/L-n = -R del n/n < 0) are modelled. This density evolution is particularly interesting because it has been shown to be beneficial in the view of the access to burning plasma conditions in ITER (Loarte et al 2013 Nucl. Fusion 53 083031). Self-consistent simulations of the JET discharge 79676 of the density-only, and of the density and the temperatures are carried out using a quasilinear gyrokinetic code, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), coupled with a transport code CRONOS (Artaud et al 2010 Nucl. Fusion 50 043001). The slow evolution of the hollow density, associated with the self-consistently calculated hollow NBI particle deposition, is well reproduced in the plasma core. Indeed, QuaLiKiz is shown to reproduce nonlinear gyrokinetic heat and particle fluxes well for both positive and negative R/L-n. That gives a theoretical and general basis for the persistence of the hollowness, laying the groundwork for the extrapolation to ITER.

  • 11.
    Balbinot, L.
    et al.
    Univ Tuscia, Dipartimento Econ Ingn Soc & Impresa DEIM, Via Paradiso 47, I-01100 Viterbo, Italy..
    Rubino, G.
    Ctr Ric Energia, CNR, ENEA, Ass EURATOM, CP 65, Frascati, Italy..
    Casiraghi, I.
    Univ Milano Bicocca, Dipartimento Fis G Occhialini, Milan, Italy.;CNR, Ist Sci & Tecnol Plasmi, Milan, Italy..
    Meineri, C.
    Politecn Torino, Dipartimento Energia, NEMO Grp, Turin, Italy..
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Aucone, L.
    CNR, Ist Sci & Tecnol Plasmi, Milan, Italy..
    Mantica, P.
    CNR, Ist Sci & Tecnol Plasmi, Milan, Italy..
    Innocente, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Wigram, M.
    MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA..
    contributors, JET
    team, Alcator C-Mod
    Multi-code estimation of DTT edge transport parameters2023In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 34, article id 101350Article in journal (Refereed)
    Abstract [en]

    The main goal of the Divertor Tokamak Test facility (DTT) is to operate with a high value of power-exhaust-relevant parameter Psoz/R in plasma scenarios similar to those foreseen for the Demonstration Fusion Power Plant (DEMO) in terms of low collisionality and neutral opacity. For these unique characteristics, accurate modelling of the principal scenario is necessary for machine designing. In edge numerical codes, cross-field transport profiles have a high impact on modelling results. This work aims at providing a coherent set of transport parameters for DTT full-power (FP) single-null (SN) scenario edge modelling. To evaluate such parameters for DTT, a transport analysis on the current machine has been performed using SOLEDGE2D-EIRENE and SOLPS-ITER. The transport parameters to be used in the simulations of the DTT single-null scenario were selected using two complementary methods. The first is the modelling of JET and Alcator C-Mod (C-Mod) with SOLEDGE2D-EIRENE and SOLPS-ITER, validating transport parameters by comparing modelling results to experimental data from pulses which are considered DTT-relevant. JET pulses were selected with the highest auxiliary input power (from 29 to 33 MW), plasma current and toroidal field to better match DTT parameters; nitrogen and neon seeded pulses were selected to check possible seeding material dependencies. The considered C-Mod pulse better matches DTT plasma density and neutral opacity. Transport parameters are then scaled to DTT according to scaling laws. The second method derives the transport parameters by tuning their values inside the DTT separatrix to reproduce the pedestal profiles predicted by the EPED model via the Europed code and applied in DTT. The derived set of DTT transport parameters is consistent with the results obtained by modelling present machines, reproduces the expected heat flux decay length in detached conditions and, inside the separatrix, reproduces the predicted pedestal using transport parameters which are coherent with what is predicted by the quasi-linear turbulent model QuaLiKiz.

  • 12.
    Baron-Wiechec, A.
    et al.
    UK Atom Energy Author, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Jonsson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Atomic and Molecular Physics.
    Ratynskaia, Svetlana V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics. KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Vallejos, Pablo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Yushan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Thermal desorption spectrometry of beryllium plasma facing tiles exposed in the JET tokamak (vol 133, pg 135, 2018)2018In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 137, p. 48-48Article in journal (Refereed)
  • 13.
    Baron-Wiechec, A.
    et al.
    UK Atom Energy Author, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Thermal desorption spectrometry of beryllium plasma facing tiles exposed in the JET tokamak2018In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 133, p. 135-141Article in journal (Refereed)
    Abstract [en]

    The phenomena of retention and de-trapping of deuterium (D) and tritium (T) in plasma facing components (PFC) and supporting structures must be understood in order to limit or control total T inventory in larger future fusion devices such as ITER, DEMO and commercial machines. The goal of this paper is to present details of the thermal desorption spectrometry (TDS) system applied in total fuel retention assessment of PFC at the Joint European Torus (JET). Examples of TDS results from beryllium (Be) wall tile samples exposed to JET plasma in PFC configuration mirroring the planned ITER PFC is shown for the first time. The method for quantifying D by comparison of results from a sample of known D content was confirmed acceptable. The D inventory calculations obtained from Ion Beam Analysis (IBA) and TDS agree well within an error associated with the extrapolation from very few data points to a large surface area.

  • 14.
    Basiuk, V.
    et al.
    CEA Cadarache, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients2017In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, no 12, article id 125012Article in journal (Refereed)
    Abstract [en]

    The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.

  • 15. Batistoni, P.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Jonsson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Atomic and Molecular Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Benchmark experiments on neutron streaming through JET Torus Hall penetrations2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 5, article id 053028Article in journal (Refereed)
    Abstract [en]

    Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in (LiF)-Li-6/(LiF)-Li-7, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% Li-7 were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with Li-nat and Li-7 crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the magnetic limbs. JET biological shield and penetrations, the PE moderators and TLDs were modelled in detail. Different tallying methods were used in the calculations, which are routinely used in ITER nuclear analyses: the mesh tally and the track length estimator with multiple steps calculations using the surface source write/read capability available in MCNP. In both cases, the calculated neutron fluence (C) was compared to the measured fluence (E) and hence C/E comparisons have been obtained and are discussed. These results provide a validation of neutronics numerical tools, codes and nuclear data, used for ITER design.

  • 16.
    Batistoni, P.
    et al.
    Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;ENEA, Dept Fus & Nucl Safety Technol, I-00044 Rome, Italy.;ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    14 MeV calibration of JET neutron detectors-phase 1: calibration and characterization of the neutron source2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 2, article id UNSP 026012Article in journal (Refereed)
    Abstract [en]

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is +/- 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4 pi sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within +/- 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.

  • 17. Batistoni, P.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    14 MeV calibration of JET neutron detectors-phase 2: in-vessel calibration2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 10, article id 106016Article in journal (Refereed)
    Abstract [en]

    A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay gamma-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the U-235 fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified. MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with +/- 4.2%' experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally <= +/- 3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the Nb-93(n,2n)Nb-92m and Al-27(n,a)Na-24 activation reactions (energy thresholds 10 MeV and 5 MeV respectively). The total uncertainty on the calibration factors is +/- 6% for Nb-93(n,2n)Nb-92m and +/- 8% Al-27(n,a)Na-24 (1 sigma). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.

  • 18.
    Batistoni, P.
    et al.
    ENEA, Dept Fus & Technol Nucl Safety & Secur, I-00044 Rome, Italy.;ENEA, Dept Fus & Technol Nucl Safety & Secur, I-00123 Rome, Italy.;ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Overview of neutron measurements in jet fusion device2018In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 180, no 1-4, p. 102-108Article in journal (Refereed)
    Abstract [en]

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation.

  • 19.
    Batistoni, Paola
    et al.
    ENEA, Dept Fus & Technol Nucl Safety & Secur, I-00044 Frascati, Rome, Italy..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Calibration of neutron detectors on the Joint European Torus2017In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 88, no 10, article id 103505Article in journal (Refereed)
    Abstract [en]

    The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a Cf-252 source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) Cf-252 source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.

  • 20. Beal, J.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall2016In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, article id 014052Article in journal (Refereed)
    Abstract [en]

    Rotating collectors and quartz microbalances (QMBs) are used in JET to provide time-dependent measurements of erosion and deposition. Rotation of collector discs behind apertures allows recording of the long term evolution of deposition. QMBs measure mass change via the frequency deviations of vibrating quartz crystals. These diagnostics are used to investigate erosion/deposition during JET-C carbon operation and JET-ILW (ITER-like wall) beryllium/tungsten operation. A simple geometrical model utilising experimental data is used to model the time-dependent collector deposition profiles, demonstrating good qualitative agreement with experimental results. Overall, the JET-ILW collector deposition is reduced by an order of magnitude relative to JET-C, with beryllium replacing carbon as the dominant deposit. However, contrary to JET-C, in JET-ILW there is more deposition on the outer collector than the inner. This reversal of deposition asymmetry is investigated using an analysis of QMB data and is attributed to the different chemical properties of carbon and beryllium.

  • 21.
    Ben Yaala, M.
    et al.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Moser, L.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Steiner, R.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Butoi, B.
    Natl Inst Laser Plasma & Radiat Phys, 409 Atomistilor St, Magurele 077125, Romania..
    Dinca, P.
    Natl Inst Laser Plasma & Radiat Phys, 409 Atomistilor St, Magurele 077125, Romania..
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Marot, L.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Meyer, E.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Deuterium as a cleaning gas for ITER first mirrors: experimental study on beryllium deposits from laboratory and JET-ILW2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 9, article id 096027Article in journal (Refereed)
    Abstract [en]

    Cleaning techniques for metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). Previous plasma cleaning studies were conducted on mirrors contaminated with beryllium and tungsten where argon and/or helium were employed as process gas, demonstrating removal of contamination and recovery of optical properties. Still, both abovementioned process gases have a non-negligible sputtering yield on mirrors. In this work, we explored the possibility to use a sputter gas having a small impact on mirrors while being efficient on Be deposits, e.g. deuterium. Two sputtering regimes were studied, on laboratory deposits as well as on mirrors exposed in .TET-ILW, namely physical sputtering (220eV ion energy) and chemically assisted physical sputtering (60 eV ion energy) using capacitively coupled plasma with radio frequency. The removal of Be and mixed Be/W contaminants, as well as the recovery of reflectivity, was achieved when deuterium was employed at 220eV while cleaning at 60eV was only fully efficient on laboratory beryllium deposits. On mirrors exposed in JET-ILW, the situation is more complex due to the presence of tungsten in the contaminant film, leading to the formation of a tungsten enriched surface that is not easily sputtered, especially at 60eV.

  • 22.
    Bensadón, T.
    et al.
    Barcelona Supercomputing Center, Barcelona, Spain.
    Mantsinen, M.
    Barcelona Supercomputing Center, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
    Manyer, J.
    Barcelona Supercomputing Center, Barcelona, Spain.
    Jonsson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Yadykin, Dimitriy
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. University of Gothenburg, Sweden.
    Analysis of ITER performance with different heating schemes using predictive integrated plasma modelling2022In: 48th EPS Conference on Plasma Physics, EPS 2022, European Physical Society (EPS) , 2022Conference paper (Refereed)
  • 23.
    Bergsåker, Henric
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Assessment of the strength of kinetic effects of parallel electron transport in the SOL and divertor of JET high radiative H-mode plasmas using EDGE2D-EIRENE and KIPP codes2018In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 60, no 11, article id 115011Article in journal (Refereed)
    Abstract [en]

    The kinetic code for plasma periphery (KIPP) was used to assess the importance of the kinetic effects of parallel electron transport in the scrape-off layer (SOL) and divertor of JET high radiative H-mode inter-ELM plasma conditions with the ITER-like wall and strong nitrogen (N-2) injection. Plasma parameter profiles along a magnetic field from one of the EDGE2D-EIRENE simulation cases were used as an input for KIPP runs. Profiles were maintained by particle and power sources. KIPP generated electron distribution functions, f(e), parallel power fluxes, electron-ion thermoforces, Debye sheath potential drops and electron sheath transmission factors at divertor targets. For heat fluxes in the main SOL, KIPP results showed deviations from classical (e.g. Braginskii) fluxes by factors typically of similar to 1.5, sometimes up to 2, with the flux limiting for more upstream positions and flux enhancement near entrances to the divertor. In the divertor, at the same time, for radial positions closer to the separatrix, very large heat flux enhancement factors of up to ten or even higher, indicative of a strong nonlocal heat transport, were found at the outer target, with heat power flux density exhibiting bump-on-tail features at high energies. Under such extreme conditions, however, contributions of conductive power fluxes to total power fluxes were strongly reduced, with convective power fluxes becoming comparable, or sometimes exceeding, conductive power fluxes. Electron-ion thermoforce, on the other hand, which is known to be determined mostly by thermal and subthermal electrons, was found to be in good agreement with Braginskii formulas, including the Z(eff) dependence. Overall, KIPP results indicate, at least for the plasma conditions used in this modelling, a sizable, but not dominant, effect of kinetics on parallel electron transport.

  • 24.
    Bergsåker, Henric
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    Zhou, Yushan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Possnert, G
    Likonen, J
    Pettersson, J
    Koivuranta, S
    Widdowson, A.M.
    contributors, JET
    Deep deuterium retention and Be/W mixingat tungsten coated surfaces in the JETdivertor2016In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896Article in journal (Refereed)
    Abstract [en]

    Surface samples from a full poloidal set of divertor tiles exposed in JET through operations2010–2012 with ITER-like wall have been investigated using SEM, SIMS, ICP-AES analysisand micro beam nuclear reaction analysis (μ-NRA). Deposition of Be and retention of D ismicroscopically inhomogeneous. With careful overlaying of μ-NRA elemental maps with SEMimages, it is possible to separate surface roughness effects from depth profiles at microscopicallyflat surface regions, without pits. With (3He, p) μ-NRA at 3–5 MeV beam energy the accessibledepth for D analysis in W is about 9 μm, sufficient to access the W/Mo and Mo/W interfaces inthe coatings and beyond, while for Be in W it is about 6 μm. In these conditions, at all plasmawetted surfaces, D was found throughout the whole accessible depth at concentrations in therange 0.2–0.7 at% in W. Deuterium was found to be preferentially trapped at the W/Mo andMo/W interfaces. Comparison is made with SIMS profiling, which also shows significant Dtrapping at the W/Mo interface. Mixing of Be and W occurs mainly in deposited layers.

  • 25. Bernardo, J.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Jonsson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Ion temperature and toroidal rotation in JET's low torque plasmas2016In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, no 11, article id 11E557Article in journal (Refereed)
    Abstract [en]

    This paper reports on the procedure developed as the best method to provide an accurate and reliable estimation of the ion temperature T-i and the toroidal velocity v(phi) from Charge-eXchange Recombination Spectroscopy (CXRS) data from intrinsic rotation experiments at the Joint European Torus with the carbon wall. The low impurity content observed in such plasmas, resulting in low active CXRS signal, alongside low Doppler shifts makes the determination of Ti and v(phi) particularly difficult. The beam modulation method will be discussed along with the measures taken to increase photon statistics and minimise errors from the absolute calibration and magneto-hydro-dynamics effects that may impact the CXRS passive emission.

  • 26.
    Bernert, M.
    et al.
    Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Atomic and Molecular Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET2017In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 12, p. 111-118Article in journal (Refereed)
    Abstract [en]

    Future fusion reactors require a safe, steady state divertor operation. A possible solution for the power exhaust challenge is the detached divertor operation in scenarios with high radiated power fractions. The radiation can be increased by seeding impurities, such as N for dominant scrape-off-layer radiation, Ne or Ar for SOL and pedestal radiation and Kr for dominant core radiation. Recent experiments on two of the all-metal tokamaks, ASDEX Upgrade (AUG) and JET, demonstrate operation with high radiated power fractions and a fully-detached divertor by N, Ne or Kr seeding with a conventional divertor in a vertical target geometry. For both devices similar observations can be made. In the scenarios with the highest radiated power fraction, the dominant radiation originates from the confined region, in the case of N and Ne seeding concentrated in a region close to the X-point. Applying these seed impurities for highly radiative scenarios impacts local plasma parameters and alters the impurity transport in the pedestal region. Thus, plasma confinement and stability can be affected. A proper understanding of the effects by these impurities is required in order to predict the applicability of such scenarios for future devices.

  • 27.
    Binda, F.
    et al.
    Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.;Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Generation of the neutron response function of an NE213 scintillator for fusion applications2017In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 866, p. 222-229Article in journal (Refereed)
    Abstract [en]

    In this work we present a method to evaluate the neutron response function of an NE213 liquid scintillator. This method is particularly useful when the proton light yield function of the detector has not been measured, since it is based on a proton light yield function taken from literature, MCNPX simulations, measurements of gammarays from a calibration source and measurements of neutrons from fusion experiments with ohmic plasmas. The inclusion of the latter improves the description of the proton light yield function in the energy range of interest (around 2.46 MeV). We apply this method to an NE213 detector installed at JET, inside the radiation shielding of the magnetic proton recoil (MPRu) spectrometer, and present the results from the calibration along with some examples of application of the response function to perform neutron emission spectroscopy (NES) of fusion plasmas. We also investigate how the choice of the proton light yield function affects the NES analysis, finding that the result does not change significantly. This points to the fact that the method for the evaluation of the neutron response function is robust and gives reliable results. (C) 2017 Published by Elsevier B.V.

  • 28.
    Blanken, T. C.
    et al.
    Eindhoven Univ Technol, Control Syst Technol Grp, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands.;Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Fridström, Richard
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Jonsson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Vallejos, Pablo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Vignitchouk, Ladislas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Dori, V
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Real-time plasma state monitoring and supervisory control on TCV2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 2, article id 026017Article in journal (Refereed)
    Abstract [en]

    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.

  • 29.
    Bobkov, V
    et al.
    Max Planck Inst Plasmaphysik, Boltzmannstr 2, D-85748 Garching, Germany..
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bobkov, V.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Yushan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Impact of ICRF on the scrape-off layer and on plasma wall interactions: From present experiments to fusion reactor2019In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 18, p. 131-140Article in journal (Refereed)
    Abstract [en]

    Recent achievements in studies of the effects of ICRF (Ion Cyclotron Range of Frequencies) power on the SOL (Scrape-Off Layer) and PWI (Plasma Wall Interactions) in ASDEX Upgrade (AUG), Alcator C-Mod, and JET-ILW are reviewed. Capabilities to diagnose and model the effect of DC biasing and associated impurity production at active antennas and on magnetic field connections to antennas are described. The experiments show that ICRF near-fields can lead not only to E x B convection, but also to modifications of the SOL density, which for Alcator C-Mod are limited to a narrow region near antenna. On the other hand, the SOL density distribution along with impurity sources can be tailored using local gas injection in AUG and JET-ILW with a positive effect on reduction of impurity sources. The technique of RF image current cancellation at antenna limiters was successfully applied in AUG using the 3-strap AUG antenna and extended to the 4-strap Alcator C-Mod field-aligned antenna. Multiple observations confirmed the reduction of the impact of ICRF on the SOL and on total impurity production when the ratio of the power of the central straps to the total antenna power is in the range 0.6 < P-cen / P-total < 0.8. Near-field calculations indicate that this fairly robust technique can be applied to the ITER ICRF antenna, enabling the mode of operation with reduced PWI. On the contrary, for the A2 antenna in JET-ILW the technique is hindered by RF sheaths excited at the antenna septum. Thus, in order to reduce the effect of ICRF power on PWI in a future fusion reactor, the antenna design has to be optimized along with design of plasmafacing components.

  • 30.
    Bobkov, V.
    et al.
    Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Progress in reducing ICRF-specific impurity release in ASDEX upgrade and JET2017In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 12, p. 1194-1198Article in journal (Refereed)
    Abstract [en]

    Use of new 3-strap ICRF antennas with all-tungsten (W) limiters in ASDEX Upgrade results in a reduction of the W sources at the antenna limiters and of the W content in the confined plasma by at least a factor of 2 compared to the W-limiter 2-strap antennas used in the past. The reduction is observed with a broad range of plasma shapes. In multiple locations of antenna frame, the limiter W source has a minimum when RF image currents are decreased by cancellation of the RF current contributions of the central and the outer straps. In JET with ITER-like wall, ITER-like antenna produces about 20% less of main chamber radiation and of W content compared to the old A2 antennas. However the effect of the A2 antennas on W content is scattered depending on which antennas are powered. Experiments in JET with trace nitrogen (N-2) injection show that a presence of active ICRF antenna close to the midplane injection valve has little effect on the core N content, both in dipole and in -90 degrees phasing. This indicates that the effect of ICRF on impurity transport across the scape-off-layer is small in JET compared to the dominant effect on impurity sources leading to increased impurity levels during ICRF operation.

  • 31. Bolshakova, I.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Jonsson, Thomas
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Atomic and Molecular Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Experimental evaluation of stable long term operation of semiconductor magnetic sensors at ITER relevant environment2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 8, article id 083006Article in journal (Refereed)
    Abstract [en]

    The paper deals with radiation resistant sensors and their associated measuring instrumentation developed in the course of R and D activities carried out in the framework of an international collaboration. The first trial tests of three-dimensional (3D) probes with Hall sensors have been performed in European tokamaks TORE SUPRA (2004) and JET (2005). Later in 2009 six sets of 3D probes were installed in JET and now continue to operate. The statistical analysis performed in 2014 on the basis of the JET database have demonstrated stable long term operation of all 18 sensors of 3D probes. The results of measurements conducted at the neutron fluxes of nuclear reactors have demonstrated the operability of the sensors up to high neutron fluences of F > 10(18)n , cm(-2) that exceeds the maximum one for the locations of steady state sensors in ITER over its total lifetime.

  • 32.
    Bonanomi, N.
    et al.
    Ist Fis Plasma CNR, I-20125 Milan, Italy. Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;Ist Fis Plasma CNR, I-20125 Milan, Italy.;Univ Milano Bicocca, I-20126 Milan, Italy..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Trapped electron mode driven electron heat transport in JET: experimental investigation and gyro-kinetic theory validation2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 11, article id 113016Article in journal (Refereed)
    Abstract [en]

    The main purpose of this work is to study the dependence of trapped electron modes (TEM) threshold and of electron stiffness on the most relevant plasma parameters. Dedicated transport experiments based on heat flux scans and T-e modulation have been performed in JET in TEM dominated plasmas with pure ICRH electron heating and a numerical study using gyrokinetic simulations has been performed with the code GKW. Using multilinear regressions on the experimental data, the stabilizing effect of magnetic shear predicted by theory for our plasma parameters is confirmed while no significant effect of safety factor was found. Good quantitative agreement is found between the TEM thresholds found in the experiments and calculated with linear GKW simulations. Non-linear simulations have given further confirmation of the threshold values and allowed comparison with the values of stiffness found experimentally. Perturbative studies using RF power modulation indicate the existence of an inward convective term for the electron heat flux. Adding NBI power, ion temperature gradient (ITG) modes become dominant and a reduction of vertical bar del T-e vertical bar/T-e with respect to pure ICRH, TEM dominant discharges has been experimentally observed, in spite of increased total electron power. Possible explanations are discussed.

  • 33.
    Bonanomi, N.
    et al.
    EUROfus Consortium, Culham Sci Ctr, JET, Abingdon OX14 3DB, Oxon, England.;Univ Milano Bicocca, Milan, Italy.;CNR, Ist Fis Plasma P Caldirola, Milan, Italy.;Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany.;Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Impact of electron-scale turbulence and multi-scale interactions in the JET tokamak2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 12, article id 124003Article in journal (Refereed)
    Abstract [en]

    Experimental observations in JET tokamak plasmas and gyrokinetic simulations point to an important role, for electron heat transport, of electron-scale instabilities and of their interaction with ion-scale instabilities. Since these effects are maximized for strong electron heating and ion-scale modes close to marginal stability, these findings are of high relevance for ITER plasmas, featuring both conditions. Gyrokinetic and quasi-linear transport models accounting for multi-scale effects are assessed against JET experimental results.

  • 34.
    Bonanomi, N.
    et al.
    -.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    et al.,
    Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 2, article id 026028Article in journal (Refereed)
    Abstract [en]

    A set of experiments was carried out in JET ILW (Joint European Torus with ITER-Like Wall) L-mode plasmas in order to study the effects of light impurities on core ion thermal transport. N was puffed into some discharges and its profile was measured by active Charge Exchange diagnostics, while ICRH power was deposited on- and off-axis in (He-3) - D minority scheme in order to have a scan of local heat flux at constant total power with and without N injection. Experimentally, the ion temperature profiles are more peaked for similar heat fluxes when N is injected in the plasma. Gyro-kinetic simulations using the GENE code indicate that a stabilization of Ion Temperature Gradient driven turbulent transport due to main ion dilution and to changes in T-e/T-i and s/q is responsible of the enhanced peaking. The quasi-linear models TGLF and QuaLiKiz are tested against the experimental and the gyro-kinetic results.

  • 35. Bonanomi, N.
    et al.
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Fridström, Richard
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Moon, Sunwoo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Yushan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I
    et al,
    Role of fast ion pressure in the isotope effect in JET L-mode plasmas2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 9, article id 096030Article in journal (Refereed)
    Abstract [en]

    This paper presents results of JET ITER-like wall L-mode experiments in hydrogen and deuterium (D) plasmas, dedicated to the study of the isotope dependence of ion heat transport by determination of the ion critical gradient and stiffness by varying the ion cyclotron resonance heating power deposition. When no strong role of fast ions in the plasma core is expected, the main difference between the two isotope plasmas is determined by the plasma edge and the core behavior is consistent with a gyro-Bohm scaling. When the heating power (and the fast ion pressure) is increased, in addition to the difference in the edge region, also the plasma core shows substantial changes. The stabilization of ion heat transport by fast ions, clearly visible in D plasmas, appears to be weaker in H plasmas, resulting in a higher ion heat flux in H with apparent anti-gyro-Bohm mass scaling. The difference is found to be caused by the different fast ion pressure between H and D plasmas, related to the heating power settings and to the different fast ion slowing down time, and is completely accounted for in non-linear gyrokinetic simulations. The application of the TGLF quasi-linear model to this set of data is also discussed.

  • 36.
    Bonanomi, N.
    et al.
    EUROfus Consortium, Culham Sci Ctr, JET, Abingdon OX14 3DB, Oxon, England.;Univ Milano Bicocca, Milan, Italy.;CNR, Inst Plasma Phys P Caldirola, Milan, Italy.;Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Light impurity transport in JET ILW L-mode plasmas2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 3, article id 036009Article in journal (Refereed)
    Abstract [en]

    A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of He-3, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of He-3 density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.

  • 37.
    Bonelli, F.
    et al.
    KIT, Inst Tech Phys, Vacuum Dept, Karlsruhe, Germany.;Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Varoutis, S.
    KIT, Inst Tech Phys, Vacuum Dept, Karlsruhe, Germany.;Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Self-consistent coupling of DSMC method and SOLPS code for modeling tokamak particle exhaust2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 6, article id 066037Article in journal (Refereed)
    Abstract [en]

    In this work, an investigation of the neutral gas flow in the JET sub-divertor area is presented, with respect to the interaction between the plasma side and the pumping side. The edge plasma side is simulated with the SOLPS code, while the sub-divertor area is modeled by means of the direct simulation Monte Carlo (DSMC) method, which in the last few years has proved well able to describe rarefied, collisional flows in tokamak sub-divertor structures. Four different plasma scenarios have been selected, and for each of them a user-defined, iterative procedure between SOLPS and DSMC has been established, using the neutral flux as the key communication term between the two codes. The goal is to understand and quantify the mutual influence between the two regions in a self-consistent manner, that is to say, how the particle exhaust pumping system controls the upstream plasma conditions. Parametric studies of the flow conditions in the sub-divertor, including additional flow outlets and variations of the cryopump capture coefficient, have been performed as well, in order to understand their overall impact on the flow field. The DSMC analyses resulted in the calculation of both the macroscopic quantities-i.e. temperature, number density and pressure-and the recirculation fluxes towards the plasma chamber. The consistent values for the recirculation rates were found to be smaller than those according to the initial standard assumption made by SOLPS.

  • 38.
    Borodin, D.
    et al.
    Forschungszentrum Julich, Partner Trilateral Euregio Cluster TEC, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany.;Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Yushan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Improved ERO modelling of beryllium erosion at ITER upper first wall panel using JET-ILW and PISCES-B experience2019In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 19, p. 510-515Article in journal (Refereed)
    Abstract [en]

    ERO is a 3D Monte-Carlo impurity transport and plasma-surface interaction code. In 2011 it was applied for the ITER first wall (FW) life time predictions [1] (critical blanket module BM11). After that the same code was significantly improved during its application to existing fusion-relevant plasma devices: the tokamak JET equipped with an ITER-like wall and linear plasma device PISCES-B. This has allowed testing the sputtering data for beryllium (Be) and showing that the "ERO-min" fit based on the large (50%) deuterium (D) surface content is well suitable for plasma-wetted areas (D plasma). The improved procedure for calculating of the effective sputtering yields for each location along the plasma-facing surface using the recently developed semi-analytical sheath approach was validated. The re-evaluation of the effective yields for BM11 following the similar revisit of the JET data has indicated significant increase of erosion and motivated the current re-visit of ERO simulations.

  • 39.
    Bourdelle, C.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Jonsson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Atomic and Molecular Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    L to H mode transition: parametric dependencies of the temperature threshold2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 7, article id 073015Article in journal (Refereed)
    Abstract [en]

    The L to H mode transition occurs at a critical power which depends on various parameters, such as the magnetic field, the density, etc. Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, Alcator C-Mod) points towards the existence of a critical temperature characterizing the transition. This criterion for the L-H transition is local and is therefore easier to be compared to theoretical approaches. In order to shed light on the mechanisms of the transition, simple theoretical ideas are used to derive a temperature threshold (T-th). They are based on the stabilization of the underlying turbulence by a mean radial electric field shear. The nature of the turbulence varies as the collisionality decreases, from resistive ballooning modes to ion temperature gradient and trapped electron modes. The obtained parametric dependencies of the derived T-th are tested versus magnetic field, density, effective charge. Various robust experimental observations are reproduced, in particular T-th increases with magnetic field B and increases with density below the density roll-over observed on the power threshold.

  • 40.
    Bourdelle, C.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Jonsson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Atomic and Molecular Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    WEST Physics Basis2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 6, article id 063017Article in journal (Refereed)
    Abstract [en]

    With WEST (Tungsten Environment in Steady State Tokamak) (Bucalossi et al 2014 Fusion Eng. Des. 89 907-12), the Tore Supra facility and team expertise (Dumont et al 2014 Plasma Phys. Control. Fusion 56 075020) is used to pave the way towards ITER divertor procurement and operation. It consists in implementing a divertor configuration and installing ITER-like actively cooled tungsten monoblocks in the Tore Supra tokamak, taking full benefit of its unique long-pulse capability. WEST is a user facility platform, open to all ITER partners. This paper describes the physics basis of WEST: the estimated heat flux on the divertor target, the planned heating schemes, the expected behaviour of the L-H threshold and of the pedestal and the potential W sources. A series of operating scenarios has been modelled, showing that ITER-relevant heat fluxes on the divertor can be achieved in WEST long pulse H-mode plasmas.

  • 41.
    Bourdelle, C.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz2016In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 58, no 1, article id 014036Article in journal (Refereed)
    Abstract [en]

    Nonlinear gyrokinetic codes allow for detailed understanding of tokamak core turbulent transport. However, their computational demand precludes their use for predictive profile modeling. An alternative approach is required to bridge the gap between theoretical understanding and prediction of experiments. A quasilinear gyrokinetic model, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), is demonstrated to be rapid enough to ease systematic interface with experiments. The derivation and approximation of this approach are reviewed. The quasilinear approximation is proven valid over a wide range of core plasma parameters. Examples of profile prediction using QuaLiKiz coupled to the CRONOS integrated modeling code (Artaud et al 2010 Nucl. Fusion 50 043001) are presented. QuaLiKiz is being coupled to other integrated modeling platforms such as ETS and JETTO. QuaLiKiz quasilinear gyrokinetic turbulent heat, particle and angular momentum fluxes are available to all users. It allows for extensive stand-alone interpretative analysis and for first principle based integrated predictive modeling.

  • 42.
    Bourdelle, C.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Fast H isotope and impurity mixing in ion-temperature-gradient turbulence2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 7, article id 076028Article in journal (Refereed)
    Abstract [en]

    In ion-temperature-gradient (ITG) driven turbulence, the resonance condition leads to ion particle turbulent transport coefficients significantly larger than electron particle turbulent transport coefficients. This is shown in nonlinear gyrokinetic simulations and explained by an analytical quasilinear model. It is then illustrated by JETTO-QuaLiKiz integrated modelling. Large ion particle transport coefficients implies that the ion density profiles are uncorrelated to the corresponding ion source, allowing peaked isotope density profiles even in the absence of core source. This also implies no strong core accumulation of He ash. Furthermore, the relaxation time of the individual ion profiles in a multi-species plasma can be significantly faster than the total density profile relaxation time which is constrained by the electrons. This leads to fast isotope mixing and fast impurity transport in FM regimes. In trapped-electron- mode (TEM) turbulence, in presence of electron heating about twice the ion heating, the situation is the inverse: ion particle turbulent transport coefficients are smaller than their electron counterpart.

  • 43.
    Bravenec, R.
    et al.
    Fourth State Res, Austin, TX 78701 USA..
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al,
    Benchmarking the GENE and GYRO codes through the relative roles of electromagnetic and E x B stabilization in JET high-performance discharges2016In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 58, no 12, article id 125018Article in journal (Refereed)
    Abstract [en]

    Nonlinear gyrokinetic simulations using the GENE code have previously predicted a significant nonlinear enhanced electromagnetic stabilization in certain JET discharges with high neutral-beam power and low core magnetic shear (Citrin et al 2013 Phys. Rev. Lett. 111 155001, 2015 Plasma Phys. Control. Fusion 57 014032). This dominates over the impact of E x B flow shear in these discharges. Furthermore, fast ions were shown to be a major contributor to the electromagnetic stabilization. These conclusions were based on results from the GENE gyrokinetic turbulence code. In this work we verify these results using the GYRO code. Comparing results (linear frequencies, eigenfunctions, and nonlinear fluxes) from different gyrokinetic codes as a means of verification (benchmarking) is only convincing if the codes agree for more than one discharge. Otherwise, agreement may simply be fortuitous. Therefore, we analyze three discharges, all with a carbon wall: a simplified, two-species, circular geometry case based on an actual JET discharge; an L-mode discharge with a significant fast-ion pressure fraction; and a low-triangularity high-beta hybrid discharge. All discharges were analyzed at normalized toroidal flux coordinate rho = 0.33 where significant ion temperature peaking is observed. The GYRO simulations support the conclusion that electromagnetic stabilization is strong, and dominates E x B shear stabilization.

  • 44.
    Breton, S.
    et al.
    Culham Sci Ctr, EUROfus Consortium, JET, Abingdon OX14 3DB, Oxon, England.;CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters2018In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 25, no 1, article id 012303Article in journal (Refereed)
    Abstract [en]

    Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schluter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature screening reduction due to poloidal asymmetries would need to be better characterised for this faster model to be extended to a more general applicability.

  • 45.
    Breton, S.
    et al.
    JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bourdelle, C.
    JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    First principle integrated modeling of multi-channel transport including Tungsten in JET2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 9, article id 096003Article in journal (Refereed)
    Abstract [en]

    For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JFTTO (Romanelli et al 2014 Plasma Fusion Res. 9 1-4), using first principle-based codes: namely, QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036) for turbulent transport and NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 95010) for neoclassical transport. For a JET-ILW pulse, the evolution of measured temperatures, rotation and density profiles are successfully predicted and the observed W central core accumulation is obtained. The poloidal asymmetries of the W density modifying its neoclassical and turbulent transport are accounted for. Actuators of the W core accumulation are studied: removing the central particle source annihilates the central W accumulation whereas the suppression of the torque reduces significantly the W central accumulation. Finally, the presence of W slightly reduces main ion heat turbulent transport through complex nonlinear interplays involving radiation, effective charge impact on ITG and collisionality.

  • 46. Brezinsek, S.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Characterisation of the deuterium recycling at the W divertor target plates in JET during steady-state plasma conditions and ELMs2016In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, article id 014076Article in journal (Refereed)
    Abstract [en]

    Experiments in the JET tokamak equipped with the ITER-like wall (ILW) revealed that the inner and outer target plate at the location of the strike points represent after one year of operation intact tungsten (W) surfaces without any beryllium (Be) surface coverage. The dynamics of near-surface retention, implantation, desorption and recycling of deuterium (D) in the divertor of plasma discharges are determined by W target plates. As the W plasma-facing components (PFCs) are not actively cooled, the surface temperature (T-surface) is increasing with plasma exposure, varying the balance between these processes in addition to the impinging deuteron fluxes and energies. The dynamic behaviour on a slow time scale of seconds was quantified in a series of identical L-mode discharges (JET Pulse Number (JPN)#81938-73) by intra-shot gas analysis providing the reduction of deuterium retention in W PFCs by 1/3 at a base temperature (T-base) range at the outer target plate between 65 degrees C and 150 degrees C equivalent to a T-surface span of 150 degrees C and 420 degrees C. The associated recycling and molecular D desorption during the discharge varies only at lowest temperatures moderately, whereas desorption between discharges rises significantly with increasing T-base. The retention measurements represent the sum of inner and outer divertor interaction at comparable T-surface. The dynamic behaviour on a fast time scale of ms was studied in a series of identical H-mode discharges (JPN #83623-83974) and coherent edge-localized mode (ELM) averaging. High energetic ELMs of about 3 keV are impacting on the W PFCs with fluxes of 3 x 10(23) D+ s(-1) m(-2) which is about four times higher than inter-ELM ion fluxes with an impact energy of about E-im = 200 eV. This intra-ELM ion flux is associated with a high heat flux of about 60 MW m(-2) to the outer target plate which causes T-surface rise by Delta T = 100 K per ELM covering finally the range between 160 degrees C and 1400 degrees C during the flat-top phase. ELM-induced desorption from saturated near-surface implantation regions as well as deep ELM-induced deuterium implantation areas under varying baseline temperature takes place. Subsequent refuelling by intra-ELM deuteron fluxes occurs and a complex interplay between deuterium fuelling and desorption can be observed in the temporal ELM footprint of the surface temperature (IR thermography), the impinging deuteron flux (Langmuir probes), and the Balmer radiation (emission spectroscopy) as representative for the deuterium recycling flux. In contrast to JET-C, a pronounced second peak, similar or equal to 8 ms delayed with respect to the initial ELM crash, in the D-alpha radiation and the ion flux has been observed. The peak can be related to desorption of implanted energetic intra-ELM D+ diffusing to the W surface, and performing local recycling.

  • 47.
    Brezinsek, S.
    et al.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Kirschner, A.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Mayer, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Baron-Wiechec, A.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Borodkina, I
    Czech Acad Sci, Inst Plasma Phys, Prague 18200, Czech Republic..
    Borodin, D.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Coffey, I
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Coenen, J.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    den Harder, N.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Eksaeva, A.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Guillemaut, C.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Heinola, K.
    IAEA, POB 100, A-1400 Vienna, Austria.;Univ Helsinki, Dept Phys, POB 64, FIN-00014 Helsinki, Finland..
    Huber, A.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Huber, V
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Imrisek, M.
    Czech Acad Sci, Inst Plasma Phys, Prague 18200, Czech Republic..
    Jachmich, S.
    Ecole Royale Mil, LPP, Koninkllijke Mil Sch, B-1000 Brussels, Belgium..
    Pawelec, E.
    Opole Univ, Inst Phys, Oleska 48, PL-45052 Opole, Poland..
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Krat, S.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Sergienko, G.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Matthews, G. F.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Meigs, A. G.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wiesen, S.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Widdowson, A.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Erosion, screening, and migration of tungsten in the JET divertor2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 9, article id 096035Article in journal (Refereed)
    Abstract [en]

    The erosion of tungsten (W), induced by the bombardment of plasma and impurity particles, determines the lifetime of plasma-facing components as well as impacting on plasma performance by the influx of W into the confined region. The screening of W by the divertor and the transport of W in the plasma determines largely the W content in the plasma core, but the W source strength itself has a vital impact on this process. The JET tokamak experiment provides access to a large set of W erosion-determining parameters and permits a detailed description of the W source in the divertor closest to the ITER one: (i) effective sputtering yields and fluxes as function of impact energy of intrinsic (Be, C) and extrinsic (Ne, N) impurities as well as hydrogenic isotopes (H, D) are determined and predictions for the tritium (T) isotope are made. This includes the quantification of intra- and inter-edge localised mode (ELM) contributions to the total W source in H-mode plasmas which vary owing to the complex flux compositions and energy distributions in the corresponding phases. The sputtering threshold behaviour and the spectroscopic composition analysis provides an insight in the dominating species and plasma phases causing W erosion. (ii) The interplay between the net and gross W erosion source is discussed considering (prompt) re-deposition, thus, the immediate return of W ions back to the surface due to their large Larmor radius, and surface roughness, thus, the difference between smooth bulk-W and rough W-coating components used in the JET divertor. Both effects impact on the balance equation of local W erosion and deposition. (iii) Post-mortem analysis reveals the net erosion/deposition pattern and the W migration paths over long periods of plasma operation identifying the net W transport to remote areas. This W transport is related to the divertor plasma regime, e.g. attached operation with high impact energies of impinging particles or detached operation, as well as to the applied magnetic configuration in the divertor, e.g. close divertor with good geometrical screening of W or open divertor configuration with poor screening. JET equipped with the ITER-like wall (ILW) provided unique access to the net W erosion rate within a series of 151 subsequent H-mode discharges (magnetic field: B-t = 2.0 T, plasma current: I-p = 2.0 MA, auxiliary power P-aux = 12 MW) in one magnetic configuration accumulating 900 s of plasma with particle fluences in the range of 5-6 x 10(26) D(+ )m(-2) in the semi-detached inner and attached outer divertor leg. The comparison of W spectroscopy in the intra-ELM and inter-ELM phases with post-mortem analysis of W marker tiles provides a set of gross and net W erosion values at the outer target plate. ERO code simulations are applied to both divertor leg conditions and reproduce the erosion/deposition pattern as well as confirm the high experimentally observed prompt W re-deposition factors of more than 95% in the intra- and inter-ELM phase of the unseeded deuterium H-mode plasma. Conclusions to the expected divertor conditions in ITER as well as to the JET operation in the DT plasma mixture are drawn on basis of this unique benchmark experiment.

  • 48.
    Brezinsek, S.
    et al.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, Partner Trilateral Euregio Cluster TEC, D-52425 Julich, Germany..
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Yi, R.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, Partner Trilateral Euregio Cluster TEC, D-52425 Julich, Germany..
    Plasma-surface interaction in the stellarator W7-X: conclusions drawn from operation with graphite plasma-facing components2022In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 62, no 1, article id 016006Article in journal (Refereed)
    Abstract [en]

    W7-X completed its plasma operation in hydrogen with island divertor and inertially cooled test divertor unit (TDU) made of graphite. A substantial set of plasma-facing components (PFCs), including in particular marker target elements, were extracted from the W7-X vessel and analysed post-mortem. The analysis provided key information about underlying plasma–surface interactions (PSI) processes, namely erosion, transport, and deposition as well as fuel retention in the graphite components. The net carbon (C) erosion and deposition distribution on the horizontal target (HT) and vertical target (VT) plates were quantified and related to the plasma time in standard divertor configuration with edge transform ι = 5/5, the dominant magnetic configuration of the two operational phases (OP) with TDU. The operation resulted in integrated high net C erosion rate of 2.8 mg s−1 in OP1.2B over 4809 plasma seconds. Boronisations reduced the net erosion on the HT by about a factor 5.4 with respect to OP1.2A owing to the suppression of oxygen (O). In the case of the VT, high peak net C erosion of 11 μm at the strike line was measured during OP1.2B which converts to 2.5 nm s−1 or 1.4 mg s−1 when related to the exposed area of the target plate and the operational time in standard divertor configuration. PSI modelling with ERO2.0 and WallDYN-3D is applied in an interpretative manner and reproduces the net C erosion and deposition pattern at the target plates determined by different post-mortem analysis techniques. This includes also the 13C tracer deposition from the last experiment of OP1.2B with local 13CH4 injection through a magnetic island in one half module. The experimental findings are used to predict the C erosion, transport, and deposition in the next campaigns aiming in long-pulse operation up to 1800 s and utilising the actively cooled carbon-fibre composite (CFC) divertor currently being installed. The CFC divertor has the same geometrical design as the TDU and extrapolation depends mainly on the applied plasma boundary. Extrapolation from campaign averaged information obtained in OP1.2B reveals a net erosion of 7.6 g per 1800 s for a typical W7-X attached divertor plasma in hydrogen.

  • 49.
    Brunetti, D.
    et al.
    UKAEA-CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom, Abingdon.
    Ham, C. J.
    UKAEA-CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom, Abingdon.
    Graves, J. P.
    École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland.
    Lazzaro, E.
    Istituto per la Scienza e Tecnologia dei Plasmi CNR, Via R. Cozzi 53, 20125 Milan, Italy, Via R. Cozzi 53.
    Nowak, S.
    Istituto per la Scienza e Tecnologia dei Plasmi CNR, Via R. Cozzi 53, 20125 Milan, Italy, Via R. Cozzi 53.
    Mariani, A.
    Dipartimento di Fisica ‘G. Occhialini’, Università di Milano-Bicocca, Milan, Italy.
    Wahlberg, C.
    Department of Physics and Astronomy, Uppsala University, PO Box 516, SE-751 20 Uppsala, Sweden, PO Box 516.
    Cooper, W. A.
    Swiss Alps Fusion Energy (SAFE), CH-1864 Vers l’Eglise, Switzerland.
    Solano, E. R.
    Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain.
    Saarelma, S.
    UKAEA-CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom, Abingdon.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Fontana, M.
    École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland.
    Kleiner, A.
    Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United States of America.
    Bustos Ramirez, G.
    École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland.
    Viezzer, E.
    Department of Atomic, Molecular and Nuclear Physics, University of Seville, Avda. Reina Mercedes, 41012 Seville, Spain, Avda. Reina Mercedes.
    Understanding JET-C quiescent phases with edge harmonic magnetohydrodynamic activity and comparison with behaviour under ITER-like wall conditioning2022In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 64, no 4, article id 044005Article in journal (Refereed)
    Abstract [en]

    An analysis of edge localised mode-free (quiescent) H-mode discharges exhibiting edge harmonic magnetoydrodynamic activity in the JET-carbon wall machine is presented. It is observed that the otherwise quiescent pulses with multiple-n harmonic oscillations are sustained until a threshold in pedestal electron density and collisionality is crossed. The macroscopic pedestal parameters associated with the quiescent phase are compared with those of a database of JET-ELMy discharges with both carbon and ITER-like wall (ILW). This comparison provides the identification of the existence regions in the relevant pedestal and global plasma parameters for edge harmonic oscillations (EHOs) in JET plasmas. Although the ELMy database scans pedestal collisionality and β values typical of ET-carbon quiescent operation, shaping and current are not simultaneously compatible with EHO existence. Nevertheless, ILW operation with JET-carbon quiescent-like parameters could in principle be achieved, and improved pedestal performance could be observed in more recent JET-ILW pulses.

  • 50.
    Brunsell, Per R.
    et al.
    KTH, Superseded Departments (pre-2005), Alfvén Laboratory.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Brzozowski, Jerzy
    Cecconello, Marco
    Drake, James R.
    Malmberg, Jenny-Ann
    Scheffel, Jan
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Schnack, Dalton
    Mode Dynamics and Confinement in the Reversed-field Pinch2000In: 18th IAEA Fusion Energy Conference in Sorrento, Italy, 4-10 Oct. 2000. Paper IAEA-CN-77/EXP3/14, 2000Conference paper (Refereed)
    Abstract [en]

    Tearing mode dynamics and toroidal plasma flow in the RFP has been experimentally studied in the Extrap T2 device. A toroidally localised, stationary magnetic field perturbation, the ``slinky mode'' is formed in nearly all discharges. There is a tendency of increased phase alignment of different toroidal Fourier modes, resulting in higher localised mode amplitudes, with higher magnetic fluctuation level. The fluctuation level increases slightly with increasing plasma current and plasma density. The toroidal plasma flow velocity and the ion temperature has been measured with Doppler spectroscopy. Both the toroidal plasma velocity and the ion temperature clearly increase with I/N. Initial, preliminary experimental results obtained very recently after a complete change of the Extrap T2 front-end system (first wall, shell, TF coil), show that an operational window with mode rotation most likely exists in the rebuilt device, in contrast to the earlier case discussed above. A numerical code DEBSP has been developed to simulate the behaviour of RFP confinement in realistic geometry, including essential transport physics. Resulting scaling laws are presented and compared with results from Extrap T2 and other RFP experiments.

1234567 1 - 50 of 477
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf