Change search
Refine search result
123 1 - 50 of 128
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Baath, Jenny Arnling
    et al.
    Chalmers Univ Technol, Div Ind Biotechnol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden..
    Martinez-Abad, Antonio
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Berglund, Jennie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Larsbrink, Johan
    Chalmers Univ Technol, Div Ind Biotechnol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden..
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Olsson, Lisbeth
    Chalmers Univ Technol, Div Ind Biotechnol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden..
    Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation2018In: Biotechnology for Biofuels, ISSN 1754-6834, E-ISSN 1754-6834, Vol. 11, article id 114Article in journal (Refereed)
    Abstract [en]

    Background: Galactoglucomannan (GGM) is the most abundant hemicellulose in softwood, and consists of a backbone of mannose and glucose units, decorated with galactose and acetyl moieties. GGM can be hydrolyzed into fermentable sugars, or used as a polymer in films, gels, and food additives. Endo-beta-mannanases, which can be found in the glycoside hydrolase families 5 and 26, specifically cleave the mannan backbone of GGM into shorter oligosaccharides. Information on the activity and specificity of different mannanases on complex and acetylated substrates is still lacking. The aim of this work was to evaluate and compare the modes of action of two mannanases from Cellvibrio japonicus (CjMan5A and CjMan26A) on a variety of mannan substrates, naturally and chemically acetylated to varying degrees, including naturally acetylated spruce GGM. Both enzymes were evaluated in terms of cleavage patterns and their ability to accommodate acetyl substitutions. Results: CjMan5A and CjMan26A demonstrated different substrate preferences on mannan substrates with distinct backbone and decoration structures. CjMan5A action resulted in higher amounts of mannotriose and mannotetraose than that of CjMan26A, which mainly generated mannose and mannobiose as end products. Mass spectrometric analysis of products from the enzymatic hydrolysis of spruce GGM revealed that an acetylated hexotriose was the shortest acetylated oligosaccharide produced by CjMan5A, whereas CjMan26A generated acetylated hexobiose as well as diacetylated oligosaccharides. A low degree of native acetylation did not significantly inhibit the enzymatic action. However, a high degree of chemical acetylation resulted in decreased hydrolyzability of mannan substrates, where reduced substrate solubility seemed to reduce enzyme activity. Conclusions: Our findings demonstrate that the two mannanases from C. japonicus have different cleavage patterns on linear and decorated mannan polysaccharides, including the abundant and industrially important resource spruce GGM. CjMan26A released higher amounts of fermentable sugars suitable for biofuel production, while CjMan5A, producing higher amounts of oligosaccharides, could be a good candidate for the production of oligomeric platform chemicals and food additives. Furthermore, chemical acetylation of mannan polymers was found to be a potential strategy for limiting the biodegradation of mannan-containing materials.

  • 2.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Design of Cellulose-based Materials by Supramolecular Assemblies2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Due to climate change and plastic pollution, there is an increasing demand for bio-based materials with similar properties to those of common plastics yet biodegradable. In this respect, cellulose is a strong candidate that is already being refined on a large industrial scale, but the properties differ significantly from those of common plastics in terms of shapeability and water-resilience.

    This thesis investigates how supramolecular interactions can be used to tailor the properties of cellulose-based materials by modifying cellulose surfaces or control the assembly of cellulose nanofibrils (CNFs). Most of the work is a fundamental study on interactions in aqueous environments, but some material concepts are presented and potential applications are discussed.

    The first part deals with the modification of cellulose by the spontaneous adsorption of xyloglucan or polyelectrolytes. The results indicate that xyloglucan adsorbs to cellulose due to the increased entropy of water released from the surfaces, which is similar to the increased entropy of released counter-ions that drives polyelectrolyte adsorption. The polyelectrolyte adsorption depends on the charge of the cellulose up to a limit after which the charge density affects only the first adsorbed layer in a multilayer formation.

    Latex nanoparticles with polyelectrolyte coronas can be adsorbed onto cellulose in order to prepare hydrophobic cellulose surfaces with strong and ductile wet adhesion, provided the glass transition of the core is below the ambient temperature.

    The second part of the thesis seeks to explain the interactions between different types of cellulose nanofibrils in the presence of different ions, using a model consisting of ion-ion correlation and specific ion effects, which can be employed to rationally design water-resilient and transparent nanocellulose films. The addition of small amounts of alginate also creates interpenetrating double networks, and these networks lead to a synergy which improves both the stiffness and the ductility of the films in water.

    A network model has been developed to understand these materials, with the aim to explain the properties of fibril networks, based on parameters such as the aspect ratio of the fibrils, the solidity of the network, and the ion-induced interactions that increase the friction between fibrils. With the help of this network model and the model for ion-induced interactions, we have created films with wet-strengths surpassing those of common plastics, or a ductility suitable for hygroplastic forming into water-resilient and biodegradable packages. Due to their transparency, water content, and the biocompatibility of cellulose, these materials are also suitable for biomaterial or bioelectronics applications. 

    The full text will be freely available from 2019-12-31 23:59
  • 3.
    Benselfelt, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Engström, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Supramolecular double networks of cellulose nanofibrils and algal polysaccharides with excellent wet mechanical properties2018In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 20, no 11, p. 2558-2570Article in journal (Refereed)
    Abstract [en]

    Supramolecular double network films, consisting of cellulose nanofibrils (CNF) entangled with the algal polysaccharides alginate or carrageenan, were prepared using a rapid vacuum filtration process to achieve water-resistant CNF nanopapers with excellent mechanical properties in both the wet and dry states following the locking of the structures using Ca2+. The rigid network of calcium alginate was more efficient than the more flexible network of calcium carrageenan and 10% by weight of alginate was sufficient to form a network that suppressed the swelling of the CNF film by over 95%. The resulting material could be compared to a stiff rubber with a Young's modulus of 135 MPa, a tensile strength of 17 MPa, a strain-at-break above 55%, and a work of fracture close to 5 MJ m(-3) in the wet state, which was both significantly stronger and more ductile than the calcium-treated CNF reference nanopaper. It was shown that the state in which Ca2+ was introduced is crucial, and it is also hypothesized that the alginate works as a sacrificial network that prevents the CNF from aligning during loading and that this leads to the increased toughness. The material maintained its barrier properties at elevated relative humidities and the extensibility and ductility made possible hygroplastic forming into three-dimensional shapes. It is suggested that the attractive force in the CNF part of the double network in the presence of multivalent ions is due to the ion-ion correlation forces generated by the fluctuating counter-ion cloud, since no significant ion coordination was observed using FTIR.

  • 4.
    Benselfelt, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Nordenström, Malin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ion-induced assemblies of highly anisotropic nanoparticles are governed by ion-ion correlation and specific ion effects2019In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, no 8, p. 3514-3520Article in journal (Refereed)
    Abstract [en]

    Ion-induced assemblies of highly anisotropic nanoparticles can be explained by a model consisting of ion-ion correlation and specific ion effects: dispersion interactions, metal-ligand complexes, and local acidic environments. Films of cellulose nanofibrils and montmorillonite clay were treated with different ions, and their subsequent equilibrium swelling in water was related to important parameters of the model in order to investigate the relative importance of the mechanisms. Ion-ion correlation was shown to be the fundamental attraction, supplemented by dispersion interaction for polarizable ions such as Ca2+ and Ba2+, or metal-ligand complexes for ions such as Cu2+, Al3+ and Fe3+. Ions that form strong complexes induce local acidic environments that also contribute to the assembly. These findings are summarized in a comprehensive semi-quantitative model and are important for the design of nanomaterials and for understanding biological systems where specific ions are involved.

  • 5.
    Benselfelt, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Nordenström, Malin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lindström, Stefan
    Linköping University.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Explaining the exceptional wet integrity of transparent cellulose nanofibril films in the presence of multivalent ions - Suitable substrates for biointerfacesManuscript (preprint) (Other academic)
  • 6.
    Benselfelt, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Dynamic networks of cellulose nanofibrils as a platform for tunable hydrogels, aerogels, and chemical modifications2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 7.
    Berglund, Jennie
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Azhar, Shoaib
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wohlert, Jakob
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    The structure of galactoglucomannan impacts the degradation under alkaline conditions2018In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882XArticle in journal (Refereed)
    Abstract [en]

    Galactoglucomannan (GGM) from sprucewas studied with respect to the degradation behavior inalkaline solution. Three reference systems includinggalactomannan from locust bean gum, glucomannanfrom konjac and the linear water-soluble carboxymethylcellulose were studied with focus onmolecular weight, sugar composition, degradationproducts, as well as formed oligomers, to identifyrelative structural changes in GGM. Initially allmannan polysaccharides showed a fast decrease inthe molecular weight, which became stable in the laterstage. The degradation of the mannan polysaccharidescould be described by a function corresponding to thesum of two first order reactions; one slow that wasascribed to peeling, and one fast that was connectedwith hydrolysis. The galactose side group wasstable under conditions used in this study (150 min,90 C, 0.5 M NaOH). This could suggest that, apartfrom the covalent connection to C6 in mannose, thegalactose substitutions also interact non-covalentlywith the backbone to stabilize the structure againstdegradation. Additionally, the combination of differentbackbone sugars seems to affect the stability of thepolysaccharides. For carboxymethyl cellulose thedegradation was linear over time which furthersuggests that the structure and sugar composition playan important role for the alkaline degradation. Moleculardynamics simulations gave details about theconformational behavior of GGM oligomers in watersolution, as well as interaction between the oligomersand hydroxide ions.

  • 8.
    Berglund, Jennie
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Farahani, Saina Kishani
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    de Carvalho, Danila Morais
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. AlbaNova University Centre.
    The influence of acetylation and sugar composition on the (in)solubility of mannans, their interaction with cellulose surfaces and thermal propertiesManuscript (preprint) (Other academic)
  • 9.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Cellulose-clay synergy effects in multifunctional hybrid composites2017In: International Conference on Nanotechnology for Renewable Materials 2017, TAPPI Press , 2017, p. 233-244Conference paper (Refereed)
  • 10.
    Boujemaoui, Assya
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Ansari, Farhan
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose-Poly(methyl methacrylate) Interface2019In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 2, p. 598-607Article in journal (Refereed)
    Abstract [en]

    A critical aspect in materials design of polymer nanocomposites is the nature of the nanoparticle/polymer interface. The present study investigates the effect of manipulation of the interface between cellulose nanofibrils (CNF) and poly(methyl methacrylate) (PMMA) on the optical, thermal, and mechanical properties of the corresponding nanocomposites. The CNF/PMMA interface is altered with a minimum of changes in material composition so that interface effects can be analyzed. The hydroxyl-rich surface of CNF fibrils is exploited to modify the CNF surface via an epoxide-hydroxyl reaction. CNF/PMMA nanocomposites are then prepared with high CNF content (similar to 38 wt %) using an approach where a porous CNF mat is impregnated with monomer or polymer. The nanocomposite interface is controlled by either providing PMMA grafts from the modified CNF surface or by solvent-assisted diffusion of PMMA into a CNF network (native and modified). The high content of CNF fibrils of similar to 6 nm diameter leads to a strong interface and polymer matrix distribution effects. Moisture uptake and mechanical properties are measured at different relative humidity conditions. The nanocomposites with PMMA molecules grafted to cellulose exhibited much higher optical transparency, thermal stability, and hygro-mechanical properties than the control samples. The present modification and preparation strategies are versatile and may be used for cellulose nanocomposites of other compositions, architectures, properties, and functionalities.

  • 11.
    Brett, Calvin
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics. DESY, Photon Sci, Hamburg, Germany.
    Mittal, Nitesh
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ohm, Wiebke
    DESY, Photon Sci, Hamburg, Germany..
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. DESY, Photon Sci, Hamburg, Germany..
    In situ self-assembly study in bio-based thin films2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 12.
    Brouzet, Christophe
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Mittal, Nitesh
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Characterizing the Orientational and Network Dynamics of Polydisperse Nanofibers on the Nanoscale2019In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835Article in journal (Refereed)
    Abstract [en]

    Polydisperse fiber networks are the basis of many natural and manufactured structures, ranging from high-performance biobased materials to components of living cells and tissues. The formation and behavior of such networks are given by fiber properties such as length and stiffness as well as the number density and fiber-fiber interactions. Studies of fiber network behavior, such as connectivity or rigidity thresholds, typically assume monodisperse fiber lengths and isotropic fiber orientation distributions, specifically for nano scale fibers, where the methods providing time-resolved measurements are limited. Using birefringence measurements in a microfluidic flow-focusing channel combined with a flow stop procedure, we here propose a methodology allowing investigations of length-dependent rotational dynamics of nanoscale polydisperse fiber suspensions, including the effects of initial nonisotropic orientation distributions. Transition from rotational mobility to rigidity at entanglement thresholds is specifically addressed for a number of nanocellulose suspensions, which are used as model nanofiber systems. The results show that the proposed method allows the characterization of the subtle interplay between Brownian diffusion and nanoparticle alignment on network dynamics.

  • 13.
    Brouzet, Christophe
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Mittal, Nitesh
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Lundell, Fredrik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Size-Dependent Orientational Dynamics of Brownian Nanorods2018In: ACS Macro Letters, E-ISSN 2161-1653, Vol. 7, no 8, p. 1022-1027Article in journal (Refereed)
    Abstract [en]

    Successful assembly of suspended nanoscale rod-like particles depends on fundamental phenomena controlling rotational and translational diffusion. Despite the significant developments in fluidic fabrication of nanostructured materials, the ability to quantify the dynamics in processing systems remains challenging. Here we demonstrate an experimental method for characterization of the orientation dynamics of nanorod suspensions in assembly flows using orientation relaxation. This relaxation, measured by birefringence and obtained after rapidly stopping the flow, is deconvoluted with an inverse Laplace transform to extract a length distribution of aligned nanorods. The methodology is illustrated using nanocelluloses as model systems, where the coupling of rotational diffusion coefficients to particle size distributions as well as flow-induced orientation mechanisms are elucidated. 

  • 14.
    Budnyak, Tetyana
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Aminzadeh, Selda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Wallenberg Wood Science Center.
    Pylypchuk, Ievgen
    Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), Allmas alle 5, SE-750 07 Uppsala, Swede.
    Riazanova, Anastasiia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Tertykh, Valentin
    Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine.
    Lindström, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sevastyanova, Olena
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Peculiarities of synthesis and properties of lignin-silica nanocomposites prepared by sol-gel method2018In: Nanomaterials, Vol. 8, no 11, p. 1-18Article in journal (Refereed)
    Abstract [en]

    The development of advanced hybrid materials based on polymers from biorenewable sources and mineral nanoparticles is currently of high importance. In this paper, we applied softwood kraft lignins for the synthesis of lignin/SiO2 nanostructured composites. We described the peculiarities of composites formation in the sol-gel process through the incorporation of the lignin into a silica network during the hydrolysis of tetraethoxysilane (TEOS). The initial activation of lignins was achieved by means of a Mannich reaction with 3-aminopropyltriethoxysilane (APTES). In the study, we present a detailed investigation of the physicochemical characteristics of initial kraft lignins and modified lignins on each step of the synthesis. Thus, 2D-NMR, 31P-NMR, size-exclusion chromatography (SEC) and dynamic light scattering (DLS) were applied to analyze the characteristics of pristine lignins and lignins in dioxan:water solutions. X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) were used to confirm the formation of the lignin–silica network and characterize the surface and bulk structures of the obtained hybrids. Termogravimetric analysis (TGA) in nitrogen and air atmosphere were applied to a detailed investigation of the thermal properties of pristine lignins and lignins on each step of modification. SEM confirmed the nanostructure of the obtained composites. As was demonstrated, the activation of lignin is crucial for the sol-gel formation of a silica network in order to create novel hybrid materials from lignins and alkoxysilanes (e.g., TEOS). It was concluded that the structure of the lignin had an impact on its reactivity during the activation reaction, and consequently affected the properties of the final hybrid materials.

  • 15.
    Budnyak, Tetyana M.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Natl Acad Sci Ukraine, Chuiko Inst Surface Chem, 17 Gen Naumov Str, UA-03164 Kiev, Ukraine..
    Aminzadeh, Selda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Pylypchuk, Ievgen V.
    Swedish Univ Agr Sci SLU, Dept Mol Sci, Allmas Alle 5, SE-75007 Uppsala, Sweden..
    Sternik, Dariusz
    Marie Curie Sklodowska Univ, 2 M Curie Sklodowska Sq, PL-20031 Lublin, Poland..
    Tertykh, Valentin A.
    Natl Acad Sci Ukraine, Chuiko Inst Surface Chem, 17 Gen Naumov Str, UA-03164 Kiev, Ukraine..
    Lindström, Mikael E.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sevastyanova, Olena
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Methylene Blue dye sorption by hybrid materials from technical lignins2018In: Journal of Environmental Chemical Engineering, ISSN 2160-6544, E-ISSN 2213-3437, Vol. 6, no 4, p. 4997-5007Article in journal (Refereed)
    Abstract [en]

    New hybrid sorbents were synthesized from technical lignins and silica and were applied for the removal of Methylene Blue dye (MB) from aqueous solution. Kraft softwood lignins from LignoBoost (LBL) and CleanFlowBlack (CFBL) processes were used to understand the influence of molecular weight and functionality of initial lignins on the properties of the final hybrids. The synthesized materials were applied as adsorbents for the removal of MB from aqueous solutions. The effects of parameters such as contact time, initial concentration of dye and initial pH on the adsorption capacity were evaluated. The hybrids exhibited higher adsorption capacity than the initial macromolecules of lignin with respect to MB. The hybrid based on CFBL exhibited an adsorption capacity of 60 mg/g; this value was 30% higher than the capacity of the hybrid based on LBL, which was 41.6 mg/g. Lignin hybrid materials extract 80-99% of the dye in a pH range from 3 to 10. The equilibrium and kinetic characteristics of MB uptake by the hybrids followed the Langmuir isotherm model and pseudosecond-order model, rather than the Freundlich and Temkin models, the pseudo-first-order or the intraparticle diffusion model. The attachment of the dye to the hybrid surface was confirmed via FE-SEM and FTIR spectroscopy. The mechanism for MB adsorption was proposed. Due to the high values of regeneration efficiency of the surface of both lignin-silica hybrid materials in 0.1 M HCl (up to 75%) and ethanol (99%), they could be applied as effective sorbents in industrial wastewater treatment processes.

  • 16.
    Butchosa, Nuria
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Leijon, Felicia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Bulone, Vincent
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Zhou, Qi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Stronger cellulose microfibril network structure through the expression of cellulose-binding modules in plant primary cell walls2019In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, no 5, p. 3083-3094Article in journal (Refereed)
    Abstract [en]

    Cellulose-binding modules (CBMs) are non-catalytic domains typically occurring in glycoside hydrolases. Their specific interaction with diverse polysaccharides assists hydrolysis by the catalytic subunits. In this work, we have exploited the interactions between a CBM from family 3 (CBM3) and cell wall polysaccharides to alter the structure and mechanical properties of cellulose microfibrils from BY-2 tobacco cell suspension cultures. A CBM3 from Clostridium thermocellum was overexpressed in the cells using Agrobacterium-mediated transformation. Water suspensions of cellulose microfibrils were prepared by the removal of the non-cellulosic components of the primary cell walls, followed by mild disintegration using sonication. The morphology of the microfibrils was characterized by transmission electron microscopy and atomic force microscopy. These cellulose microfibrils were further hydrolyzed with 64wt% sulfuric acid to produce cellulose nanocrystals (CNCs). The average length of CNCs prepared from the CBM3-transformed cells was 201nm, higher than that from the wild-type cells (122nm). In addition, the mechanical properties and deformation mechanism of nanopapers prepared from suspensions of cellulose microfibrils were investigated. The nanopapers obtained from the CBM3-transformed cells exhibited enhanced tensile strength and work of fracture, 40% and 128% higher than those prepared from wild-type tobacco cells, respectively. [GRAPHICS] .

  • 17. Carosio, F.
    et al.
    Ghanadpour, Maryam
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Alongi, J.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams2018In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 202, p. 479-487Article in journal (Refereed)
    Abstract [en]

    The layer-by-layer (LbL) assembly of chitosan (CH) and phosphorylated cellulose nanofibrils (P-CNF) is presented as a novel, sustainable and efficient fire protection system for polyurethane foams. The assembly yields a linearly growing coating where P-CNF is the main component and is embedded in a continuous CH matrix. This CH/P-CNF system homogenously coats the complex 3D structure of the foam producing a nano-exoskeleton that displays excellent mechanical properties increasing the modulus of the foam while maintaining its ability of being cyclically deformed. During combustion the CH/P-CNF exoskeleton efficiently prevents foam collapse and suppresses melt dripping while reducing the heat release rate peak by 31% with only 8% of added weight. The coating behavior during combustion is investigated and correlated to the observed performances. Physical and chemical mechanisms are identified and related to the unique composition and structure of the coating imparted by the LbL assembly.

  • 18.
    Castro, Daniele Oliveira
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. MoRe Research Örnsköldsvik AB, Örnsköldsvik, Sweden.
    Karim, Zoheb
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. MoRe Research Örnsköldsvik AB, Örnsköldsvik, Sweden.
    Medina, Lilian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Häggström, J. -O
    Carosio, F.
    Svedberg, A.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites2018In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 162, p. 215-224Article in journal (Refereed)
    Abstract [en]

    Nanostructured materials are difficult to prepare rapidly and at large scale. Melt-processed polymer-clay nanocomposites are an exception, but the clay content is typically below 5 wt%. An approach for manufacturing of microfibrillated cellulose (MFC)/kaolinite nanocomposites is here demonstrated in pilot-scale by continuous production of hybrid nanopaper structures with thickness of around 100 μm. The colloidal nature of MFC suspensions disintegrated from chemical wood fiber pulp offers the possibility to add kaolinite clay platelet particles of nanoscale thickness. For initial lab scale optimization purposes, nanocomposite processing (dewatering, small particle retention etc) and characterization (mechanical properties, density etc) were investigated using a sheet former (Rapid Köthen). This was followed by a continuous fabrication of composite paper structures using a pilot-scale web former. Nanocomposite morphology was assessed by scanning electron microscopy (SEM). Mechanical properties were measured in uniaxial tension. The fire retardancy was evaluated by cone calorimetry. Inorganic hybrid composites with high content of in-plane oriented nanocellulose, nanoclay and wood fibers were successfully produced at pilot scale. Potential applications include fire retardant paperboard for semi structural applications.

  • 19.
    Chen, Pan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Guangdong, Peoples R China.
    Ogawa, Yu
    Univ Grenoble Alpes, CNRS, CERMAV, BP53, F-38000 Grenoble 9, France..
    Nishiyama, Yoshiharu
    Univ Grenoble Alpes, CNRS, CERMAV, BP53, F-38000 Grenoble 9, France..
    Ismail, Ahmed E.
    West Virginia Univ, Dept Chem & Biomed Engn, Morgantown, WV 26505 USA..
    Mazeau, Karim
    Univ Grenoble Alpes, CNRS, CERMAV, BP53, F-38000 Grenoble 9, France..
    I alpha to I beta mechano-conversion and amorphization in native cellulose simulated by crystal bending2018In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 8, p. 4345-4355Article in journal (Refereed)
    Abstract [en]

    The bending of rod-like native cellulose crystals with degree of polymerization 40 and 160 using molecular dynamics simulations resulted in a deformation-induced local amorphization at the kinking point and allomorphic interconversion between cellulose I alpha and I beta in the unbent segments. The transformation mechanism involves a longitudinal chain slippage of the hydrogen-bonded sheets by the length of one anhydroglucose residue ( 0.5 nm), which alters the chain stacking from the monotonic (I alpha) form to the alternating I beta one or vice versa. This mechanical deformation converts the I alpha form progressively to the I beta form, as has been experimentally observed for ultrasonication of microfibrils. I beta is also able to partially convert to I alpha-like organization but this conversion is only transitory. The qualitative agreement between the behavior of ultrasonicated microfibrils and in silico observed I alpha -> I beta conversion suggests that shear deformation and chain slippage under bending deformation is a general process when cellulose fibrils experience lateral mechanical stress.

  • 20.
    Chen, Pan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Terenzi, Camilla
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Furo, Istvan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of C-13 NMR Relaxation Times and Their Distributions2018In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, no 7, p. 2567-2579Article in journal (Refereed)
    Abstract [en]

    Macromolecular dynamics in biological systems, which play a crucial role for biomolecular function and activity at ambient temperature, depend strongly on moisture content. Yet, a generally accepted quantitative model of hydration-dependent phenomena based on local relaxation and diffusive dynamics of both polymer and its adsorbed water is still missing. In this work, atomistic-scale spatial distributions of motional modes are calculated using molecular dynamics simulations of hydrated xyloglucan (XG). These are shown to reproduce experimental hydration-dependent C-13 NMR longitudinal relaxation times (T-1) at room temperature, and relevant features of their broad distributions, which are indicative of locally heterogeneous polymer reorientational dynamics. At low hydration, the self-diffusion behavior of water shows that water molecules are confined to particular locations in the randomly aggregated XG network while the average polymer segmental mobility remains low. Upon increasing water content, the hydration network becomes mobile and fully accessible for individual water molecules, and the motion of hydrated XG segments becomes faster. Yet, the polymer network retains a heterogeneous gel-like structure even at the highest level of hydration. We show that the observed distribution of relaxations times arises from the spatial heterogeneity of chain mobility that in turn is a result of heterogeneous distribution of water-chain and chain chain interactions. Our findings contribute to the picture of hydration-dependent dynamics in other macromolecules such as proteins, DNA, and synthetic polymers, and hold important implications for the mechanical properties of polysaccharide matrixes in plants and plant-based materials.

  • 21.
    Dang, Binh T. T.
    et al.
    Chalmers Univ Technol, Dept Chem & Biol Engn, Forest Prod & Chem Engn, SE-41296 Gothenburg, Sweden..
    Brelid, Harald
    Sodra Innovat, SE-43286 Varobacka, Sweden..
    Theliander, Hans
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Chalmers Univ Technol, Dept Chem & Chem Engn, Forest Prod & Chem Engn, SE-41296 Gothenburg, Sweden.
    Carbohydrate content of black liquor and precipitated lignin at different ionic strengths in flow-through kraft cooking2018In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 72, no 7, p. 539-547Article in journal (Refereed)
    Abstract [en]

    The influence of sodium ion concentration [Na+] on the dissolution of carbohydrates in black liquor (BL) during flow-through kraft cooking of Scots pine wood meal (Pinus sylvestris) was studied. Fractions of BL were collected at different times and the carbohydrate content of the various fractions was analysed. Lignin was precipitated from the BL by lowering the pH, and the carbohydrate content of the precipitated lignins (L-prec) was also examined. The molecular weight distribution (MWD) of the L-prec samples was analysed. Xylose (Xyl) was found to be the most predominant sugar in BL aside from arabinose (Ara) and galactose (Gal), while the amounts of these sugars decreased with increasing levels of [Na+] in the cooking liquor. The minor amounts of mannose (Man) found in BL was not influenced by the [Na+]. The effects of NaCl and Na2CO3 on the carbohydrate dissolution were similar, but slightly lower concentrations of Ara and Xyl were found in the case of NaCl application. All of the L-prec samples contained some carbohydrate residues, the contents of which increased with increasing cooking time and decreased with higher [Na+]. It can be concluded that arabinoglucuronoxylan (AGX) along with arabinogalactans (AG) and arabinan, are covalently linked to lignin. The glucose (Glc) residue detected in L-prec may originate from 1,3-beta-glucan linked to lignin.

  • 22.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Asem, Heba
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Brismar, Hjalmar
    KTH, Superseded Departments (pre-2005), Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malkoch, Michael
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology. KTH, Superseded Departments (pre-2005), Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malmström, Eva
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology.
    In situ encapsulation of Nile red or Doxorubicinduring RAFT‐mediated emulsion polymerizationvia PISAManuscript (preprint) (Other academic)
  • 23.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    D'Agosto, Franck
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), LCPP, 69616 Villeurbanne, France .
    Lansalot, Muriel
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), LCPP, 69616 Villeurbanne, France .
    Carlmark, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. RISE.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state2019In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, p. 4287-4302Article in journal (Refereed)
    Abstract [en]

    Cationic latexes with Tgs ranging between −40 °C and 120 °C were synthesised using n-butyl acrylate (BA) and/or methyl methacrylate (MMA) as the core polymers. Reversible addition–fragmentation chain transfer (RAFT) combined with polymerisation-induced self-assembly (PISA) allowed for in situ chain-extension of a cationic macromolecular RAFT agent (macroRAFT) of poly(N-[3-(dimethylamino)propyl] methacrylamide) (PDMAPMA), used as stabiliser in so-called surfactant-free emulsion polymerisation. The resulting narrowly distributed nanosized latexes adsorbed readily onto silica surfaces and to model surfaces of cellulose nanofibrils, as demonstrated by quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. Adsorption to anionic surfaces increased when increasing ionic strength to 10 mM, indicating the influence of the polyelectrolyte effect exerted by the corona. The polyelectrolyte corona affected the interactions in the wet state, the stability of the latex and re-dispersibility after drying. The QCM-D measurements showed that a lower Tg of the core results in a more strongly interacting adsorbed layer at the solid–liquid interface, despite a comparable adsorbed mass, indicating structural differences of the investigated latexes in the wet state. The two latexes with Tg below room temperature (i.e. PBATg-40 and P(BA-co-MMA)Tg3) exhibited film formation in the wet state, as shown by AFM colloidal probe measurements. It was observed that P(BA-co-MMA)Tg3 latex resulted in the largest pull-off force, above 200 m Nm−1 after 120 s in contact. The strongest wet adhesion was achieved with PDMAPMA-stabilized latexes soft enough to allow for interparticle diffusion of polymer chains, and stiff enough to create a strong adhesive joint. Fundamental understanding of interfacial properties of latexes and cellulose enables controlled and predictive strategies to produce strong and tough materials with high nanocellulose content, both in the wet and dry state.

  • 24.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Brett, Calvin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Film formation of soft and rigid PISA‐latexes –analysis of thin films using GISAXSManuscript (preprint) (Other academic)
  • 25.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hatton, Fiona
    Univ Sheffield, Dept Chem, Sheffield, S Yorkshire, England..
    Boujemaoui, Assya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sanchez, Carmen Cobo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    D'Agosto, Franck
    C2P2 CNRS CPE UCBL, CPE Lyon, Bat 308F, Villeurbanne, France..
    Lansalot, Muriel
    C2P2 CNRS CPE UCBL, CPE Lyon, Bat 308F, Villeurbanne, France..
    Fogelstrom, Linda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carlmark, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. RISE Res Inst Sweden Div Bioecon, Nanocellulose, Stockholm, Sweden..
    Tailored nano-latexes for modification of nanocelluloses: Compatibilizing and plasticizing effects2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 26.
    Engström, Joakim
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hatton, Fiona
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    D'Agosto, F.
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France .
    Lansalot, M.
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France .
    Malmström, Eva
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification-a comparative study2017In: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 8, no 6, p. 1061-1073Article in journal (Refereed)
    Abstract [en]

    Latex nanoparticles comprising cationically charged coronas and hydrophobic cores with different glass transition temperatures (Tg) have been prepared by surfactant-free, RAFT-mediated emulsion polymerization, where the particles form through a polymerization-induced self-assembly (PISA) type mechanism. Poly(2-dimethylaminoethyl methacrylate-co-methacrylic acid) (P(DMAEMA-co-MAA)) was utilized as a hydrophilic macroRAFT agent for the polymerization of methyl methacrylate (MMA) or n-butyl methacrylate (nBMA), respectively, resulting in two different latexes, with either a core of high (PMMA) or low (PnBMA) Tg polymer. By varying the molar mass of the hydrophobic block, latexes of different sizes were obtained (DHca. 40-120 nm). The adsorption of the latexes to cellulose model surfaces and cellulose nanofibrils (CNF) was studied using quartz crystal microbalance with dissipation monitoring (QCM-D). The surfaces with adsorbed PnBMA latexes yielded hydrophobic surfaces both before and after annealing, whereas surfaces with adsorbed PMMA latex became hydrophobic only after annealing, clearly showing the influence of the Tg of the core. The latexes were also used to modify macroscopic cellulose in the form of filter papers. Similar to the CNF surfaces, no annealing was required to achieve hydrophobic surfaces with PnBMA latexes. Finally, nanocomposites of CNF and the polymer nanoparticles were prepared through a one-pot mixing procedure. It was found that the largest synthesized PMMA latex (120 nm) facilitated a more strainable CNF network at 50% relative humidity, with a nearly 200% increase in strain at break compared to the neat CNF reference film as well as to the composite films with PnBMA latexes or to the smaller sized PMMA latexes. This difference was attributed to the spherical shape and rigidity of the large PMMA latex nanoparticles during composite formation. This highly interesting result should indeed be considered in the future design of novel biocomposites.

  • 27.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Jimenez, Andrew
    Columbia University.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Kumar, Sanat
    Columbia University.
    Nanoparticle Rearrangement Under Stress inCellulose Nanofibrils Networks using in situ SAXSMeasurements During Tensile TestingManuscript (preprint) (Other academic)
  • 28.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Stamm, Arne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Tengdelius, Mattias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Syrén, Per-Olof
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Fogelström, Linda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Cationic latexes of bio‐based hydrophobicmonomer Sobrerol methacrylate (SobMA)Manuscript (preprint) (Other academic)
  • 29.
    Erlandsson, Johan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Marais, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Granberg, Hjalmar
    RISE Bioecon, Papermaking & Packaging, Box 5604, SE-11486 Stockholm, Sweden..
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils2019In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 2, p. 728-737Article in journal (Refereed)
    Abstract [en]

    Chemically cross-linked highly porous nano cellulose aerogels with complex shapes have been prepared using a freeze-linking procedure that avoids common post activation of cross-linking reactions and freeze-drying. The aerogel shapes ranged from simple geometrical three-dimensional bodies to swirls and solenoids. This was achieved by molding or extruding a periodate oxidized cellulose nanofibril (CNF) dispersion prior to chemical cross-linking in a regular freezer or by reshaping an already prepared aerogel by plasticizing the structure in water followed by reshaping and locking the aerogel into its new shape. The new shapes were most likely retained by new cross-links formed between CNFs brought into contact by the deformation during reshaping. This self-healing ability to form new bonds after plasticization and redrying also contributed to the mechanical resilience of the aerogels, allowing them to be cyclically deformed in the dry state, reswollen with water, and redried with good retention of mechanical integrity. Furthermore, by exploiting the shapeability and available inner structure of the aerogels, a solenoid-shaped aerogel with all surfaces coated with a thin film of conducting polypyrrole was able to produce a magnetic field inside the solenoid, demonstrating electromagnetic properties. Furthermore, by biomimicking the porous interior and stiff exterior of the beak of a toucan bird, a functionalized aerogel was created by applying a 300 mu m thick stiff wax coating on its molded external surfaces. This composite material displayed a 10-times higher elastic modulus compared to that of the plain aerogel without drastically increasing the density. These examples show that it is possible to combine advanced shaping with functionalization of both the inner structure and the surface of the aerogels, radically extending the possible use of CNF aerogels.

  • 30.
    Erlandsson, Johan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ingverud, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Granberg, H.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels2018In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 40, p. 19371-19380Article in journal (Refereed)
    Abstract [en]

    The underlying mechanism related to freezing-induced crosslinking of aldehyde-containing cellulose nanofibrils (CNFs) has been investigated, and the critical parameters behind this process have been identified. The aldehydes introduced by periodate oxidation allows for formation of hemiacetal bonds between the CNFs provided the fibrils are in sufficiently close contact before the water is removed. This is achieved during the freezing process where the cellulose components are initially separated, and the growth of ice crystals forces the CNFs to come into contact in the thin lamellae between the ice crystals. The crosslinked 3-D structure of the CNFs can subsequently be dried under ambient conditions after solvent exchange and still maintain a remarkably low density of 35 kg m-3, i.e. a porosity greater than 98%. A lower critical amount of aldehydes, 0.6 mmol g-1, was found necessary in order to generate a crosslinked 3-D CNF structure of sufficient strength not to collapse during the ambient drying. The chemical stability of the 3-D structure can be further enhanced by converting the hemiacetals to acetals by treatment with an alcohol under acidic conditions.

  • 31.
    Farahani, Saina Kishani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Escalante, Alfredo
    Toriz, Guillermo
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Gatenholm, Paul
    Hansson, Per
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Experimental and Theoretical Evaluation of the Solubility/Insolubility Spruce Xylan (Arabino Glucuronoxylan)2019In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 3, p. 1263-1270Article in journal (Refereed)
    Abstract [en]

    The molecular solubility of softwood arabinoglucuronoxylan (AGX) has been thoroughly investigated, and it has been shown that the chemical and physical structures of the extracted hemicellulose are not significantly influenced by different purification steps, but a transient molecular solubility of AGX was observed in aqueous media at low concentrations (1 g/L) when the dissolved macromolecules had a hydrodynamic diameter of up to 10 nm. A phase separation was detected when the concentration was increased to 15 g/L leading to an association of the smaller molecules into fractal structures with a considerably larger diameter, even though the dispersions were still transparent to ocular inspection. Dynamic Light Scattering and Cryo-Transmission Electron Microscopy showed dimensions in the range of 1000 nm. The phase separation of the sample was further characterized by estimating the χ-interaction parameter of AGX in water using the Flory-Huggins theory, and the results supported that water is a poor solvent for AGX. This behavior is crucial when films and hydrogels based on these biopolymers are made, since the association will dramatically affect barrier and mechanical properties of films made from these materials.

  • 32.
    Fu, Qiliang
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, WWSC, Dept Fibre & Polymer Technol, Stockholm, Sweden..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, WWSC, Dept Fibre & Polymer Technol, Stockholm, Sweden..
    Hierarchically structured nanoporous template based on balsa wood2016In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Article in journal (Other academic)
  • 33.
    Fu, Qiliang
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Honeycomb like templates prepared from balsa wood2015In: ICCM International Conferences on Composite Materials, International Committee on Composite Materials , 2015Conference paper (Refereed)
    Abstract [en]

    In the current study, we have used sodium chlorite and sodium hydroxide as extraction solutions, to remove lignin and hemicelluloses from the Balsa (Ochroma Lagopus) wood tissues, without damaging the wood honeycomb architecture. Surface morphologies are studied using scanning electron microscopy (SEM). In addition, sugars analysis of the chemically extracted wood is reported. 

  • 34.
    Fu, Qiliang
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Yan, Min
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Jungstedt, Erik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Yang, Xuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Transparent plywood as a load-bearing and luminescent biocomposite2018In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 164, p. 296-303Article in journal (Refereed)
    Abstract [en]

    Transparent wood (TW) structures in research studies were either thin and highly anisotropic or thick and isotropic but weak. Here, transparent plywood (TPW) laminates are investigated as load-bearing biocomposites with tunable mechanical and optical performances. Structure-property relationships are analyzed. The plies of TPW were laminated with controlled fiber directions and predetermined stacking sequence in order to control the directional dependence of modulus and strength, which would give improved properties in the weakest direction. Also, the angular dependent light scattering intensities were investigated and showed more uniform distribution. Luminescent TPW was prepared by incorporation of quantum dots (QDs) for potential lighting applications. TPW can be designed for large-scale use where multiaxial load-bearing performance is combined with new optical functionalities.

  • 35. Geng, Lihong
    et al.
    Mittal, Nitesh
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Zhan, Chengbo
    Ansari, Farhan
    Sharma, Priyanka R.
    Peng, Xiangfang
    Hsiao, Benjamin S.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Understanding the Mechanistic Behavior of Highly Charged Cellulose Nanofibers in Aqueous Systems2018In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 51, no 4, p. 1498-1506Article in journal (Refereed)
    Abstract [en]

    Mechanistic behavior and flow properties of cellulose nanofibers (CNFs) in aqueous systems can be described by the crowding factor and the concept of contact points, which are functions of the aspect ratio and concentration of CNF in the suspension. In this study, CNFs with a range of aspect ratio and surface charge density (380-1360 mu mol/g) were used to demonstrate this methodology. It was shown that the critical networking point of the CNF suspension, determined by rheological measurements, was consistent with the gel crowding factor, which was 16. Correlated to the crowding factor, both viscosity and modulus of the systems were found to decrease by increasing the charge density of CNF, which also affected the flocculation behavior. Interestingly, an anomalous rheological behavior was observed near the overlap concentration (0.05 wt %) of CNF, at which the crowding factor was below the gel crowding factor, and the storage modulus (G') decreased dramatically at a given frequency threshold. This behavior is discussed in relation to the breakup of the entangled flocs and network in the suspension. The analysis of the mechanistic behavior of CNF aqueous suspensions by the crowding factor provides useful insight for fabricating high-performance nanocellulose-based materials.

  • 36.
    Geng, Shiyu
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Luleå Univ Technol, Div Mat Sci, Dept Engn Sci & Math, SE-97187 Luleå, Sweden.
    Yao, Kun
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Zhou, Qi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Oksman, Kristiina
    Luleå Univ Technol, Div Mat Sci, Dept Engn Sci & Math, SE-97187 Luleå, Sweden.;Univ Oulu, Fibre & Particle Engn, FI-90014 Oulu, Finland..
    High-Strength, High-Toughness Aligned Polymer-Based Nanocomposite Reinforced with Ultralow Weight Fraction of Functionalized Nanocellulose2018In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, no 10, p. 4075-4083Article in journal (Refereed)
    Abstract [en]

    Multifunctional lightweight, flexible, yet strong polymer-based nanocomposites are highly desired for specific applications. However, the control of orientation and dispersion of reinforcing nanoparticles and the optimization of the interfacial interaction still pose substantial challenges in nanocellulose-reinforced polymer composites. In this study, poly(ethylene glycol) (PEG)-grafted cellulose nanofibers have demonstrated much better dispersion in a poly(lactic acid) (PLA) matrix as compared to unmodified nanocellulose. Through a uniaxial drawing method, aligned PLA/nanocellulose nanocomposites with high strength, high toughness, and unique optical behavior can be obtained. With the incorporation of 0.1 wt % of the PEG-grafted cellulose nanofibers in PLA, the ultimate strength of the aligned nanocomposite reaches 343 MPa, which is significantly higher than that of other aligned PLA-based nanocomposites reported previously. Moreover, its ultimate strength and toughness are enhanced by 39% and 70%, respectively, as compared to the aligned nanocomposite reinforced with unmodified cellulose nanofibers. In addition, the aligned nanocomposite film is highly transparent and possesses an anisotropic light scattering effect, revealing its significant potential for optical applications.

  • 37.
    Ghanadpour, Maryam
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Carosio, F.
    Ruda, M. C.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Tuning the Nanoscale Properties of Phosphorylated Cellulose Nanofibril-Based Thin Films to Achieve Highly Fire-Protecting Coatings for Flammable Solid Materials2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 38, p. 32543-32555Article in journal (Refereed)
    Abstract [en]

    Ultrathin nanocomposite films were prepared by combining cellulose nanofibrils (CNFs) prepared from phosphorylated pulp fibers (P-CNF) with montmorillonite (MMT), sepiolite (Sep) clay, or sodium hexametaphosphate (SHMP). The flame-retardant and heat-protective capability of the prepared films as casings for a polyethylene (PE) film was investigated. Heating the coated PE in air revealed that the polymer film was thoroughly preserved up to at least 300 °C. The P-CNF/MMT coatings were also able to completely prevent the ignition of the PE film during cone calorimetry, but neither the P-CNF/Sep nor the P-CNF/SHMP coating could entirely prevent PE ignition. This was explained by the results from combined thermogravimetry Fourier transform infrared spectroscopy, which showed that the P-CNF/MMT film was able to delay the release of PE decomposition volatiles and shift its thermal degradation to a higher temperature. The superior flame-retardant performance of the P-CNF/MMT films is mainly attributed to the unique compositional and structural features of the film, where P-CNF is responsible for increasing the char formation, whereas the MMT platelets create excellent barrier and thermal shielding properties by forming inorganic lamellae within the P-CNF matrix. These films showed a tensile strength of 304 MPa and a Young's modulus of 15 GPa with 10 wt % clay so that this composite film was mechanically stronger than the previously prepared CNF/clay nanopapers containing the same amount of clay. 

  • 38.
    Ghanadpour, Maryam
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wicklein, Bernd
    Carosio, Federico
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils2018In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 10, no 8, p. 4085-4095Article in journal (Refereed)
    Abstract [en]

    Pure cellulosic foams suffer from low thermal stability and high flammability, limiting their fields of application. Here, light-weight and flame-resistant nanostructured foams are produced by combining cellulose nanofibrils prepared from phosphorylated pulp fibers (P-CNF) with microfibrous sepiolite clay using the freeze-casting technique. The resultant nanocomposite foams show excellent flame-retardant properties such as self-extinguishing behavior and extremely low heat release rates in addition to high flame penetration resistance attributed mainly to the intrinsic charring ability of the phosphorylated fibrils and the capability of sepiolite to form heat-protective intumescent-like barrier on the surface of the material. Investigation of the chemical structure of the charred residue by FTIR and solid state NMR spectroscopy reveals the extensive graphitization of the carbohydrate as a result of dephosphorylation of the modified cellulose and further dehydration due to acidic catalytic effects. Originating from the nanoscale dimensions of sepiolite particles, their high specific surface area and stiffness as well as its close interaction with the phosphorylated fibrils, the incorporation of clay nanorods also significantly improves the mechanical strength and stiffness of the nanocomposite foams. The novel foams prepared in this study are expected to have great potential for application in sustainable building construction.

  • 39.
    Gioia, Claudio
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lo Re, Giada
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Tunable thermosetting epoxies based on fractionated and well-characterized lignins2018In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126Article in journal (Refereed)
  • 40.
    Giummarella, Nicola
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Fundamental Aspects of Lignin Carbohydrate Complexes (LCC): Mechanisms, Recalcitrance and Material concepts2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Covalent bonds between lignin and carbohydrates, forming a matrix referred to as lignin carbohydrate complexes (LCC), remain one of the most controversial topics in wood chemistry. A key issue is whether they are formed during chemical and mechanical pretreatments of the compact wood structure or actually present in wood prior to isolation. A fundamental understanding of their origin and reactivity is vital to unravel their role in wood formation and recalcitrance. Recalcitrance, specifically, has affected the successful development of effective and clean fractionation of wood polymers.

    To address the above-mentioned concerns, we have developed a novel mild universal and quantitative fractionation protocol of LCC that, when combined with robust spectroscopic analytical tools, including a variety of NMR techniques, GC MS and SEC, reveals deeper insights into the molecular structure of LCC.

    This method was applied to both hardwood and softwood LCCs and revealed interesting findings on molecular-level regulatory mechanism for lignin carbohydrate (LC) bond formation such as the role of acetylation in hemicelluloses. Moreover, the role of LC bonds on recalcitrance during subcritical water extraction was unveiled.

    Bio-mimicking in vitro lignin polymerization was adopted to investigate whether LC bonds are native or formed during isolation from wood. For the first time, direct evidence lending support that they are formed in wood cells was demonstrated, thus corroborating the mechanisms suggested in the literature.  

    Furthermore, based on the overall LCC study, we suggest a sequence for how LC bonds may form in vitro.

    Finally, of special interest to material science, the unveiled LC bond formation mechanism inspired a green, biomimetic, one-pot synthesis of functionalized lignin starting from monomeric components. Excellent selectivity of functionalization is reported and production of lignin-based recyclable materials, based on the premise of this functionalization philosophy, is discussed.

  • 41.
    Giummarella, Nicola
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Gioia, Claudio
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Department of Civil, Chemical, Environmental and Materials Engineering. Universita´ di Bologna.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    A One-Pot Biomimetic Synthesis of Selectively Functionalized Lignins from Monomers: A Green Functionalization Platform2018In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270Article in journal (Refereed)
    Abstract [en]

    Lignin is the most abundant renewable source of phenolic compound with great application potential in renewable materials, biofuels and platform chemicals. Current technology for producing cellulose-rich fibers co-produces heterogeneous lignin, which includes an untapped source of monomeric phenolics. One such monomer also happen to be the main monomer in soft wood lignin biosynthesis, namely coniferyl alcohol. Herein, we investigate the potential of coniferyl alcohol as a platform monomer for the biomimetic production of tailored functionalized oligolignols with desirable properties for material synthesis. Accordingly, a bifunctional molecule with at least one carboxyl-ended functionality is included with coniferyl alcohol in biomimetic lignin synthesis to, in one-pot, produce a functionalized lignin. The functionalization mechanism is a nucleophilic addition reaction to quinone methide intermediate of lignin polymerization. The solvent systems applied were pure water or 50% aqueous acetone. Several bi-functional molecules differing in the second functionality were successfully inserted in the lignin demonstrating the platform component of this work. Detailed characterizations were performed by a combination of NMR techniques which include 1H NMR, COSY-90, 31P NMR, 13C NMR, 13C APT, HSQC, HMBC and HSQC TOCSY. Excellent selectivity towards benzylic carbon and high functionalization degree were noted. The structure of lignin was tailored through solvent system choice, with the 50% aqeuous acetone producing a skeletal structure favorable for high functionalization degrees. Finally, material concepts are demonstrated using classical Thiol-ene- and Diels Alder- chemistries to show potential for thermoset- and thermoplastic- concepts, respectively. The functionalization concept presents unprecedentent opportunities for green production of lignin-based recyclable biomaterials.

  • 42.
    Giummarella, Nicola
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology.
    Pu, Yunqiao
    Ragauskas, Arthur J
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    A Critical Review on the Analysis of Lignin Carbohydrate Bonds2018In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270Article in journal (Refereed)
    Abstract [en]

    Replacing fossil-based resources with renewable alternatives is generally acknowledged as a critical component to address several of today's environmental concerns. In this context, lignocellulosic biomass is an attractive, sustainable resource. However, the constitutional biopolymers of interest are locked in the structural complexity of the plant cell walls, which defines their properties and contributes to fractionation recalcitrance. One of the key suspects restricting fractionation of the biopolymers in high yield is the presence of lignin-carbohydrate bonds forming a matrix referred to as Lignin-Carbohydrate Complexes (LCC). Nevertheless, covalent bonds between lignin and carbohydrates, remain one of the most controversial topics in lignocellulose chemistry. This challenge can be attributed to the slow progress made in their research, which also forms the basis for this review. Herein, we will critically discuss the literature with a particular focus on the latest characterization and analytical techniques. Discussions on existing techniques and, importantly the drawbacks with them should be compelling to researchers in the area, especially at this time when crucial issues surrounding the realization of biorefineries need to be addressed.

  • 43.
    Goliszek, M.
    et al.
    Marie Curie Sklodowska Univ, Fac Chem, Maria Curie Sklodowska Sq 3, PL-20031 Lublin, Poland..
    Podkoscielna, B.
    Marie Curie Sklodowska Univ, Fac Chem, Maria Curie Sklodowska Sq 3, PL-20031 Lublin, Poland..
    Fila, K.
    Marie Curie Sklodowska Univ, Fac Chem, Maria Curie Sklodowska Sq 3, PL-20031 Lublin, Poland..
    Riazanova, A. V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Aminzadeh, Selda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sevastyanova, O.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Gun'ko, V. M.
    Chuiko Inst Surface Chem, 17 Gen Naumov Str, UA-03164 Kiev, Ukraine..
    Synthesis and structure characterization of polymeric nanoporous microspheres with lignin2018In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 10, p. 5843-5862Article in journal (Refereed)
    Abstract [en]

    Nanoporous microspheres with divinylbenzene (DVB), styrene (St), and lignin were synthesized by an emulsion-suspension polymerization method. Several types of lignins were used: (1) kraft lignin before (L-unmod) and after modification with methacryloyl chloride (L-Met) and (2) low-molecular-weight kraft lignin unmodified (LWL-unmod) and modified with methacrylic anhydride (LWL-Met). LWL was prepared by ultrafiltration of industrial black liquor using a ceramic membrane with a molecular weight (Mw) cut-off of 5 kDa. The synthesis was optimized by addition of different amounts of lignins. The microsphere texture was characterized using low-temperature nitrogen adsorption and small angle X-ray scattering analyses. The microspheres were nano- and mesoporous with a specific surface area in the range of 0.1-409 m(2)/g. The morphology of the copolymers was studied using field emission scanning electron microscopy and atomic force microscopy. The thermal properties were studied using differential scanning calorimetry and thermogravimetric analysis methods. A significant difference in the microsphere roughness is affected by lignins due to the presence of lignin nanoparticles at the surface of the microspheres. Molecular modeling was used to predict the sorption properties of the copolymers affected by various fields around the particles. The particle size, polydispersity and zeta potential of the St + DVB, L-Met + St + DVB and L-unmod + St + DVB samples were measured by dynamic light scattering. Additionally, the point of zero charge of the samples was determined using potentiometric titration. The materials studied have a great potential for sorption processes due to their developed porosity and the presence of a number of active surface functionalities. [GRAPHICS] .

  • 44.
    Gunnarsson, Maria
    et al.
    Chalmers Univ Technol, Dept Chem & Chem Engn, Div Forest Prod & Chem Engn, SE-41296 Gothenburg, Sweden..
    Bernin, Diana
    Univ Gothenburg, Swedish NMR Ctr, SE-40530 Gothenburg, Sweden.;Chalmers Univ Technol, Dept Chem & Chem Engn, Div Chem React Engn, S-41296 Gothenburg, Sweden..
    Ostlund, Asa
    RISE Bioecon, Res Inst Sweden, Drottning Kristinas Vag 67, S-11428 Stockholm, Sweden..
    Hasani, Merima
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Chalmers Univ Technol, Dept Chem & Chem Engn, Div Forest Prod & Chem Engn, SE-41296 Gothenburg, Sweden.;Chalmers Univ Techno..
    The CO2 capturing ability of cellulose dissolved in NaOH(aq) at low temperature2018In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 20, no 14, p. 3279-3286Article in journal (Refereed)
    Abstract [en]

    Herein, we explore the intrinsic ability of cellulose dissolved in NaOH(aq) to reversibly capture CO2. The stability of cellulose solutions differed significantly when adding CO2 prior to or after the dissolution of cellulose. ATR-IR spectroscopy on cellulose regenerated from the solutions, using ethanol, revealed the formation of a new carbonate species likely to be cellulose carbonate. To elucidate the interaction of cellulose with CO2 at the molecular level, a C-13 NMR spectrum was recorded on methyl -d-glucopyranoside (MeO-Glcp), a model compound, dissolved in NaOH(aq), which showed a difference in chemical shift when CO2 was added prior to or after the dissolution of MeO-Glcp, without a change in pH. The uptake of CO2 was found to be more than twice as high when CO2 was added to a solution after the dissolution of MeO-Glcp. Altogether, a mechanism for the observed CO2 capture is proposed, involving the formation of an intermediate cellulose carbonate upon the reaction of a cellulose alkoxide with CO2. The intermediate was observed as a captured carbonate structure only in regenerated samples, while its corresponding NMR peak in solution was absent. The reason for this is plausibly a rather fast hydrolysis of the carbonate intermediate by water, leading to the formation of CO32-, and thus increased capture of CO2. The potential of using carbohydrates as CO2 capturing agents in NaOH(aq) is shown to be simple and resource-effective in terms of the capture and regeneration of CO2.

  • 45.
    Hajian, Alireza
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Institute of Technology.
    Cellulose–Assisted Dispersion of Carbon Nanotubes: From Colloids to Composites2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    It is a challenge to disperse nanoparticles to obtain a nanostructured composite. This thesis aims at providing a new route to fabricate carbon nanotube (CNT) composites and suggests mechanisms for nanocellulose–CNT interactions. This route is based on unmodified CNT dispersed in water with the help of nanocellulose. Chemical functionalization of the CNTs and the addition of surfactants are avoided. Thus, the mechanical and electrical properties of such nanotube composites can be improved.

    Cellulose derivatives can disperse and stabilize carbon nanotubes in water. Nanocellulose particles, such as cellulose nanofibrils (CNF), are a new form of cellulose derivatives that are able to disperse and stabilize untreated carbon nanotubes in water. The utilization of the hybrid CNF–CNT dispersions are shown to lead to strong nanostructured composites with high nanotube content and conductivity. The mechanism behind the dispersive action of nanocellulose for nanotubes is explored and studied in detail. The dispersive ability of the nanocellulose leads to improved properties of CNF–CNT composites.

    Apart from studies of structure and properties of composite fibers and films, two different functional materials are studied in detail. One is to form conductive patterns on cellulose nanopaper for the stable function of printed electronics in various environmental conditions and during handling. The second is to use a water-soluble cellulosic polymer–nanotube dispersion to fabricate superelastic aerogels without any chemical crosslinking or the addition of another component. This makes the aerogels easily recyclable (redispersible in water) and opens a new route for recyclable superelastic CNT composite aerogels.

  • 46.
    Hajian, Alireza
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Conductive and strong nanocomposites based on cellulose nanofibrils and carbon nanotubes2015In: ICCM International Conferences on Composite Materials, International Committee on Composite Materials , 2015Conference paper (Refereed)
    Abstract [en]

    Single-wall carbon nanotubes (SWNTs) can be dispersed with the aid of cellulose nanofibrils (CNF) in aqueous medium. The dispersions have high stability and quality that can be utilized into self-assembly of functional composites having high electrical conductivity and strength. The composites were then carefully analyzed in terms of their mechanical and electrical properties as well as dispersion quality. 

  • 47.
    Hajian, Alireza
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Fu, Qiliang
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Recyclable and superelastic aerogels based on carbon nanotubes and carboxymethyl cellulose2018In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 159, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Deformation mechanisms are largely unknown for superelastic carbon nanotube (CNT) aerogels, and this hampers materials design efforts. The CNT network in the cell walls is typically crosslinked or connected by a thermoset polymer phase. In order to create a recyclable superelastic aerogel, unmodified single or multi-walled CNTs were dispersed in water by adding to aqueous carboxymethyl cellulose (CMC) solution. Directional freeze-drying was used to form honeycombs with cell walls of random-in-the-plane CNTs in CMC matrix. Cell wall morphology and porosity were studied and related to CNT type and content, as well as elastic or plastic buckling of the cell walls under deformation. CMC acts as a physical crosslinker for the CNTs in a porous cell wall. Aerogel structure and properties were characterized before and after recycling. The conductivity of the composite aerogel with a density of 10 kg/m3, 99% porosity and 50 wt % single-walled CNT exceeds 0.5 S/cm. The potential of these superelastic and conductive aerogels for applications such as mechanoresponsive materials was examined in cyclic conductivity tests at different strains. This opens a new route for recyclable superelastic CNT composite aerogels, avoiding material loss, chemical treatment or addition of other components.

  • 48.
    Hajian, Alireza
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Fiber & Polymer Technol, Stockholm, Sweden..
    Lindstrom, Stefan
    Linkoping Univ, Div Solid Mech, Dept Management & Engn, Linkoping, Sweden..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Fiber & Polymer Technol, Stockholm, Sweden..
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Fiber & Polymer Technol, Stockholm, Sweden..
    Nanocellulose as dispersant for carbon nanotube suspensions2016In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Article in journal (Other academic)
  • 49.
    Hajian, Alireza
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Berglund, Lars. A
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns2019In: Advanced Electronic Materials, ISSN 2199-160X, Vol. 5, no 3, article id 1800924Article in journal (Refereed)
    Abstract [en]

    This work presents a route to fabricate micropatterned conductive structures where the conductors are monolithically integrated with nanocellulose-based paper. To fabricate conductive features, microstructures are patterned on filter papers using wax-printing, followed by vacuum filtration of carbon nanotubes (CNTs) or silver nanowires (AgNWs) dispersed in aqueous cellulose nanofibrils (CNFs). These patterns are then laminated onto a pure CNF substrate (both in gel-state) and dried to form cellulose nanopapers with integrated conductive micropatterns. Resolutions of the conductive features are shown down to 400 µm wide, 250 nm thick, and with conductivity values of 115 ± 5 S cm −1 for the CNF–CNT and 3770 ± 230 S cm −1 for the CNF–AgNW micropatterns. The nanopaper and the conductive patterns both constitute random fibrous networks, and they display similar ductility and swelling behavior in water. Thus, the integrated conductive micropatterns can withstand folding, as well as wetting cycles. This stability of the micropatterns makes them useful in various devices based on nanocellulose substrates. As an example, an electroanalytical nanopaper device that operates in wet conditions is demonstrated.

  • 50.
    Halysh, Vita
    et al.
    Igor Sikorsky Kyiv Polytech Inst, Fac Chem Engn, Dept Ecol & Technol Plant Polymers, Peremogy Avenu 37-4, UA-03056 Kiev, Ukraine.;Natl Acad Sci Ukraine, OO Chuiko Inst Surface Chem, Gen Naumov Str 17, UA-03164 Kiev, Ukraine..
    Sevastyanova, Olena
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Riazanova, Anastasia V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Pasalskiy, Bogdan
    Kyiv Natl Univ Trade & Econ, Kyoto Str 19, UA-02156 Kiev, Ukraine..
    Budnyak, Tetyana
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Natl Acad Sci Ukraine, OO Chuiko Inst Surface Chem, Gen Naumov Str 17, UA-03164 Kiev, Ukraine..
    Lindström, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Kartel, Mykola
    Natl Acad Sci Ukraine, OO Chuiko Inst Surface Chem, Gen Naumov Str 17, UA-03164 Kiev, Ukraine..
    Walnut shells as a potential low-cost lignocellulosic sorbent for dyes and metal ions2018In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 8, p. 4729-4742Article in journal (Refereed)
    Abstract [en]

    Currently, it is necessary to develop new methods and materials for solving the problem of environmental pollution by various toxicants. For these purposes, vegetal materials can be used. In this study, efficient low-cost sorbents based on walnut shells, an agro-industrial by-product, were prepared by treatment with acetic acid or a mixture of acetic acid and hydrogen peroxide. It was shown that the treatments significantly affected the composition and structure of walnut shells and their sorption properties with respect to organic dyes (methylene blue, methyl violet, and murexide) and heavy metal ions. Methylene blue dye was used for additional studies on the effect of pH, contact time and kinetics of sorption. The maximum adsorption rate of the dye occurred within the first 30 min of contact, during which the concentration of methylene blue in the solution was reduced by more than half. Full sorption equilibrium was reached within 180-230 min for studied samples. The adsorption kinetics of methylene blue was found to best be described by pseudo-second-order kinetic model. It was shown that dyes adsorption processes were well described by Freundlich model, which takes into consideration the heterogeneity of the surface of the adsorbent. The obtained plant sorbents are characterized by a high sorption capacity for heavy metal ions (18-29 mg/g for Fe3+ and 33-44 mg/g for Cu-2). Due to their numerous advantages, such as the high sorption capacity, high availability and low cost of raw materials, simplicity of disposal and nontoxicity, the obtained natural sorbents may have a wide practical use in industrial wastewater treatment. [GRAPHICS] .

123 1 - 50 of 128
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf