Endre søk
Begrens søket
1234567 1 - 50 of 694
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Agustin, Melissa B.
    et al.
    VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland, P.O. Box 1000; Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland, P.O. Box 66.
    Lahtinen, Maarit H.
    Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland, P.O. Box 66.
    Kemell, Marianna
    Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, FI-00014, Helsinki, Finland, P.O. Box 55.
    Oliaei, Erfan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Mikkonen, Kirsi S.
    Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland, P.O. Box 66; Helsinki Institute of Sustainability Science, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland, P.O. Box 65.
    Grönqvist, Stina
    VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland, P.O. Box 1000.
    Lehtonen, Mari
    Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland, P.O. Box 66.
    Enzymatic crosslinking of lignin nanoparticles and nanocellulose in cryogels improves adsorption of pharmaceutical pollutants2024Inngår i: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 266, artikkel-id 131168Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Pharmaceuticals, designed for treating diseases, ironically endanger humans and aquatic ecosystems as pollutants. Adsorption-based wastewater treatment could address this problem, however, creating efficient adsorbents remains a challenge. Recent efforts have shifted towards sustainable bio-based adsorbents. Here, cryogels from lignin-containing cellulose nanofibrils (LCNF) and lignin nanoparticles (LNPs) were explored as pharmaceuticals adsorbents. An enzyme-based approach using laccase was used for crosslinking instead of fossil-based chemical modification. The impact of laccase treatment on LNPs alone produced surface-crosslinked water-insoluble LNPs with preserved morphology and a hemicellulose-rich, water-soluble LNP fraction. The water-insoluble LNPs displayed a significant increase in adsorption capacity, up to 140 % and 400 % for neutral and cationic drugs, respectively. The crosslinked cryogel prepared by one-pot incubation of LNPs, LCNF and laccase showed significantly higher adsorption capacities for various pharmaceuticals in a multi-component system than pure LCNF or unmodified cryogels. The crosslinking minimized the leaching of LNPs in water, signifying enhanced binding between LNPs and LCNF. In real wastewater, the laccase-modified cryogel displayed 8–44 % removal for cationic pharmaceuticals. Overall, laccase treatment facilitated the production of bio-based adsorbents by improving the deposition of LNPs to LCNF. Finally, this work introduces a sustainable approach for engineering adsorbents, while aligning with global sustainability goals.

  • 2.
    Agustin, Melissa B.
    et al.
    Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland; VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044, Espoo, Finland.
    Nematollahi, Neda
    Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland.
    Bhattarai, Mamata
    Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland; Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076, Aalto, Finland.
    Oliaei, Erfan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer.
    Lehtonen, Mari
    Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland.
    Rojas, Orlando J.
    Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076, Aalto, Finland; Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360, East Mall, Vancouver, BC, V6T 1Z3, Canada.
    Mikkonen, Kirsi S.
    Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland.
    Lignin nanoparticles as co-stabilizers and modifiers of nanocellulose-based Pickering emulsions and foams2023Inngår i: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 30, nr 14, s. 8955-8971Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nanocellulose is very hydrophilic, preventing interactions with the oil phase in Pickering emulsions. This limitation is herein addressed by incorporating lignin nanoparticles (LNPs) as co-stabilizers of nanocellulose-based Pickering emulsions. LNP addition decreases the oil droplet size and slows creaming at pH 5 and 8 and with increasing LNP content. Emulsification at pH 3 and LNP cationization lead to droplet flocculation and rapid creaming. LNP application for emulsification, prior or simultaneously with nanocellulose, favors stability given the improved interactions with the oil phase. The Pickering emulsions can be freeze–dried, enabling the recovery of a solid macroporous foam that can act as adsorbent for pharmaceutical pollutants. Overall, the properties of nanocellulose-based Pickering emulsions and foams can be tailored by LNP addition. This strategy offers a unique, green approach to stabilize biphasic systems using bio-based nanomaterials without tedious and costly modification procedures.

  • 3.
    Alexakis, Alexandros Efraim
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Nanolatexes: a versatile toolbox for cellulose modification2023Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Cellulosic materials are widely used in our everyday lives, ranging from paperand packaging to biomedical applications. However, in most applications, cellulose must coexist with hydrophobic polymers which can be challenging due to its hydrophilic character. This has encouraged the exploration of chemical and physical modifications of cellulose.

    The projects included in this thesis focus on the physical modification of cellulosic materials with tailor-made, highly versatile colloidal nanoparticles synthesized in water, called nanolatexes. Their synthesis is based on the combination of the reversible addition-fragmentation chain transfer (RAFT) polymerization with polymerization-induced self-assembly (PISA). The bridging of these techniques results in the formation of amphiphilic diblock copolymers which self-assemble in water forming a variety of morphologies. Spheres, worms and vesicles with pH-responsive shell polymers were prepared to investigate the parameters that tune these morphological transitions. Less investigated parameters such as the chemical composition of the RAFT agent were studied which resulted in the formation of bimodal nanolatexes with opal-like characteristics in a reproducible manner. 

    A fundamental investigation of the parameters that govern the adsorption of cationically charged nanolatexes onto silica and regenerated TEMPO-oxidized cellulose model surfaces was also performed. The combination of gravimetric and a reflectometric techniques revealed the complexity of that model surface. Both the size and the charge density of the nanolatexes were found to influence their adsorption. The information gained from this study was implemented in the preparation of cellulose nanofibril (CNF)-nanocomposites with low contents of nanolatexes. It was found that when the nanolatex content was below 1 wt% the mechanical profile of the CNF-nanocomposites was improved. 

    Finally, wood-based components were used to replace fossil-based monomers in nanolatexes. They were readily adsorbed onto cellulose filter papers and annealed, thus demonstrating their film formation capacity. Nanolatexes comprised of a wood-based shell polymer have a promising high-end application profile, as showcased by their interactions with Cu(II) ions, where nanolatexes prevented the formation of Cu(II) ion aggregates. 

    The results summarized in this thesis add to the understanding on physical modification of cellulose and are envisaged to further promote the utilization of wood-based monomers in the production of the polymers for high-end applications.

    Fulltekst (pdf)
    fulltext
  • 4.
    Alexakis, Alexandros Efraim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Ayyachi, Thayanithi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Mousa, Maryam
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Olsen, Peter
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    2-Methoxy-4-Vinylphenol as a Biobased Monomer Precursor for Thermoplastics and Thermoset Polymers2023Inngår i: Polymers, E-ISSN 2073-4360, Vol. 15, nr 9, artikkel-id 2168Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To address the increasing demand for biobased materials, lignin-derived ferulic acid (FA) is a promising candidate. In this study, an FA-derived styrene-like monomer, referred to as 2-methoxy-4-vinylphenol (MVP), was used as the platform to prepare functional monomers for radical polymerizations. Hydrophobic biobased monomers derived from MVP were polymerized via solution and emulsion polymerization resulting in homo- and copolymers with a wide range of thermal properties, thus showcasing their potential in thermoplastic applications. Moreover, divinylbenzene (DVB)-like monomers were prepared from MVP by varying the aliphatic chain length between the MVP units. These biobased monomers were thermally crosslinked with thiol-bearing reagents to produce thermosets with different crosslinking densities in order to demonstrate their thermosetting applications. The results of this study expand the scope of MVP-derived monomers that can be used in free-radical polymerizations toward the preparation of new biobased and functional materials from lignin.

  • 5.
    Alexakis, Alexandros Efraim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Engström, Joakim
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Stamm, Arne
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Riazanova, Anastasia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Wallenberg Wood Sci Ctr WWSC, Tekn Ringen 56-58, SE-10044 Stockholm, Sweden..
    Brett, Calvin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg, 22603, Germany.
    Roth, Stephan V.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg, 22603, Germany.
    Syrén, Per-Olof
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Fogelström, Linda
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Modification of cellulose through physisorption of cationic bio-based nanolatexes - comparing emulsion polymerization and RAFT-mediated polymerization-induced self-assembly2021Inngår i: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 23, nr 5, s. 2113-2122Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The polymerization of a bio-based terpene-derived monomer, sobrerol methacrylate (SobMA), was evaluated in the design of polymeric nanoparticles (nanolatexes). Their synthesis was accomplished by using emulsion polymerization, either by free-radical polymerization in the presence of a cationic surfactant or a cationic macroRAFT agent by employing RAFT-mediated polymerization-induced self-assembly (PISA). By tuning the length of the hydrophobic polymer, it was possible to control the nanoparticle size between 70 and 110 nm. The average size of the latexes in both wet and dry state were investigated by microscopy imaging and dynamic light scattering (DLS). Additionally, SobMA was successfully copolymerized with butyl methacrylate (BMA) targeting soft-core nanolatexes. The comparison of the kinetic profile of the cationically stabilized nanolatexes highlighted the differences of both processes. The SobMA-based nanolatexes yielded high T-g similar to 120 degrees C, while the copolymer sample exhibited a lower T-g similar to 50 degrees C, as assessed by Differential Scanning Calorimetry (DSC). Thereafter, the nanolatexes were adsorbed onto cellulose (filter paper), where they were annealed at elevated temperatures to result in polymeric coatings. Their morphologies were analysed by Field Emission Scanning Electron Microscopy (FE-SEM) and compared to a commercial sulfate polystyrene latex (PS latex). By microscopic investigation the film formation mechanism could be unravelled. Water contact angle (CA) measurements verified the transition from a hydrophilic to a hydrophobic surface after film formation had occured. The obtained results are promising for the toolbox of bio-based building blocks, focused on sobrerol-based monomers, to be used in emulsion polymerizations either for tailored PISA-latexes or facile conventional latex formation, in order to replace methyl methacrylate or other high T-g-monomers.

  • 6.
    Alexakis, Alexandros Efraim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Jerlhagen, Åsa
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Telaretti Leggieri, Rosella
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Eliasson, Adrian
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Benselfelt, Tobias
    School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Modification of CNF‐Networks by the Addition of Small Amounts of Well‐Defined Rigid Cationic Nanolatexes2022Inngår i: Macromolecular Chemistry and Physics, ISSN 1022-1352, E-ISSN 1521-3935, Vol. 224, nr 1, s. 2200249-2200249Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellulose nanofibril (CNF)-networks are modified by the addition of small amounts (below 10 wt%) of well-defined cationic nanolatexes synthesized through reversible addition–fragmentation chain-transfer-mediated polymerization-induced self-assembly (PISA). Minute amounts of nanolatex inclusions lead to increased tensile and shear moduli, indicating that nanolatexes can act as bridging-points between CNFs. At higher nanolatex content, this stiffening effect is lost, likely due to interactions between nanolatexes leading to plasticization. The influence of nanolatex content and size on interparticle distance is discussed and is used as a tool to understand the effects observed in macroscopic properties. Upon annealing, the stiffening effect is lost due to the softening of the nanolatexes, indicating that the core–shell morphology is a prerequisite for this effect. These systems form a versatile platform to develop fundamental insights into complex condensed colloidal systems, to ultimately aid in the development of new sustainable material concepts.

  • 7.
    Alexakis, Alexandros Efraim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    pH-Responsive nanolatexes stabilized by statistical copolymers obtained by RAFT-mediated PISAManuskript (preprint) (Annet vitenskapelig)
  • 8.
    Alexakis, Alexandros Efraim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Riazanova, Anastasia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Bio-based nanolatexes prepared via polymerization-induced self-assembly: targeting heavy metal capturing applicationsManuskript (preprint) (Annet vitenskapelig)
  • 9.
    Alexakis, Alexandros Efraim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Telaretti Leggieri, Rosella
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Benselfelt, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore.
    Nanolatex architectonics: Influence of cationic charge density and size on their adsorption onto surfaces with a 2D or 3D distribution of anionic groups2023Inngår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 634, s. 610-620Artikkel i tidsskrift (Fagfellevurdert)
  • 10.
    Alexakis, Alexandros Efraim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wilson, Olivia R.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Bimodal nanolatexes prepared via polymerization-induced self-assembly: losing control in a controlled mannerManuskript (preprint) (Annet vitenskapelig)
  • 11.
    Alexakis, Alexandros Efraim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wilson, Olivia R.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Bimodal nanolatexes prepared via polymerization-induced self-assembly: losing control in a controlled manner2023Inngår i: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 14, nr 19, s. 2308-2316Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization with polymerization-induced self-assembly (PISA) is known to yield monodisperse nanolatexes. Interestingly, based on the results of the current study, reproducible bimodal nanolatexes were shown to be the result of chain extension of protonated poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) with methyl methacrylate (MMA) in water when aiming for a longer hydrophobic block, for which we provide the first imaging data to our knowledge. The bimodality was found to be induced by the hydrophilic Z-group of the RAFT agent, which has been reported in the literature to be the cause of bimodal molecular weight distributions in RAFT-mediated PISA in emulsion polymerization. Moreover, the advantages of such reproducible bimodal size distribution nanolatexes in coating applications were investigated briefly, underlining the possibilities of their one-pot synthesis. It was found that when bimodal nanolatexes are adsorbed onto cellulose filter paper, the contact angle against water is higher compared to chemically similar monomodal nanolatexes. Also, the morphological arrangement was found to be dependent on the drying protocol. This study aims to expand our understanding on bimodality and the identification of parameters that could promote it on demand to target high-end applications.

  • 12.
    Alimohammadzadeh, Rana
    et al.
    Mid Sweden Univ, Dept Nat Sci, SE-85170 Sundsvall, Sweden..
    Medina, Lilian
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer.
    Deiana, Luca
    Mid Sweden Univ, Dept Nat Sci, SE-85170 Sundsvall, Sweden..
    Berglund, Lars
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Cordova, Armando
    Mid Sweden Univ, Dept Nat Sci, SE-85170 Sundsvall, Sweden..
    Mild and Versatile Functionalization of Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites by Organocatalytic Surface Engineering2020Inngår i: ACS Omega, E-ISSN 2470-1343, Vol. 5, nr 31, s. 19363-19370Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Development of surface-engineering strategies, which are facile, versatile, and mild, are highly desirable in tailor-made functionalization of high-performance bioinspired nanocomposites. We herein disclose for the first time a general organocatalytic strategy for the functionalization and hydrophobization of nacre-mimetic nanocomposites, which includes vide supra key aspects of surface engineering. The merging of metal-free catalysis and the design of nacre-mimetic nanocomposite materials were demonstrated by the organocatalytic surface engineering of cellulose nanofibrils/clay nanocomposites providing the corresponding bioinspired nanocomposites with good mechanical properties, hydrophobicity, and useful thia-, amino, and olefinic functionalities.

  • 13.
    Alipoormazandarani, Niloofar
    et al.
    Lakehead Univ, Dept Chem Engn, Thunder Bay, ON, Canada.;Abo Akad Univ, Lab Nat Mat Technol, Turku, Finland..
    Benselfelt, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Wang, Luyao
    Abo Akad Univ, Lab Nat Mat Technol, Turku, Finland..
    Wang, Xiaoju
    Abo Akad Univ, Lab Nat Mat Technol, Turku, Finland..
    Xu, Chunlin
    Abo Akad Univ, Lab Nat Mat Technol, Turku, Finland..
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Willfor, Stefan
    Abo Akad Univ, Lab Nat Mat Technol, Turku, Finland..
    Fatehi, Pedram
    Lakehead Univ, Dept Chem Engn, Thunder Bay, ON, Canada.;Qilu Univ Technol, State Key Lab Biobased Mat & Green Papermaking, Jinan, Shandong, Peoples R China..
    Functional Lignin Nanoparticles with Tunable Size and Surface Properties: Fabrication, Characterization, and Use in Layer-by-Layer Assembly2021Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 13, nr 22, s. 26308-26317Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Lignin is the richest source of renewable aromatics and has immense potential for replacing synthetic chemicals. The limited functionality of lignin is, however, challenging for its potential use, which motivates research for creating advanced functional lignin-derived materials. Here, we present an aqueous-based acid precipitation method for preparing functional lignin nanoparticles (LNPs) from carboxy-methylated or carboxy-pentylated lignin. We observe that the longer grafted side chains of carboxy-pentylated lignin allow for the formation of larger LNPs. The functional nanoparticles have high tolerance against salt and aging time and well-controlled size distribution with R-h <= 60 nm over a pH range of 5-11. We further investigate the layer-by-layer (LbL) assembly of the LNPs and poly(allylamine hydrochloride) (PAH) using a stagnation point adsorption reflectometry (SPAR) and quartz crystal microbalance with dissipation (QCM-D). Results demonstrate that LNPs made of carboxypentylated lignin (i.e., PLNPs with the adsorbed mass of 3.02 mg/m(2)) form a more packed and thicker adlayer onto the PAH surface compared to those made of carboxymethylated lignin (i.e., CLNPs with the adsorbed mass of 2.51 mg/m(2)). The theoretical flux, J, and initial rate of adsorption, (d Gamma/dt)(0), analyses confirm that 22% of PLNPs and 20% of CLNPs arriving at the PAH surface are adsorbed. The present study provides a feasible platform for engineering LNPs with a tunable size and adsorption behavior, which can be adapted in hionanomaterial production.

  • 14.
    Alizadehgiashi, Moien
    et al.
    Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada..
    Nemr, Carine R.
    Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada..
    Chekini, Mahshid
    Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada..
    Ramos, Daniel Pinto
    Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada..
    Mittal, Nitesh
    KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada.
    Ahmed, Sharif U.
    Univ Toronto, Dept Pharmaceut Sci, Toronto, ON M5S 3M2, Canada..
    Khuu, Nancy
    Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada..
    Kelley, Shana O.
    Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada.;Univ Toronto, Dept Pharmaceut Sci, Toronto, ON M5S 3M2, Canada.;Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada..
    Kumacheva, Eugenia
    Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada.;Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada.;Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada..
    Multifunctional 3D-Printed Wound Dressings2021Inngår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 15, nr 7, s. 12375-12387Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Personalized wound dressings provide enhanced healing for different wound types; however multicomponent wound dressings with discretely controllable delivery of different biologically active agents are yet to be developed. Here we report 3D-printed multicomponent biocomposite hydrogel wound dressings that have been selectively loaded with small molecules, metal nanoparticles, and proteins for independently controlled release at the wound site. Hydrogel wound dressings carrying antibacterial silver nanoparticles and vascular endothelial growth factor with predetermined release profiles were utilized to study the physiological response of the wound in a mouse model. Compared to controls, the application of dressings resulted in improvement in granulation tissue formation and differential levels of vascular density, dependent on the release profile of the growth factor. Our study demonstrates the versatility of the 3D-printed hydrogel dressings that can yield varied physiological responses in vivo and can further be adapted for personalized treatment of various wound types.

  • 15.
    Amorim, Lúcia F.A.
    et al.
    FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, Covilhã, Portugal.
    Li, Lengwan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer.
    Gomes, Ana P.
    FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, Covilhã, Portugal.
    Fangueiro, Raul
    Centre for Textile Science and Technology (2C2T), University of Minho, Guimarães, Portugal.
    Gouveia, Isabel C.
    FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, Covilhã, Portugal.
    Sustainable bacterial cellulose production by low cost feedstock: evaluation of apple and tea by-products as alternative sources of nutrients2023Inngår i: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 30, nr 9, s. 5589-5606Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The high applicability of Bacterial Cellulose (BC) is often challenging due to its high production costs, which ultimately prevents its widespread use. Therefore, the present study aimed to investigate BC production using alternative feedstock to replace high-cost synthetic carbon and nitrogen sources and to evaluate the physical and structural properties of the produced BC membranes. BC was produced through a microbial consortium from kombucha, and the formulated alternative media sustained promising BC production, especially the association of apple wastes (at 10% (W/V)) with tea mixture, with a yield similar to BC produced on Hestrin–Schramm (HS) control media. Moreover, the BC samples produced in this alternative media also exhibited comparable properties to BC from HS media, with similar water-holding capacity and retention ability, thermal stability, mechanical behavior, and a crystallinity index of 87.61% and 88.08%, respectively. Thus, our findings substantiated that expensive substrates, such as glucose, peptone, and yeast extract, could be successfully replaced by apple wastes, black and green tea, for BC production while maintaining its remarkable physical and structural properties. Furthermore, besides the low-cost advantage, the bioconversion of apple waste also reduces the environmental burden caused by its disposal in landfills.

  • 16.
    Anandhakumari, Govindharaj
    et al.
    Department of Physics, Gobi Arts & Science College, Gobichettipalayam, Erode, Tamilnadu-638 453, India.
    Jayabal, Palanisamy
    Department of Physics, Gobi Arts & Science College, Gobichettipalayam, Erode, Tamilnadu-638 453, India.
    Balasankar, Athinarayanan
    Department of Physics, Gobi Arts & Science College, Gobichettipalayam, Erode, Tamilnadu-638 453, India.
    Ramasundaram, Subramaniyan
    School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
    Oh, Tae Hwan
    School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
    Aruchamy, Kanakaraj
    School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
    Kallem, Parashuram
    Department of Environmental and Public Health, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates.
    Polisetti, Veerababu
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Synthesis of strontium oxide-zinc oxide nanocomposites by Co-precipitation method and its application for degradation of malachite green dye under direct sunlight2023Inngår i: Heliyon, E-ISSN 2405-8440, Vol. 9, nr 10, artikkel-id e20824Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Photocatalysts workable under direct sunlight are the safe and cost-effective option for water purification. The nanocomposites of strontium oxide and zinc oxide (SZ NCs) were synthesized using coprecipitation method. The respective precursors of SZ NCs were subjected to alkaline hydrolysis and subsequently thermally treated to yield SZ NCs. The SZ NCs with different ZnO composition was synthesized by varying the concentration of ZnO precursor from 0.2 to 1 M. The structural properties of SZ NCs evaluated using X-Ray diffraction (XRD), Thermogravimetric analysis (TGA), and Differential thermal analysis DTA). The optical properties of SZ NCs studied using ultraviolet–visible (UV–Vis) spectroscopic study. The trend observed in the intensity of XRD peaks indicated the occurrence of Zn doping in the crystalline lattice of SrO and the formation of SrO–ZnO composite. Upon incorporation of 1 M of ZnO precursor, the grain size of the SrO was decreased from 49.3 to 27.6 nm. The weight loss in the thermal analysis indicates the removal of carbonates from the sample upon heating and shows the formation of an oxide structure. UV–Vis spectra confirmed that the presence of SrO enhanced the sunlight absorption of SZ NCs. The increase in the composition of ZnO precursors increased the bandgap of SrO (2.09 eV) to the level of ZnO (3.14 eV). SZ NCs exhibited heterostructure morphology, where the nanosized domains with varying shapes (layered and rod-like) were observed. Under direct sunlight conditions, SZ NCs prepared using 1 M/0.6 M of SrO/ZnO precursors exhibited 15–20 % higher photocatalytic efficiency than neat SrO and ZnO. In precise, 1 mg of this SZ NC was degraded 98 % of malachite green dye dissolved in water (10 ppm) under direct sunlight. Additionally, the thermal stability results showed that 18 % decomposition was obtained due to the degradation impurities in SrO/ZnO catalysts and the XRD results revealed that no structural change is obtained in SrO/ZnO photocatalysts after stability test. The SZ NCs can be effectively used as safe and economic sunlight photocatalysts for water purification in remote areas without the electricity.

  • 17.
    Andrieux, Sebastien
    et al.
    Univ Stuttgart, Inst Phys Chem, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.;Inst Charles Sadron UPR22 CNRS, 23 Rue Loess, F-67034 Strasbourg 2, France..
    Medina, Lilian
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Herbst, Michael
    Univ Stuttgart, Inst Phys Chem, Pfaffenwaldring 55, D-70569 Stuttgart, Germany..
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Stubenrauch, Cosima
    Univ Stuttgart, Inst Phys Chem, Pfaffenwaldring 55, D-70569 Stuttgart, Germany..
    Monodisperse highly ordered chitosan/cellulose nanocomposite foams2019Inngår i: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 125, artikkel-id UNSP 105516Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In solid foams, most physical properties are determined by the pore size and shape distributions and the organisation of the pores. For this reason, it is important to control the structure of porous materials. We recently tackled this issue with the help of microfluidic-aided foam templating, which allowed us to generate mono-disperse and highly ordered chitosan foams. However, the properties of foams also depend on the properties of the pore wall constituents. In case of chitosan-based foams, the foams have poor absolute mechanical properties, simply due to the fact that the solubility of chitosan in water is very low, so that the relative density of the freeze-dried foams becomes very small. Drawing inspiration from the field of nanocomposites, we incorporated cellulose nanofibres into the foamed chitosan solutions, with a view to strengthening the pore walls in the foam and thus the mechanical properties of the final foam. We report here how the cellulose nanofibres affect the structure of both the liquid foam template and the solid foam. The resulting nanocomposite foams have improved mechanical properties, which, however, are not proportional to the amount of cellulose nanofibres in the composites. One reason for this observation is the disturbance of the porous structure of the solid foams by the cellulose nanofibres.

  • 18.
    Arandia, Kenneth
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Chalmers.
    Balyan, U.
    Mattsson, Tuve
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Chalmers.
    Development of a fluid dynamic gauging method for the characterization of fouling behavior during cross-flow filtration of a wood extraction liquor2021Inngår i: Food and Bioproducts Processing, ISSN 0960-3085, E-ISSN 1744-3571, Vol. 128, s. 30-40Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A method based on fluid dynamic gauging (FDG) was developed to investigate the membrane fouling behavior of streams containing dissolved wood components and small particles extracted using a mild steam explosion pretreatment. Industrially chipped softwood was subjected to saturated steam at 7 bar for 20 min, followed by cross-flow filtration of steam explosion liquors using 10 kDa polysulfone membranes at 2 bar transmembrane pressure. The results showed a severe decline in permeate flux during the initial stages of the cross-flow filtration. The FDG profiles from five filtration experiments revealed that thicker fouling layers were formed during initial fouling on pristine membranes compared to subsequent fouling on non-pristine membranes. The difference in fouling behavior suggests that cake layer formation was dominant during initial fouling, whereas pore blocking was more pronounced during refouling. This study highlights how FDG can be used to gain a better mechanistic understanding of the fouling behavior of extracted wood components.

  • 19.
    Arcieri, Nicolò
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Politecnico di Torino, Department of Applied Science and Technology, C.so Duca degli Abruzzi 24, 10129 Turin, Italy.
    Chen, Bin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Tavares da Costa, Marcus Vinicius
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Karlstad University, Department of Engineering and Chemical Sciences, SE-651 88 Karlstad, Sweden.
    Crack growth study of wood and transparent wood-polymer composite laminates by in-situ testing in weak TR-direction2023Inngår i: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 173, artikkel-id 107693Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    TW transparent wood/polymer biocomposite laminates are of interest as multifunctional materials with good longitudinal modulus, tensile strength and optical transmittance. The effect of filling the pore space in wood with a polymer matrix on fracture toughness and crack growth is not well understood. Here, we carried out in-situ fracture tests on neat birch wood and laminates made of four layers of delignified birch veneers impregnated with poly(methyl methacrylate) (PMMA) and investigated crack growth in the tangential-radial (TR) fracture system. Fracture toughness KIc and JIc at crack initiation were estimated, including FEM analysis. SEM microscopy revealed that cracks primarily propagate along the ray cells, but cell wall peeling and separation between the PMMA and wood phases also take place. A combination of in-situ tests and strain field measured by digital image correlation (DIC) showed twice as long fracture process zone of TW laminates compared with neat birch.

  • 20.
    Arumughan, Vishnu
    et al.
    Chalmers Univ Technol, Dept Chem & Chem Engn, Gothenburg, Sweden.;Chalmers Univ Technol, AvanCell, SE-41296 Gothenburg, Sweden..
    Nypelo, Tiina
    Chalmers Univ Technol, Dept Chem & Chem Engn, Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, Gothenburg, Sweden..
    Hasani, Merima
    Chalmers Univ Technol, Dept Chem & Chem Engn, Gothenburg, Sweden.;Chalmers Univ Technol, AvanCell, SE-41296 Gothenburg, Sweden..
    Brelid, Harald
    Södra Innovat, Väröbacka, Sweden..
    Albertsson, Sverker
    Södra Innovat, Väröbacka, Sweden..
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Larsson, Anette
    Chalmers Univ Technol, Dept Chem & Chem Engn, Gothenburg, Sweden.;Chalmers Univ Technol, AvanCell, SE-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, Gothenburg, Sweden.;Chalmers Univ Technol, Dept Chem & Chem Engn, FibRe Ctr Lignocellulose Based Thermoplast, SE-41296 Gothenburg, Sweden..
    Specific ion effects in the adsorption of carboxymethyl cellulose on cellulose: The influence of industrially relevant divalent cations2021Inngår i: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 626, artikkel-id 127006Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The adsorption of carboxymethylcellulose (CMC) on cellulose surfaces is of relevance from both academic and industrial perspectives as it facilitates resource-efficient modification of cellulose fibres that allows them to carry negative charges. It is known that, compared to monovalent ions, Ca2+ ions are superior ions in facilitating CMC adsorption and the subsequent introduction of charge on cellulose fibres. However, the formation and deposition of calcium oxide involved in this process necessitates the search for alternative cations. Magnesium ions form one of the more promising candidates since they are already used in the pulping process to prevent cellulose degradation during peroxide bleaching. This work aims at elucidating the effects of the industrially relevant alkaline earth metal divalent cations Mg2+ and Ca2+ on the CMC adsorption process onto cellulose surfaces. Quartz Crystal Microbalance (QCM-D) technology was used to follow the adsorption in model systems in real time, whereas the adsorption of CMC on commercial fibres was studied using polyelectrolyte titrations, total organic carbon (TOC) analysis and conductometric titrations. This study shows that the presence of Ca2+ ions was more favourable for the adsorption of CMC to both types of cellulosic surfaces than Mg2+ ions. The distinction in the adsorption behaviour in the presence of Mg2+ and Ca2+ is suggested to be due to the differences in the polarizability of the ions. The findings are decisive in designing efficient industrial processes for the adsorption of polyelectrolytes to cellulose surfaces of similar charge.

  • 21.
    Arumughan, Vishnu
    et al.
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; AvanCell, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Özeren, Hüsamettin Deniz
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Hedenqvist, Mikael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. FibRe Vinnova Competence Center, KTH .
    Skepö, Marie
    Division of Theoretical Chemistry, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden.
    Nypelö, Tiina
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hasani, Merima
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; AvanCell, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Larsson, Anette
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; AvanCell, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; FibRe Vinnova Competence Center, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Anion-Specific Adsorption of Carboxymethyl Cellulose on Cellulose2023Inngår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 39, nr 42, s. 15014-15021Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Integration of fiber modification step with a modern pulp mill is a resource efficient way to produce functional fibers. Motivated by the need to integrate polymer adsorption with the current pulping system, anion-specific effects in carboxymethylcellulose (CMC) adsorption have been studied. The QCM-D adsorption experiments revealed that CMC adsorption to the cellulose model surface is prone to anion-specific effects. A correlation was observed between the adsorbed CMC and the degree of hydration of the co-ions present in the magnesium salts. The presence of a chaotropic co-ion such as nitrate increased the adsorption of CMC on cellulose compared to the presence of the kosmotropic sulfate co-ion. However, anion-specificity was not significant in the case of salts containing zinc cations. The hydration of anions determines the distribution of the ions at the interface. Chaotropic ions, such as nitrates, are likely to be distributed near the chaotropic cellulose surface, causing changes in the ordering of water molecules and resulting in greater entropy gain once released from the surface, thus increasing CMC adsorption.

  • 22.
    Arzami, Anis N.
    et al.
    Univ Helsinki, Dept Food & Nutr, POB 66, Helsinki 00014, Finland..
    de Carvalho, Danila Morais
    Univ Helsinki, Dept Food & Nutr, POB 66, Helsinki 00014, Finland..
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Stoddard, Frederick L.
    Univ Helsinki, Viikki Plant Sci Ctr, Dept Agr Sci, POB 27, Helsinki 00014, Finland.;Univ Helsinki, Helsinki Inst Sustainabil Sci HELSUS, POB 65, Helsinki 00014, Finland..
    Mikkonen, Kirsi S.
    Univ Helsinki, Dept Food & Nutr, POB 66, Helsinki 00014, Finland.;Univ Helsinki, Helsinki Inst Sustainabil Sci HELSUS, POB 65, Helsinki 00014, Finland..
    Narrow-leafed lupin (Lupinus angustifolius L.): Characterization of emulsification and fibre properties2022Inngår i: FUTURE FOODS, ISSN 2666-8335, Vol. 6, artikkel-id 100191Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Lupin is among the most promising plant-based food protein sources due to its high protein and fibre content. The fibre fraction, especially from seed coats, is often seen as low in value (discarded as waste or as animal feed) and greater knowledge on its composition and structure are crucial to increase its usefulness. However, only one model of lupin fibre structure exists in the literature. Our sample of Finnish-grown narrow-leafed lupin seed consisted of fibre (43.3%), protein (31.3%), fat (8.1%) and starch (0.2%). According to the sugar analysis, rhamnogalacturonan-I, with branches of arabinan and galactan, constituted the main pectin population in the fibre fraction. A revised model of the overall fibre structure is proposed. At concentrations of 0.75% and 1.0%, both unrefined and defatted flour of whole lupin seeds produced stable suspensions and oil-in-water emulsions, demonstrating their application as potential emulsifiers. This study presents the knowledge and opportunity to support sustainability through the utilization of whole lupin seed for future industrial applications.

  • 23.
    Ashraf, Shakeel
    et al.
    Mid Sweden Univ, Dept Elect, S-85170 Sundsvall, Sweden..
    Forsberg, Viviane
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Mattsson, Claes G.
    Mid Sweden Univ, Dept Elect, S-85170 Sundsvall, Sweden..
    Thungström, Göran
    Mid Sweden Univ, Dept Elect, S-85170 Sundsvall, Sweden..
    Thermoelectric Properties of n-Type Molybdenum Disulfide (MoS2) Thin Film by Using a Simple Measurement Method2019Inngår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 12, nr 21, artikkel-id 3521Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper, a micrometre thin film of molybdenum disulfide (MoS2) is characterized for thermoelectric properties. The sample was prepared through mechanical exfoliation of a molybdenite crystal. The Seebeck coefficient measurement was performed by generating a temperature gradient across the sample and recording the induced electrical voltage, and for this purpose a simple measurement setup was developed. In the measurement, platinum was utilized as reference material in the electrodes. The Seebeck value of MoS2 was estimated to be approximately -600 mu V/K at a temperature difference of 40 degrees C. The negative sign indicates that the polarity of the material is n-type. For measurement of the thermal conductivity, the sample was sandwiched between the heat source and the heat sink, and a steady-state power of 1.42 W was provided while monitoring the temperature difference across the sample. Based on Fourier's law of conduction, the thermal conductivity of the sample was estimated to be approximately 0.26 Wm(-1) K-. The electrical resistivity was estimated to be 29 Omega cm. The figure of merit of MoS2 was estimated to be 1.99 x 10(-4).

  • 24.
    Asta, Nadia
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. RISE Research Institute of Sweden, SE-114 86 Stockholm, Sweden.
    Pettersson, Torbjörn
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    The Use of Model Cellulose Materials for Studying Molecular Interactions at Cellulose Interfaces2023Inngår i: ACS Macro Letters, E-ISSN 2161-1653, Vol. 12, nr 11, s. 1530-1535Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Despite extensive research on biobased and fiber-basedmaterials, fundamental questions regarding the molecular processesgoverning fiber−fiber interactions remain unanswered. In this study, weintroduce a method to examine and clarify molecular interactions withinfiber−fiber joints using precisely characterized model materials, i.e.,regenerated cellulose gel beads with nanometer-smooth surfaces. Byphysically modifying these materials and drying them together to createmodel joints, we can investigate the mechanisms responsible for joiningcellulose surfaces and how this affects adhesion in both dry and wet statesthrough precise separation measurements. The findings reveal a subtlebalance in the joint formation, influencing the development ofnanometer-sized structures at the contact zone and likely inducingbuilt-in stresses in the interphase. This research illustrates how model materials can be tailored to control interactions betweencellulose-rich surfaces, laying the groundwork for future high-resolution studies aimed at creating stiff, ductile, and/or tough jointsbetween cellulose surfaces and to allow for the design of high-performance biobased materials.

    Fulltekst (pdf)
    fulltext
  • 25.
    Atoufi, Zhaleh
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Ciftci, Göksu Cinar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Green Ambient-Dried Aerogels with a Facile pH-Tunable Surface Charge for Adsorption of Cationic and Anionic Contaminants with High Selectivity2022Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 23, nr 11, s. 4934-4947Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The fabrication of reusable, sustainable adsorbents from low-cost, renewable resources via energy efficient methods is challenging. This paper presents wet-stable, carboxymethylated cellulose nanofibril (CNF) and amyloid nanofibril (ANF) based aerogel-like adsorbents prepared through efficient and green processes for the removal of metal ions and dyes from water. The aerogels exhibit tunable densities (18-28 kg m-3), wet resilience, and an interconnected porous structure (99% porosity), with a pH controllable surface charge for adsorption of both cationic (methylene blue and Pb(II)) and anionic (brilliant blue, congo red, and Cr(VI)) model contaminants. The Langmuir saturation adsorption capacity of the aerogel was calculated to be 68, 79, and 42 mg g-1for brilliant blue, Pb(II), and Cr(VI), respectively. Adsorption kinetic studies for the adsorption of brilliant blue as a model contaminant demonstrated that a pseudo-second-order model best fitted the experimental data and that an intraparticle diffusion model suggests that there are three adsorption stages in the adsorption of brilliant blue on the aerogel. Following three cycles of adsorption and regeneration, the aerogels maintained nearly 97 and 96% of their adsorption capacity for methylene blue and Pb(II) as cationic contaminants and 89 and 80% for brilliant blue and Cr(VI) as anionic contaminants. Moreover, the aerogels showed remarkable selectivity for Pb(II) in the presence of calcium and magnesium as background ions, with a selectivity coefficient more than 2 orders of magnitude higher than calcium and magnesium. Overall, the energy-efficient and sustainable fabrication procedure, along with good structural stability, reusability, and selectivity, makes these aerogels very promising for water purification applications.

  • 26.
    Atoufi, Zhaleh
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Surface tailoring of cellulose aerogel-like structures with ultrathin coatings using molecular layer-by-layer assembly2022Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 282, artikkel-id 119098Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellulose nanofibril-based aerogels have promising applicability in various fields; however, developing an effi-cient technique to functionalize and tune their surface properties is challenging. In this study, physically and covalently crosslinked cellulose nanofibril-based aerogel-like structures were prepared and modified by a mo-lecular layer-by-layer (m-LBL) deposition method. Following three m-LBL depositions, an ultrathin polyamide layer was formed throughout the aerogel and its structure and chemical composition was studied in detail. Analysis of model cellulose surfaces showed that the thickness of the deposited layer after three m-LBLs was approximately 1 nm. Although the deposited layer was extremely thin, it led to a 2.6-fold increase in the wet specific modulus, improved the acid-base resistance, and changed the aerogels from hydrophilic to hydrophobic making them suitable materials for oil absorption with the absorption capacity of 16-36 g/g. Thus, demon-strating m-LBL assembly is a powerful technique for tailoring surface properties and functionality of cellulose substrates.

  • 27.
    Baath, Jenny Arnling
    et al.
    Chalmers Univ Technol, Div Ind Biotechnol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden..
    Martinez-Abad, Antonio
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Berglund, Jennie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Larsbrink, Johan
    Chalmers Univ Technol, Div Ind Biotechnol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden..
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Olsson, Lisbeth
    Chalmers Univ Technol, Div Ind Biotechnol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden..
    Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation2018Inngår i: Biotechnology for Biofuels, ISSN 1754-6834, E-ISSN 1754-6834, Vol. 11, artikkel-id 114Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Galactoglucomannan (GGM) is the most abundant hemicellulose in softwood, and consists of a backbone of mannose and glucose units, decorated with galactose and acetyl moieties. GGM can be hydrolyzed into fermentable sugars, or used as a polymer in films, gels, and food additives. Endo-beta-mannanases, which can be found in the glycoside hydrolase families 5 and 26, specifically cleave the mannan backbone of GGM into shorter oligosaccharides. Information on the activity and specificity of different mannanases on complex and acetylated substrates is still lacking. The aim of this work was to evaluate and compare the modes of action of two mannanases from Cellvibrio japonicus (CjMan5A and CjMan26A) on a variety of mannan substrates, naturally and chemically acetylated to varying degrees, including naturally acetylated spruce GGM. Both enzymes were evaluated in terms of cleavage patterns and their ability to accommodate acetyl substitutions. Results: CjMan5A and CjMan26A demonstrated different substrate preferences on mannan substrates with distinct backbone and decoration structures. CjMan5A action resulted in higher amounts of mannotriose and mannotetraose than that of CjMan26A, which mainly generated mannose and mannobiose as end products. Mass spectrometric analysis of products from the enzymatic hydrolysis of spruce GGM revealed that an acetylated hexotriose was the shortest acetylated oligosaccharide produced by CjMan5A, whereas CjMan26A generated acetylated hexobiose as well as diacetylated oligosaccharides. A low degree of native acetylation did not significantly inhibit the enzymatic action. However, a high degree of chemical acetylation resulted in decreased hydrolyzability of mannan substrates, where reduced substrate solubility seemed to reduce enzyme activity. Conclusions: Our findings demonstrate that the two mannanases from C. japonicus have different cleavage patterns on linear and decorated mannan polysaccharides, including the abundant and industrially important resource spruce GGM. CjMan26A released higher amounts of fermentable sugars suitable for biofuel production, while CjMan5A, producing higher amounts of oligosaccharides, could be a good candidate for the production of oligomeric platform chemicals and food additives. Furthermore, chemical acetylation of mannan polymers was found to be a potential strategy for limiting the biodegradation of mannan-containing materials.

  • 28.
    Bagge, Joar
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Rosén, Tomas
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik.
    Lundell, Fredrik
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik.
    Tornberg, Anna-Karin
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Parabolic velocity profile causes shape-selective drift of inertial ellipsoids2021Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 926, artikkel-id A24Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Understanding particle drift in suspension flows is of the highest importance in numerous engineering applications where particles need to be separated and filtered out from the suspending fluid. Commonly known drift mechanisms such as the Magnus force, Saffman force and Segre-Silberberg effect all arise only due to inertia of the fluid, with similar effects on all non-spherical particle shapes. In this work, we present a new shape-selective lateral drift mechanism, arising from particle inertia rather than fluid inertia, for ellipsoidal particles in a parabolic velocity profile. We show that the new drift is caused by an intermittent tumbling rotational motion in the local shear flow together with translational inertia of the particle, while rotational inertia is negligible. We find that the drift is maximal when particle inertial forces are of approximately the same order of magnitude as viscous forces, and that both extremely light and extremely heavy particles have negligible drift. Furthermore, since tumbling motion is not a stable rotational state for inertial oblate spheroids (nor for spheres), this new drift only applies to prolate spheroids or tri-axial ellipsoids. Finally, the drift is compared with the effect of gravity acting in the directions parallel and normal to the flow. The new drift mechanism is stronger than gravitational effects as long as gravity is less than a critical value. The critical gravity is highest (i.e. the new drift mechanism dominates over gravitationally induced drift mechanisms) when gravity acts parallel to the flow and the particles are small.

  • 29.
    Belaineh, Dagmawi
    et al.
    Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden.;RISE Acreo, RISE Res Inst Sweden, Div ICT, S-60117 Norrkoping, Sweden..
    Andreasen, Jens W.
    Tech Univ Denmark, Dept Energy Convers & Storage, DK-4000 Roskilde, Denmark..
    Palisaitis, Justinas
    Linkoping Univ, Dept Phys Chem & Biol, S-58183 Linkoping, Sweden..
    Malti, Abdellah
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hakansson, Karl
    RISE Bioecon, Res Inst Sweden, S-11486 Stockholm, Sweden..
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Crispin, Xavier
    Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden..
    Engquist, Isak
    Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden..
    Berggren, Magnus
    Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden..
    Controlling the Organization of PEDOT:PSS on Cellulose Structures2019Inngår i: ACS APPLIED POLYMER MATERIALS, ISSN 2637-6105, Vol. 1, nr 9, s. 2342-2351Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Composites of biopolymers and conducting polymers are emerging as promising candidates for a green technological future and are actively being explored in various applications, such as in energy storage, bioelectronics, and thermoelectrics. While the device characteristics of these composites have been actively investigated, there is limited knowledge concerning the fundamental intracomponent interactions and the modes of molecular structuring. Here, by use of cellulose and poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), it is shown that the chemical and structural makeup of the surfaces of the composite components are critical factors that determine the materials organization at relevant dimensions. AFM, TEM, and GIVVAXS measurements show that when mixed with cellulose nanofibrils, PEDOT:PSS organizes into continuous nanosized beadlike structures with an average diameter of 13 nm on the nanofibrils. In contrast, when PEDOT:PSS is blended with molecular cellulose, a phase-segregated conducting network morphology is reached, with a distinctly relatively lower electric conductivity. These results provide insight into the mechanisms of PEDOT:PSS crystallization and may have significant implications for the design of conducting biopolymer composites for a vast array of applications.

  • 30.
    Benselfelt, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Design of Cellulose-based Materials by Supramolecular Assemblies2019Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Due to climate change and plastic pollution, there is an increasing demand for bio-based materials with similar properties to those of common plastics yet biodegradable. In this respect, cellulose is a strong candidate that is already being refined on a large industrial scale, but the properties differ significantly from those of common plastics in terms of shapeability and water-resilience.

    This thesis investigates how supramolecular interactions can be used to tailor the properties of cellulose-based materials by modifying cellulose surfaces or control the assembly of cellulose nanofibrils (CNFs). Most of the work is a fundamental study on interactions in aqueous environments, but some material concepts are presented and potential applications are discussed.

    The first part deals with the modification of cellulose by the spontaneous adsorption of xyloglucan or polyelectrolytes. The results indicate that xyloglucan adsorbs to cellulose due to the increased entropy of water released from the surfaces, which is similar to the increased entropy of released counter-ions that drives polyelectrolyte adsorption. The polyelectrolyte adsorption depends on the charge of the cellulose up to a limit after which the charge density affects only the first adsorbed layer in a multilayer formation.

    Latex nanoparticles with polyelectrolyte coronas can be adsorbed onto cellulose in order to prepare hydrophobic cellulose surfaces with strong and ductile wet adhesion, provided the glass transition of the core is below the ambient temperature.

    The second part of the thesis seeks to explain the interactions between different types of cellulose nanofibrils in the presence of different ions, using a model consisting of ion-ion correlation and specific ion effects, which can be employed to rationally design water-resilient and transparent nanocellulose films. The addition of small amounts of alginate also creates interpenetrating double networks, and these networks lead to a synergy which improves both the stiffness and the ductility of the films in water.

    A network model has been developed to understand these materials, with the aim to explain the properties of fibril networks, based on parameters such as the aspect ratio of the fibrils, the solidity of the network, and the ion-induced interactions that increase the friction between fibrils. With the help of this network model and the model for ion-induced interactions, we have created films with wet-strengths surpassing those of common plastics, or a ductility suitable for hygroplastic forming into water-resilient and biodegradable packages. Due to their transparency, water content, and the biocompatibility of cellulose, these materials are also suitable for biomaterial or bioelectronics applications. 

    Fulltekst (pdf)
    fulltext
  • 31.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Engström, Joakim
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Supramolecular double networks of cellulose nanofibrils and algal polysaccharides with excellent wet mechanical properties2018Inngår i: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 20, nr 11, s. 2558-2570Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Supramolecular double network films, consisting of cellulose nanofibrils (CNF) entangled with the algal polysaccharides alginate or carrageenan, were prepared using a rapid vacuum filtration process to achieve water-resistant CNF nanopapers with excellent mechanical properties in both the wet and dry states following the locking of the structures using Ca2+. The rigid network of calcium alginate was more efficient than the more flexible network of calcium carrageenan and 10% by weight of alginate was sufficient to form a network that suppressed the swelling of the CNF film by over 95%. The resulting material could be compared to a stiff rubber with a Young's modulus of 135 MPa, a tensile strength of 17 MPa, a strain-at-break above 55%, and a work of fracture close to 5 MJ m(-3) in the wet state, which was both significantly stronger and more ductile than the calcium-treated CNF reference nanopaper. It was shown that the state in which Ca2+ was introduced is crucial, and it is also hypothesized that the alginate works as a sacrificial network that prevents the CNF from aligning during loading and that this leads to the increased toughness. The material maintained its barrier properties at elevated relative humidities and the extensibility and ductility made possible hygroplastic forming into three-dimensional shapes. It is suggested that the attractive force in the CNF part of the double network in the presence of multivalent ions is due to the ion-ion correlation forces generated by the fluctuating counter-ion cloud, since no significant ion coordination was observed using FTIR.

  • 32.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
    Kummer, Nico
    Laboratory for Cellulose & Wood Materials, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland, Überlandstrasse 129; Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland.
    Nordenström, Malin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Fall, Andreas B.
    RISE Bioeconomy, 114 28, Stockholm, Sweden.
    Nyström, Gustav
    Laboratory for Cellulose & Wood Materials, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland, Überlandstrasse 129; Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    The Colloidal Properties of Nanocellulose2023Inngår i: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, ChemSusChem, ISSN 1864-5631, Vol. 16, nr 8, artikkel-id e202201955Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Nanocelluloses are anisotropic nanoparticles of semicrystalline assemblies of glucan polymers. They have great potential as renewable building blocks in the materials platform of a more sustainable society. As a result, the research on nanocellulose has grown exponentially over the last decades. To fully utilize the properties of nanocelluloses, a fundamental understanding of their colloidal behavior is necessary. As elongated particles with dimensions in a critical nanosize range, their colloidal properties are complex, with several behaviors not covered by classical theories. In this comprehensive Review, we describe the most prominent colloidal behaviors of nanocellulose by combining experimental data and theoretical descriptions. We discuss the preparation and characterization of nanocellulose dispersions, how they form networks at low concentrations, how classical theories cannot describe their behavior, and how they interact with other colloids. We then show examples of how scientists can use this fundamental knowledge to control the assembly of nanocellulose into new materials with exceptional properties. We hope aspiring and established researchers will use this Review as a guide.

  • 33.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Nordenström, Malin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hamedi, Mahiar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Ion-induced assemblies of highly anisotropic nanoparticles are governed by ion-ion correlation and specific ion effects2019Inngår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, nr 8, s. 3514-3520Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ion-induced assemblies of highly anisotropic nanoparticles can be explained by a model consisting of ion-ion correlation and specific ion effects: dispersion interactions, metal-ligand complexes, and local acidic environments. Films of cellulose nanofibrils and montmorillonite clay were treated with different ions, and their subsequent equilibrium swelling in water was related to important parameters of the model in order to investigate the relative importance of the mechanisms. Ion-ion correlation was shown to be the fundamental attraction, supplemented by dispersion interaction for polarizable ions such as Ca2+ and Ba2+, or metal-ligand complexes for ions such as Cu2+, Al3+ and Fe3+. Ions that form strong complexes induce local acidic environments that also contribute to the assembly. These findings are summarized in a comprehensive semi-quantitative model and are important for the design of nanomaterials and for understanding biological systems where specific ions are involved.

  • 34.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Nordenström, Malin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Lindstrom, Stefan B.
    Linkoping Univ, Div Solid Mech, Dept Management & Engn, S-58183 Linkoping, Sweden..
    Wågberg, Lars
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH Royal Inst Technol, Div Fibre Technol, Dept Fiber & Polymer Technol, Tekn Ringen 56-58, S-10044 Stockholm, Sweden.;KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Dept Fiber & Polymer Technol, Tekn Ringen 56-58, S-10044 Stockholm, Sweden..
    Explaining the Exceptional Wet Integrity of Transparent Cellulose Nanofibril Films in the Presence of Multivalent Ions-Suitable Substrates for Biointerfaces2019Inngår i: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, nr 13, artikkel-id 1900333Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellulose nanofibrils (CNFs) assemble into water-resilient materials in the presence of multivalent counter-ions. The essential mechanisms behind these assemblies are ion-ion correlation and specific ion effects. A network model shows that the interfibril attraction indirectly influences the wet modulus by a fourth power relationship to the solidity of the network (E-w proportional to phi(4)). Ions that induce both ion-ion correlation and specific ion effects significantly reduce the swelling of the films, and due to the nonlinear relationship dramatically increase the wet modulus. Herein, this network model is used to explain the elastoplastic behavior of wet films of 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized, carboxymethylated, and phosphorylated CNFs in the presence of different counter-ions. The main findings are that the aspect ratio of the CNFs influences the ductility of the assemblies, that the bivalency of phosphorylate ligands probably limits the formation of interfibril complexes with divalent ions, and that a higher charge density increases the friction between fibrils by increasing the short-range attraction from ion-ion correlation and specific ion effects. These findings can be used to rationally design CNF materials for a variety of applications where wet strength, ductility, and transparency are important, such as biomaterials or substrates for bioelectronics.

  • 35.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Nordenström, Malin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Stefan
    Linköping University.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Explaining the exceptional wet integrity of transparent cellulose nanofibril films in the presence of multivalent ions - Suitable substrates for biointerfacesManuskript (preprint) (Annet vitenskapelig)
  • 36.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Dynamic networks of cellulose nanofibrils as a platform for tunable hydrogels, aerogels, and chemical modifications2018Inngår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Artikkel i tidsskrift (Annet vitenskapelig)
  • 37.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Azhar, Shoaib
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    The structure of galactoglucomannan impacts the degradation under alkaline conditions2018Inngår i: Cellulose, ISSN 0969-0239, E-ISSN 1572-882XArtikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Galactoglucomannan (GGM) from sprucewas studied with respect to the degradation behavior inalkaline solution. Three reference systems includinggalactomannan from locust bean gum, glucomannanfrom konjac and the linear water-soluble carboxymethylcellulose were studied with focus onmolecular weight, sugar composition, degradationproducts, as well as formed oligomers, to identifyrelative structural changes in GGM. Initially allmannan polysaccharides showed a fast decrease inthe molecular weight, which became stable in the laterstage. The degradation of the mannan polysaccharidescould be described by a function corresponding to thesum of two first order reactions; one slow that wasascribed to peeling, and one fast that was connectedwith hydrolysis. The galactose side group wasstable under conditions used in this study (150 min,90 C, 0.5 M NaOH). This could suggest that, apartfrom the covalent connection to C6 in mannose, thegalactose substitutions also interact non-covalentlywith the backbone to stabilize the structure againstdegradation. Additionally, the combination of differentbackbone sugars seems to affect the stability of thepolysaccharides. For carboxymethyl cellulose thedegradation was linear over time which furthersuggests that the structure and sugar composition playan important role for the alkaline degradation. Moleculardynamics simulations gave details about theconformational behavior of GGM oligomers in watersolution, as well as interaction between the oligomersand hydroxide ions.

  • 38.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Chen, Pan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Computer modeling of the structure and dynamics of hemicelluloses2019Inngår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikkel i tidsskrift (Annet vitenskapelig)
  • 39.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Farahani, Saina Kishani
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    de Carvalho, Danila Morais
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. AlbaNova University Centre.
    The influence of acetylation and sugar composition on the (in)solubility of mannans, their interaction with cellulose surfaces and thermal propertiesManuskript (preprint) (Annet vitenskapelig)
  • 40.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Mikkelsen, Deidre
    Flanagan, Bernadine M.
    Dhital, Sushil
    Gaunitz, Stefan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Yakubov, Gleb E.
    Gidley, Michael J.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks2020Inngår i: Nature Communications, E-ISSN 2041-1723, Vol. 11, nr 1, artikkel-id 4692Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hemicelluloses, a family of heterogeneous polysaccharides with complex molecular structures, constitute a fundamental component of lignocellulosic biomass. However, the contribution of each hemicellulose type to the mechanical properties of secondary plant cell walls remains elusive. Here we homogeneously incorporate different combinations of extracted and purified hemicelluloses (xylans and glucomannans) from softwood and hardwood species into self-assembled networks during cellulose biosynthesis in a bacterial model, without altering the morphology and the crystallinity of the cellulose bundles. These composite hydrogels can be therefore envisioned as models of secondary plant cell walls prior to lignification. The incorporated hemicelluloses exhibit both a rigid phase having close interactions with cellulose, together with a flexible phase contributing to the multiscale architecture of the bacterial cellulose hydrogels. The wood hemicelluloses exhibit distinct biomechanical contributions, with glucomannans increasing the elastic modulus in compression, and xylans contributing to a dramatic increase of the elongation at break under tension. These diverging effects cannot be explained solely from the nature of their direct interactions with cellulose, but can be related to the distinct molecular structure of wood xylans and mannans, the multiphase architecture of the hydrogels and the aggregative effects amongst hemicellulose-coated fibrils. Our study contributes to understanding the specific roles of wood xylans and glucomannans in the biomechanical integrity of secondary cell walls in tension and compression and has significance for the development of lignocellulosic materials with controlled assembly and tailored mechanical properties.

  • 41.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Mikkelsen, Deirdre
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Flanagan, Bernadine
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Dhital, Sushil
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Yakubov, Gleb
    Univ Queensland, Sch Chem Engn, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Gidley, Michael
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hydrogels of bacterial cellulose and wood hemicelluloses as a model of plant secondary cell walls2019Inngår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikkel i tidsskrift (Annet vitenskapelig)
  • 42.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Cellulose-clay synergy effects in multifunctional hybrid composites2017Inngår i: International Conference on Nanotechnology for Renewable Materials 2017, TAPPI Press , 2017, s. 233-244Konferansepaper (Fagfellevurdert)
  • 43.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wood biocomposites and structural fibre materials2021Inngår i: Mechanics of Paper Products, Walter de Gruyter GmbH , 2021, s. 281-309Kapittel i bok, del av antologi (Annet vitenskapelig)
  • 44.
    Berglund, Lars
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Ansari, Farhan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Cellulose Nanocomposites With Ductile Mechanical Behavior2015Inngår i: 20Th International Conference On Composite Materials / [ed] Thomsen, OT Berggreen, C Sorensen, BF, AALBORG UNIV PRESS , 2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The limited ductility of plant fiber biocomposites is typically caused by interfacial debonding mechanisms at low strain. This leads to damage development and premature failure. The present paper discusses recent results on cellulose nanocomposites with thermoset and thermoplastic matrices, where substantial ductility is observed. The data are presented and reasons for the observed ductility are discussed.

  • 45.
    Berglund, Lars
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Yang, Xuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berthold, Fredrik
    RISE Bioecon, Stockholm, Sweden..
    Holocellulose fibers: combining mechanical performance and optical transmittance2019Inngår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikkel i tidsskrift (Annet vitenskapelig)
  • 46.
    Berqenstråhle-Wohlert, Malin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Cellulose axial stiffness Molecular mechanisms studied by atomistic computer simulations2013Inngår i: TAPPI International Conference on Nanotechnology 2013, 2013, s. 591-597Konferansepaper (Fagfellevurdert)
    Abstract [en]

    • Simulations could not show any stiffness dependence on lateral size • Simulations show a weak but significant temperature dependence • The temperature dependence is due to decreased entropy • The contributions from energy terms are nonintuitive and complex • Absolute values of Young's modulus of cellulose is sensetive to detalls.

  • 47.
    Betker, Marie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Harder, Constantin
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85; Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Erbes, Elisabeth
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85; Institute for X-ray Physics, Goettingen University, Friedrich Hund Platz 1, 37077 Goettingen, Germany, Friedrich Hund Platz 1.
    Heger, Julian Eliah
    Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Alexakis, Alexandros Efraim
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Sochor, Benedikt
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Chen, Qing
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Schwartzkopf, Matthias
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Körstgens, Volker
    Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Müller-Buschbaum, Peter
    Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1; Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany, Lichtenbergstr. 1.
    Schneider, Konrad
    Abteilung Werkstofftechnik, Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany.
    Techert, Simone Agnes
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85; Institute for X-ray Physics, Goettingen University, Friedrich Hund Platz 1, 37077 Goettingen, Germany, Friedrich Hund Platz 1.
    Söderberg, Daniel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser.
    Roth, Stephan V.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Sprayed Hybrid Cellulose Nanofibril-Silver Nanowire Transparent Electrodes for Organic Electronic Applications2023Inngår i: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 6, nr 14, s. 13677-13688Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In times of climate change and resource scarcity, researchers are aiming to find sustainable alternatives to synthetic polymers for the fabrication of biodegradable, eco-friendly, and, at the same time, high-performance materials. Nanocomposites have the ability to combine several favorable properties of different materials in a single device. Here, we evaluate the suitability of two kinds of inks containing silver nanowires for the fast, facile, and industrial-relevant fabrication of two different types of cellulose-based silver nanowire electrodes via layer-by-layer spray deposition only. The Type I electrode has a layered structure, which is composed of a network of silver nanowires sprayed on top of a cellulose nanofibrils layer, while the Type II electrode consists of a homogeneous mixture of silver nanowires and cellulose nanofibrils. A correlation between the surface structure, conductivity, and transparency of both types of electrodes is established. We use the Haacke figure of merit for transparent electrode materials to demonstrate the favorable influence of cellulose nanofibrils in the spray ink by identifying Type II as the electrode with the lowest sheet resistance (minimum 5 ± 0.04 Ω/sq), while at the same time having a lower surface roughness and shorter fabrication time than Type I. Finally, we prove the mechanical stability of the Type II electrode by bending tests and its long-time stability under ambient conditions. The results demonstrate that the mixed spray ink of silver nanowires and cellulose nanofibrils is perfectly suitable for the fast fabrication of highly conductive organic nanoelectronics on an industrial scale.

  • 48.
    Bi, Ran
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Huang, Shan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Isolation Of Exceedingly Low Oxygen Consuming Fungal Strains Able To Utilize Lignin As Carbon Source2016Inngår i: Cellulose Chemistry and Technology, ISSN 0576-9787, Vol. 50, nr 7-8, s. 811-817Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Lignin biodegradation is normally related to aerobic microorganisms, and it is often claimed that microbes do not metabolize lignin as a carbon source. In this work, several fungal strains were isolated from the sediment of a small stream located in a forest and tested on agar plates with lignin as the only carbon source. All identified strains were Ascomycetes, Penicillium spinulosum, Pseudeurotium bakeri and Galactomyces geotrichum. When cultivated in shaking flasks with lignosulphonate as a carbon source, the lignin was consumed, and cell free culture filtrates appeared to depolymerize lignosulphonate to some extent. It is suggested that the strains detected are part of a symbiotic community and live in a microbiological niche in which they are able to utilize lignin residues left from brown rot and humus having extremely low oxygen content.

  • 49.
    Boujemaoui, Assya
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Ansari, Farhan
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose-Poly(methyl methacrylate) Interface2019Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, nr 2, s. 598-607Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A critical aspect in materials design of polymer nanocomposites is the nature of the nanoparticle/polymer interface. The present study investigates the effect of manipulation of the interface between cellulose nanofibrils (CNF) and poly(methyl methacrylate) (PMMA) on the optical, thermal, and mechanical properties of the corresponding nanocomposites. The CNF/PMMA interface is altered with a minimum of changes in material composition so that interface effects can be analyzed. The hydroxyl-rich surface of CNF fibrils is exploited to modify the CNF surface via an epoxide-hydroxyl reaction. CNF/PMMA nanocomposites are then prepared with high CNF content (similar to 38 wt %) using an approach where a porous CNF mat is impregnated with monomer or polymer. The nanocomposite interface is controlled by either providing PMMA grafts from the modified CNF surface or by solvent-assisted diffusion of PMMA into a CNF network (native and modified). The high content of CNF fibrils of similar to 6 nm diameter leads to a strong interface and polymer matrix distribution effects. Moisture uptake and mechanical properties are measured at different relative humidity conditions. The nanocomposites with PMMA molecules grafted to cellulose exhibited much higher optical transparency, thermal stability, and hygro-mechanical properties than the control samples. The present modification and preparation strategies are versatile and may be used for cellulose nanocomposites of other compositions, architectures, properties, and functionalities.

  • 50.
    Bourdon, Matthieu
    et al.
    The Sainsbury Laboratory, University of Cambridge, Cambridge, UK; Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Bulone, Vincent
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.
    Helariutta, Ykä
    The Sainsbury Laboratory, University of Cambridge, Cambridge, UK; Wood Development Group, University of Helsinki, Helsinki, Finland; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
    et al.,
    Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils2023Inngår i: Nature Plants, E-ISSN 2055-0278, Vol. 9, nr 9, s. 1530-1546Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin–cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.

1234567 1 - 50 of 694
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf