Ändra sökning
Avgränsa sökresultatet
1234 1 - 50 av 185
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Andrieux, Sebastien
    et al.
    Univ Stuttgart, Inst Phys Chem, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.;Inst Charles Sadron UPR22 CNRS, 23 Rue Loess, F-67034 Strasbourg 2, France..
    Medina, Lilian
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Herbst, Michael
    Univ Stuttgart, Inst Phys Chem, Pfaffenwaldring 55, D-70569 Stuttgart, Germany..
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Stubenrauch, Cosima
    Univ Stuttgart, Inst Phys Chem, Pfaffenwaldring 55, D-70569 Stuttgart, Germany..
    Monodisperse highly ordered chitosan/cellulose nanocomposite foams2019Ingår i: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 125, artikel-id UNSP 105516Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In solid foams, most physical properties are determined by the pore size and shape distributions and the organisation of the pores. For this reason, it is important to control the structure of porous materials. We recently tackled this issue with the help of microfluidic-aided foam templating, which allowed us to generate mono-disperse and highly ordered chitosan foams. However, the properties of foams also depend on the properties of the pore wall constituents. In case of chitosan-based foams, the foams have poor absolute mechanical properties, simply due to the fact that the solubility of chitosan in water is very low, so that the relative density of the freeze-dried foams becomes very small. Drawing inspiration from the field of nanocomposites, we incorporated cellulose nanofibres into the foamed chitosan solutions, with a view to strengthening the pore walls in the foam and thus the mechanical properties of the final foam. We report here how the cellulose nanofibres affect the structure of both the liquid foam template and the solid foam. The resulting nanocomposite foams have improved mechanical properties, which, however, are not proportional to the amount of cellulose nanofibres in the composites. One reason for this observation is the disturbance of the porous structure of the solid foams by the cellulose nanofibres.

  • 2.
    Baath, Jenny Arnling
    et al.
    Chalmers Univ Technol, Div Ind Biotechnol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden..
    Martinez-Abad, Antonio
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Berglund, Jennie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Larsbrink, Johan
    Chalmers Univ Technol, Div Ind Biotechnol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden..
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Olsson, Lisbeth
    Chalmers Univ Technol, Div Ind Biotechnol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden..
    Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation2018Ingår i: Biotechnology for Biofuels, ISSN 1754-6834, E-ISSN 1754-6834, Vol. 11, artikel-id 114Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Galactoglucomannan (GGM) is the most abundant hemicellulose in softwood, and consists of a backbone of mannose and glucose units, decorated with galactose and acetyl moieties. GGM can be hydrolyzed into fermentable sugars, or used as a polymer in films, gels, and food additives. Endo-beta-mannanases, which can be found in the glycoside hydrolase families 5 and 26, specifically cleave the mannan backbone of GGM into shorter oligosaccharides. Information on the activity and specificity of different mannanases on complex and acetylated substrates is still lacking. The aim of this work was to evaluate and compare the modes of action of two mannanases from Cellvibrio japonicus (CjMan5A and CjMan26A) on a variety of mannan substrates, naturally and chemically acetylated to varying degrees, including naturally acetylated spruce GGM. Both enzymes were evaluated in terms of cleavage patterns and their ability to accommodate acetyl substitutions. Results: CjMan5A and CjMan26A demonstrated different substrate preferences on mannan substrates with distinct backbone and decoration structures. CjMan5A action resulted in higher amounts of mannotriose and mannotetraose than that of CjMan26A, which mainly generated mannose and mannobiose as end products. Mass spectrometric analysis of products from the enzymatic hydrolysis of spruce GGM revealed that an acetylated hexotriose was the shortest acetylated oligosaccharide produced by CjMan5A, whereas CjMan26A generated acetylated hexobiose as well as diacetylated oligosaccharides. A low degree of native acetylation did not significantly inhibit the enzymatic action. However, a high degree of chemical acetylation resulted in decreased hydrolyzability of mannan substrates, where reduced substrate solubility seemed to reduce enzyme activity. Conclusions: Our findings demonstrate that the two mannanases from C. japonicus have different cleavage patterns on linear and decorated mannan polysaccharides, including the abundant and industrially important resource spruce GGM. CjMan26A released higher amounts of fermentable sugars suitable for biofuel production, while CjMan5A, producing higher amounts of oligosaccharides, could be a good candidate for the production of oligomeric platform chemicals and food additives. Furthermore, chemical acetylation of mannan polymers was found to be a potential strategy for limiting the biodegradation of mannan-containing materials.

  • 3.
    Belaineh, Dagmawi
    et al.
    Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden.;RISE Acreo, RISE Res Inst Sweden, Div ICT, S-60117 Norrkoping, Sweden..
    Andreasen, Jens W.
    Tech Univ Denmark, Dept Energy Convers & Storage, DK-4000 Roskilde, Denmark..
    Palisaitis, Justinas
    Linkoping Univ, Dept Phys Chem & Biol, S-58183 Linkoping, Sweden..
    Malti, Abdellah
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hakansson, Karl
    RISE Bioecon, Res Inst Sweden, S-11486 Stockholm, Sweden..
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Crispin, Xavier
    Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden..
    Engquist, Isak
    Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden..
    Berggren, Magnus
    Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden..
    Controlling the Organization of PEDOT:PSS on Cellulose Structures2019Ingår i: ACS APPLIED POLYMER MATERIALS, ISSN 2637-6105, Vol. 1, nr 9, s. 2342-2351Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Composites of biopolymers and conducting polymers are emerging as promising candidates for a green technological future and are actively being explored in various applications, such as in energy storage, bioelectronics, and thermoelectrics. While the device characteristics of these composites have been actively investigated, there is limited knowledge concerning the fundamental intracomponent interactions and the modes of molecular structuring. Here, by use of cellulose and poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), it is shown that the chemical and structural makeup of the surfaces of the composite components are critical factors that determine the materials organization at relevant dimensions. AFM, TEM, and GIVVAXS measurements show that when mixed with cellulose nanofibrils, PEDOT:PSS organizes into continuous nanosized beadlike structures with an average diameter of 13 nm on the nanofibrils. In contrast, when PEDOT:PSS is blended with molecular cellulose, a phase-segregated conducting network morphology is reached, with a distinctly relatively lower electric conductivity. These results provide insight into the mechanisms of PEDOT:PSS crystallization and may have significant implications for the design of conducting biopolymer composites for a vast array of applications.

  • 4.
    Benselfelt, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Design of Cellulose-based Materials by Supramolecular Assemblies2019Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    På grund av klimatförändringar och ständigt ökande plastföroreningar finns det en växande efterfrågan på biobaserade material med egenskaper som liknar dem hos vanliga plaster och som samtidigt är biologiskt nedbrytbara. I detta avseende är cellulosa är en stark kandidat som redan framställs i stor industriell skala, men egenskaperna skiljer sig markant från plasternas med avseende på formbarhet och vattentålighet.

    Denna avhandling undersöker hur supramolekylära interaktioner kan användas för att skräddarsy egenskaperna hos cellulosa-baserade material genom att modifiera cellulosaytor eller styra hur cellulosa nanofibriller (CNFs) sätts samman. Huvuddelen av arbetet berör grundläggande studier kring interaktioner i vatten, men några materialkoncept och potentiella tillämpningar diskuteras.

    Den första delen avhandlar hur spontan adsorption av xyloglukan eller polyelektrolyter kan användas för att modifiera cellulosa. Resultaten indikerar att xyloglukan adsorberar till cellulosa på grund av den ökade entropin hos vatten som frigörs från ytorna, vilket liknar den ökade entropin hos frigjorda motjoner som driver polyelektrolytadsorption. Adsorptionen av polyeletrolyter beror på cellulosans laddning upp till en viss gräns, varefter laddningstätheten endast påverkar adsorptionen i första lagret i en multilager formering.

    Adsorption av latexnanopartiklar med en korona av polyeletrolyter, ger hydrofoba cellulosaytor med stark och töjbar, våt vidhäftning, om kärnans glasövergång sker vid lägre temperatur än omgivningens.

    Syftet med den andra delen av avhandlingen är att förklara interaktioner mellan olika typer av cellulosa nanofibriller i närvaro av olika joner. Detta görs med en modell bestående av jon-jonkorrelation och specifika joneffekter, som kan användas för rationell design av vattentåliga och transparenta filmer av nanocellulosa. Tillsatsen av små mängder alginat skapar också interpenetrerande dubbla nätverk, och dessa nätverk leder till en synergi som förbättrar både styvheten och töjbarheten hos filmerna i vatten.

    En nätverksmodell utvecklades för att förstå dessa material. Modellen klarar av att förklara hur egenskaperna hos fibrillnätverk beror av parametrar som fibrillernas geometri, nätverkets soliditet och friktionen som induceras av specifika joner. Med hjälp av nätverksmodellen och modellen för joninducerade interaktioner kan vi skapa filmer med våtstyrka som överträffar den hos många plaster, eller med en töjbarhet som är lämplig för hygroplastisk formpressning till vattentåliga och biologiskt nedbrytbara förpackningar. Filmernas transparens och vatteninnehåll, samt biokompatibiliteten hos cellulosa, gör dem lämpliga som biomaterial eller för bioelektronikapplikationer.

    Publikationen är tillgänglig i fulltext från 2019-12-31 23:59
  • 5.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Engström, Joakim
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Supramolecular double networks of cellulose nanofibrils and algal polysaccharides with excellent wet mechanical properties2018Ingår i: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 20, nr 11, s. 2558-2570Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Supramolecular double network films, consisting of cellulose nanofibrils (CNF) entangled with the algal polysaccharides alginate or carrageenan, were prepared using a rapid vacuum filtration process to achieve water-resistant CNF nanopapers with excellent mechanical properties in both the wet and dry states following the locking of the structures using Ca2+. The rigid network of calcium alginate was more efficient than the more flexible network of calcium carrageenan and 10% by weight of alginate was sufficient to form a network that suppressed the swelling of the CNF film by over 95%. The resulting material could be compared to a stiff rubber with a Young's modulus of 135 MPa, a tensile strength of 17 MPa, a strain-at-break above 55%, and a work of fracture close to 5 MJ m(-3) in the wet state, which was both significantly stronger and more ductile than the calcium-treated CNF reference nanopaper. It was shown that the state in which Ca2+ was introduced is crucial, and it is also hypothesized that the alginate works as a sacrificial network that prevents the CNF from aligning during loading and that this leads to the increased toughness. The material maintained its barrier properties at elevated relative humidities and the extensibility and ductility made possible hygroplastic forming into three-dimensional shapes. It is suggested that the attractive force in the CNF part of the double network in the presence of multivalent ions is due to the ion-ion correlation forces generated by the fluctuating counter-ion cloud, since no significant ion coordination was observed using FTIR.

  • 6.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Nordenström, Malin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hamedi, Mahiar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Ion-induced assemblies of highly anisotropic nanoparticles are governed by ion-ion correlation and specific ion effects2019Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, nr 8, s. 3514-3520Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ion-induced assemblies of highly anisotropic nanoparticles can be explained by a model consisting of ion-ion correlation and specific ion effects: dispersion interactions, metal-ligand complexes, and local acidic environments. Films of cellulose nanofibrils and montmorillonite clay were treated with different ions, and their subsequent equilibrium swelling in water was related to important parameters of the model in order to investigate the relative importance of the mechanisms. Ion-ion correlation was shown to be the fundamental attraction, supplemented by dispersion interaction for polarizable ions such as Ca2+ and Ba2+, or metal-ligand complexes for ions such as Cu2+, Al3+ and Fe3+. Ions that form strong complexes induce local acidic environments that also contribute to the assembly. These findings are summarized in a comprehensive semi-quantitative model and are important for the design of nanomaterials and for understanding biological systems where specific ions are involved.

  • 7.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Nordenström, Malin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Lindstrom, Stefan B.
    Linkoping Univ, Div Solid Mech, Dept Management & Engn, S-58183 Linkoping, Sweden..
    Wågberg, Lars
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH Royal Inst Technol, Div Fibre Technol, Dept Fiber & Polymer Technol, Tekn Ringen 56-58, S-10044 Stockholm, Sweden.;KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Dept Fiber & Polymer Technol, Tekn Ringen 56-58, S-10044 Stockholm, Sweden..
    Explaining the Exceptional Wet Integrity of Transparent Cellulose Nanofibril Films in the Presence of Multivalent Ions-Suitable Substrates for Biointerfaces2019Ingår i: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, nr 13, artikel-id 1900333Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cellulose nanofibrils (CNFs) assemble into water-resilient materials in the presence of multivalent counter-ions. The essential mechanisms behind these assemblies are ion-ion correlation and specific ion effects. A network model shows that the interfibril attraction indirectly influences the wet modulus by a fourth power relationship to the solidity of the network (E-w proportional to phi(4)). Ions that induce both ion-ion correlation and specific ion effects significantly reduce the swelling of the films, and due to the nonlinear relationship dramatically increase the wet modulus. Herein, this network model is used to explain the elastoplastic behavior of wet films of 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized, carboxymethylated, and phosphorylated CNFs in the presence of different counter-ions. The main findings are that the aspect ratio of the CNFs influences the ductility of the assemblies, that the bivalency of phosphorylate ligands probably limits the formation of interfibril complexes with divalent ions, and that a higher charge density increases the friction between fibrils by increasing the short-range attraction from ion-ion correlation and specific ion effects. These findings can be used to rationally design CNF materials for a variety of applications where wet strength, ductility, and transparency are important, such as biomaterials or substrates for bioelectronics.

  • 8.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Nordenström, Malin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Stefan
    Linköping University.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Explaining the exceptional wet integrity of transparent cellulose nanofibril films in the presence of multivalent ions - Suitable substrates for biointerfacesManuskript (preprint) (Övrigt vetenskapligt)
  • 9.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Dynamic networks of cellulose nanofibrils as a platform for tunable hydrogels, aerogels, and chemical modifications2018Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Artikel i tidskrift (Övrigt vetenskapligt)
  • 10.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Azhar, Shoaib
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    The structure of galactoglucomannan impacts the degradation under alkaline conditions2018Ingår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882XArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    Galactoglucomannan (GGM) from sprucewas studied with respect to the degradation behavior inalkaline solution. Three reference systems includinggalactomannan from locust bean gum, glucomannanfrom konjac and the linear water-soluble carboxymethylcellulose were studied with focus onmolecular weight, sugar composition, degradationproducts, as well as formed oligomers, to identifyrelative structural changes in GGM. Initially allmannan polysaccharides showed a fast decrease inthe molecular weight, which became stable in the laterstage. The degradation of the mannan polysaccharidescould be described by a function corresponding to thesum of two first order reactions; one slow that wasascribed to peeling, and one fast that was connectedwith hydrolysis. The galactose side group wasstable under conditions used in this study (150 min,90 C, 0.5 M NaOH). This could suggest that, apartfrom the covalent connection to C6 in mannose, thegalactose substitutions also interact non-covalentlywith the backbone to stabilize the structure againstdegradation. Additionally, the combination of differentbackbone sugars seems to affect the stability of thepolysaccharides. For carboxymethyl cellulose thedegradation was linear over time which furthersuggests that the structure and sugar composition playan important role for the alkaline degradation. Moleculardynamics simulations gave details about theconformational behavior of GGM oligomers in watersolution, as well as interaction between the oligomersand hydroxide ions.

  • 11.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Chen, Pan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Computer modeling of the structure and dynamics of hemicelluloses2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 12.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Farahani, Saina Kishani
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    de Carvalho, Danila Morais
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. AlbaNova University Centre.
    The influence of acetylation and sugar composition on the (in)solubility of mannans, their interaction with cellulose surfaces and thermal propertiesManuskript (preprint) (Övrigt vetenskapligt)
  • 13.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Mikkelsen, Deirdre
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Flanagan, Bernadine
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Dhital, Sushil
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Yakubov, Gleb
    Univ Queensland, Sch Chem Engn, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Gidley, Michael
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hydrogels of bacterial cellulose and wood hemicelluloses as a model of plant secondary cell walls2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 14.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Cellulose-clay synergy effects in multifunctional hybrid composites2017Ingår i: International Conference on Nanotechnology for Renewable Materials 2017, TAPPI Press , 2017, s. 233-244Konferensbidrag (Refereegranskat)
  • 15.
    Berglund, Lars
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH Royal Inst Technol, WWSC, Fibre & Polymer Technol, Stockholm, Sweden..
    Yang, Xuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH Royal Inst Technol, WWSC, Fibre & Polymer Technol, Stockholm, Sweden..
    Berthold, Fredrik
    RISE Bioecon, Stockholm, Sweden..
    Holocellulose fibers: combining mechanical performance and optical transmittance2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 16.
    Boujemaoui, Assya
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Ansari, Farhan
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose-Poly(methyl methacrylate) Interface2019Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, nr 2, s. 598-607Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A critical aspect in materials design of polymer nanocomposites is the nature of the nanoparticle/polymer interface. The present study investigates the effect of manipulation of the interface between cellulose nanofibrils (CNF) and poly(methyl methacrylate) (PMMA) on the optical, thermal, and mechanical properties of the corresponding nanocomposites. The CNF/PMMA interface is altered with a minimum of changes in material composition so that interface effects can be analyzed. The hydroxyl-rich surface of CNF fibrils is exploited to modify the CNF surface via an epoxide-hydroxyl reaction. CNF/PMMA nanocomposites are then prepared with high CNF content (similar to 38 wt %) using an approach where a porous CNF mat is impregnated with monomer or polymer. The nanocomposite interface is controlled by either providing PMMA grafts from the modified CNF surface or by solvent-assisted diffusion of PMMA into a CNF network (native and modified). The high content of CNF fibrils of similar to 6 nm diameter leads to a strong interface and polymer matrix distribution effects. Moisture uptake and mechanical properties are measured at different relative humidity conditions. The nanocomposites with PMMA molecules grafted to cellulose exhibited much higher optical transparency, thermal stability, and hygro-mechanical properties than the control samples. The present modification and preparation strategies are versatile and may be used for cellulose nanocomposites of other compositions, architectures, properties, and functionalities.

  • 17.
    Brett, Calvin
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik.
    Mittal, Nitesh
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Ohm, Wiebke
    DESY, Hamburg, Germany..
    Söderberg, Daniel
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik.
    Roth, Stephan V.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. DESY, Hamburg, Germany..
    GISAS study of spray deposited metal precursor ink on a cellulose template2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 18.
    Brett, Calvin
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. DESY, Photon Sci, Hamburg, Germany.
    Mittal, Nitesh
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Ohm, Wiebke
    DESY, Photon Sci, Hamburg, Germany..
    Söderberg, Daniel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik.
    Roth, Stephan V.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. DESY, Photon Sci, Hamburg, Germany..
    In situ self-assembly study in bio-based thin films2018Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Artikel i tidskrift (Övrigt vetenskapligt)
  • 19.
    Brouzet, Christophe
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Mittal, Nitesh
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Lundell, Fredrik
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Söderberg, Daniel
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Characterizing the Orientational and Network Dynamics of Polydisperse Nanofibers on the Nanoscale2019Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 52, nr 6, s. 2286-2295Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polydisperse fiber networks are the basis of many natural and manufactured structures, ranging from high-performance biobased materials to components of living cells and tissues. The formation and behavior of such networks are given by fiber properties such as length and stiffness as well as the number density and fiber-fiber interactions. Studies of fiber network behavior, such as connectivity or rigidity thresholds, typically assume monodisperse fiber lengths and isotropic fiber orientation distributions, specifically for nano scale fibers, where the methods providing time-resolved measurements are limited. Using birefringence measurements in a microfluidic flow-focusing channel combined with a flow stop procedure, we here propose a methodology allowing investigations of length-dependent rotational dynamics of nanoscale polydisperse fiber suspensions, including the effects of initial nonisotropic orientation distributions. Transition from rotational mobility to rigidity at entanglement thresholds is specifically addressed for a number of nanocellulose suspensions, which are used as model nanofiber systems. The results show that the proposed method allows the characterization of the subtle interplay between Brownian diffusion and nanoparticle alignment on network dynamics.

  • 20.
    Brouzet, Christophe
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Mittal, Nitesh
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Söderberg, Daniel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Lundell, Fredrik
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Size-Dependent Orientational Dynamics of Brownian Nanorods2018Ingår i: ACS Macro Letters, E-ISSN 2161-1653, Vol. 7, nr 8, s. 1022-1027Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Successful assembly of suspended nanoscale rod-like particles depends on fundamental phenomena controlling rotational and translational diffusion. Despite the significant developments in fluidic fabrication of nanostructured materials, the ability to quantify the dynamics in processing systems remains challenging. Here we demonstrate an experimental method for characterization of the orientation dynamics of nanorod suspensions in assembly flows using orientation relaxation. This relaxation, measured by birefringence and obtained after rapidly stopping the flow, is deconvoluted with an inverse Laplace transform to extract a length distribution of aligned nanorods. The methodology is illustrated using nanocelluloses as model systems, where the coupling of rotational diffusion coefficients to particle size distributions as well as flow-induced orientation mechanisms are elucidated. 

  • 21.
    Budnyak, Tetyana
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Aminzadeh, Selda
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Pylypchuk, Ievgen
    Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), Allmas alle 5, SE-750 07 Uppsala, Swede.
    Riazanova, Anastasiia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Tertykh, Valentin
    Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Sevastyanova, Olena
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Peculiarities of synthesis and properties of lignin-silica nanocomposites prepared by sol-gel method2018Ingår i: Nanomaterials, ISSN 2079-4991, Vol. 8, nr 11, s. 1-18, artikel-id 950Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The development of advanced hybrid materials based on polymers from biorenewable sources and mineral nanoparticles is currently of high importance. In this paper, we applied softwood kraft lignins for the synthesis of lignin/SiO2 nanostructured composites. We described the peculiarities of composites formation in the sol-gel process through the incorporation of the lignin into a silica network during the hydrolysis of tetraethoxysilane (TEOS). The initial activation of lignins was achieved by means of a Mannich reaction with 3-aminopropyltriethoxysilane (APTES). In the study, we present a detailed investigation of the physicochemical characteristics of initial kraft lignins and modified lignins on each step of the synthesis. Thus, 2D-NMR, P-31-NMR, size-exclusion chromatography (SEC) and dynamic light scattering (DLS) were applied to analyze the characteristics of pristine lignins and lignins in dioxan:water solutions. X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) were used to confirm the formation of the lignin-silica network and characterize the surface and bulk structures of the obtained hybrids. Termogravimetric analysis (TGA) in nitrogen and air atmosphere were applied to a detailed investigation of the thermal properties of pristine lignins and lignins on each step of modification. SEM confirmed the nanostructure of the obtained composites. As was demonstrated, the activation of lignin is crucial for the sol-gel formation of a silica network in order to create novel hybrid materials from lignins and alkoxysilanes (e.g., TEOS). It was concluded that the structure of the lignin had an impact on its reactivity during the activation reaction, and consequently affected the properties of the final hybrid materials.

  • 22.
    Budnyak, Tetyana M.
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Natl Acad Sci Ukraine, Chuiko Inst Surface Chem, 17 Gen Naumov Str, UA-03164 Kiev, Ukraine..
    Aminzadeh, Selda
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Pylypchuk, Ievgen V.
    Swedish Univ Agr Sci SLU, Dept Mol Sci, Allmas Alle 5, SE-75007 Uppsala, Sweden..
    Sternik, Dariusz
    Marie Curie Sklodowska Univ, 2 M Curie Sklodowska Sq, PL-20031 Lublin, Poland..
    Tertykh, Valentin A.
    Natl Acad Sci Ukraine, Chuiko Inst Surface Chem, 17 Gen Naumov Str, UA-03164 Kiev, Ukraine..
    Lindström, Mikael E.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Sevastyanova, Olena
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Methylene Blue dye sorption by hybrid materials from technical lignins2018Ingår i: Journal of Environmental Chemical Engineering, ISSN 2160-6544, E-ISSN 2213-3437, Vol. 6, nr 4, s. 4997-5007Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    New hybrid sorbents were synthesized from technical lignins and silica and were applied for the removal of Methylene Blue dye (MB) from aqueous solution. Kraft softwood lignins from LignoBoost (LBL) and CleanFlowBlack (CFBL) processes were used to understand the influence of molecular weight and functionality of initial lignins on the properties of the final hybrids. The synthesized materials were applied as adsorbents for the removal of MB from aqueous solutions. The effects of parameters such as contact time, initial concentration of dye and initial pH on the adsorption capacity were evaluated. The hybrids exhibited higher adsorption capacity than the initial macromolecules of lignin with respect to MB. The hybrid based on CFBL exhibited an adsorption capacity of 60 mg/g; this value was 30% higher than the capacity of the hybrid based on LBL, which was 41.6 mg/g. Lignin hybrid materials extract 80-99% of the dye in a pH range from 3 to 10. The equilibrium and kinetic characteristics of MB uptake by the hybrids followed the Langmuir isotherm model and pseudosecond-order model, rather than the Freundlich and Temkin models, the pseudo-first-order or the intraparticle diffusion model. The attachment of the dye to the hybrid surface was confirmed via FE-SEM and FTIR spectroscopy. The mechanism for MB adsorption was proposed. Due to the high values of regeneration efficiency of the surface of both lignin-silica hybrid materials in 0.1 M HCl (up to 75%) and ethanol (99%), they could be applied as effective sorbents in industrial wastewater treatment processes.

  • 23.
    Butchosa, Nuria
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Leijon, Felicia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Bulone, Vincent
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Zhou, Qi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Stronger cellulose microfibril network structure through the expression of cellulose-binding modules in plant primary cell walls2019Ingår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, nr 5, s. 3083-3094Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cellulose-binding modules (CBMs) are non-catalytic domains typically occurring in glycoside hydrolases. Their specific interaction with diverse polysaccharides assists hydrolysis by the catalytic subunits. In this work, we have exploited the interactions between a CBM from family 3 (CBM3) and cell wall polysaccharides to alter the structure and mechanical properties of cellulose microfibrils from BY-2 tobacco cell suspension cultures. A CBM3 from Clostridium thermocellum was overexpressed in the cells using Agrobacterium-mediated transformation. Water suspensions of cellulose microfibrils were prepared by the removal of the non-cellulosic components of the primary cell walls, followed by mild disintegration using sonication. The morphology of the microfibrils was characterized by transmission electron microscopy and atomic force microscopy. These cellulose microfibrils were further hydrolyzed with 64wt% sulfuric acid to produce cellulose nanocrystals (CNCs). The average length of CNCs prepared from the CBM3-transformed cells was 201nm, higher than that from the wild-type cells (122nm). In addition, the mechanical properties and deformation mechanism of nanopapers prepared from suspensions of cellulose microfibrils were investigated. The nanopapers obtained from the CBM3-transformed cells exhibited enhanced tensile strength and work of fracture, 40% and 128% higher than those prepared from wild-type tobacco cells, respectively. [GRAPHICS] .

  • 24. Carosio, F.
    et al.
    Ghanadpour, Maryam
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Alongi, J.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams2018Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 202, s. 479-487Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The layer-by-layer (LbL) assembly of chitosan (CH) and phosphorylated cellulose nanofibrils (P-CNF) is presented as a novel, sustainable and efficient fire protection system for polyurethane foams. The assembly yields a linearly growing coating where P-CNF is the main component and is embedded in a continuous CH matrix. This CH/P-CNF system homogenously coats the complex 3D structure of the foam producing a nano-exoskeleton that displays excellent mechanical properties increasing the modulus of the foam while maintaining its ability of being cyclically deformed. During combustion the CH/P-CNF exoskeleton efficiently prevents foam collapse and suppresses melt dripping while reducing the heat release rate peak by 31% with only 8% of added weight. The coating behavior during combustion is investigated and correlated to the observed performances. Physical and chemical mechanisms are identified and related to the unique composition and structure of the coating imparted by the LbL assembly.

  • 25.
    Castro, Daniele Oliveira
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. MoRe Research Örnsköldsvik AB, Örnsköldsvik, Sweden.
    Karim, Zoheb
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. MoRe Research Örnsköldsvik AB, Örnsköldsvik, Sweden.
    Medina, Lilian
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Häggström, J. -O
    Carosio, F.
    Svedberg, A.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Söderberg, Daniel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites2018Ingår i: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 162, s. 215-224Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanostructured materials are difficult to prepare rapidly and at large scale. Melt-processed polymer-clay nanocomposites are an exception, but the clay content is typically below 5 wt%. An approach for manufacturing of microfibrillated cellulose (MFC)/kaolinite nanocomposites is here demonstrated in pilot-scale by continuous production of hybrid nanopaper structures with thickness of around 100 μm. The colloidal nature of MFC suspensions disintegrated from chemical wood fiber pulp offers the possibility to add kaolinite clay platelet particles of nanoscale thickness. For initial lab scale optimization purposes, nanocomposite processing (dewatering, small particle retention etc) and characterization (mechanical properties, density etc) were investigated using a sheet former (Rapid Köthen). This was followed by a continuous fabrication of composite paper structures using a pilot-scale web former. Nanocomposite morphology was assessed by scanning electron microscopy (SEM). Mechanical properties were measured in uniaxial tension. The fire retardancy was evaluated by cone calorimetry. Inorganic hybrid composites with high content of in-plane oriented nanocellulose, nanoclay and wood fibers were successfully produced at pilot scale. Potential applications include fire retardant paperboard for semi structural applications.

  • 26.
    Chen, Hui
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Baitenov, Adil
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Fotonik.
    Li, Yuanyuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Vasileva, Elena
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Fotonik.
    Popov, Sergei
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Fotonik.
    Sychugov, Ilya
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Yan, Min
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Thickness Dependence of Optical Transmittance of Transparent Wood: Chemical Modification Effects2019Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 38, s. 35451-35457Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Transparent wood (TW) is an emerging optical material combining high optical transmittance and haze for structural applications. Unlike nonscattering absorbing media, the thickness dependence of light transmittance for TW is complicated because optical losses are also related to increased photon path length from multiple scattering. In the present study, starting from photon diffusion equation, it is found that the angle-integrated total light transmittance of TW has an exponentially decaying dependence on sample thickness. The expression reveals an attenuation coefficient which depends not only on the absorption coefficient but also on the diffusion coefficient. The total transmittance and thickness were measured for a range of TW samples, from both acetylated and nonacetylated balsa wood templates, and were fitted according to the derived relationship. The fitting gives a lower attenuation coefficient for the acetylated TW compared to the nonacetylated one. The lower attenuation coefficient for the acetylated TW is attributed to its lower scattering coefficient or correspondingly lower haze. The attenuation constant resulted from our model hence can serve as a singular material parameter that facilitates cross-comparison of different sample types, at even different thicknesses, when total optical transmittance is concerned. The model was verified with two other TWs (ash and birch) and is in general applicable to other scattering media.

  • 27.
    Chen, Pan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Guangdong, Peoples R China.
    Ogawa, Yu
    Univ Grenoble Alpes, CNRS, CERMAV, BP53, F-38000 Grenoble 9, France..
    Nishiyama, Yoshiharu
    Univ Grenoble Alpes, CNRS, CERMAV, BP53, F-38000 Grenoble 9, France..
    Ismail, Ahmed E.
    West Virginia Univ, Dept Chem & Biomed Engn, Morgantown, WV 26505 USA..
    Mazeau, Karim
    Univ Grenoble Alpes, CNRS, CERMAV, BP53, F-38000 Grenoble 9, France..
    I alpha to I beta mechano-conversion and amorphization in native cellulose simulated by crystal bending2018Ingår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, nr 8, s. 4345-4355Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The bending of rod-like native cellulose crystals with degree of polymerization 40 and 160 using molecular dynamics simulations resulted in a deformation-induced local amorphization at the kinking point and allomorphic interconversion between cellulose I alpha and I beta in the unbent segments. The transformation mechanism involves a longitudinal chain slippage of the hydrogen-bonded sheets by the length of one anhydroglucose residue ( 0.5 nm), which alters the chain stacking from the monotonic (I alpha) form to the alternating I beta one or vice versa. This mechanical deformation converts the I alpha form progressively to the I beta form, as has been experimentally observed for ultrasonication of microfibrils. I beta is also able to partially convert to I alpha-like organization but this conversion is only transitory. The qualitative agreement between the behavior of ultrasonicated microfibrils and in silico observed I alpha -> I beta conversion suggests that shear deformation and chain slippage under bending deformation is a general process when cellulose fibrils experience lateral mechanical stress.

  • 28.
    Chen, Pan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Terenzi, Camilla
    Wageningen Univ & Res, Wageningen, Netherlands..
    Furo, Istvan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Heterogeneous dynamics in cellulose from molecular dynamics simulations2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 29.
    Chen, Pan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Terenzi, Camilla
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Furo, Istvan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of C-13 NMR Relaxation Times and Their Distributions2018Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, nr 7, s. 2567-2579Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Macromolecular dynamics in biological systems, which play a crucial role for biomolecular function and activity at ambient temperature, depend strongly on moisture content. Yet, a generally accepted quantitative model of hydration-dependent phenomena based on local relaxation and diffusive dynamics of both polymer and its adsorbed water is still missing. In this work, atomistic-scale spatial distributions of motional modes are calculated using molecular dynamics simulations of hydrated xyloglucan (XG). These are shown to reproduce experimental hydration-dependent C-13 NMR longitudinal relaxation times (T-1) at room temperature, and relevant features of their broad distributions, which are indicative of locally heterogeneous polymer reorientational dynamics. At low hydration, the self-diffusion behavior of water shows that water molecules are confined to particular locations in the randomly aggregated XG network while the average polymer segmental mobility remains low. Upon increasing water content, the hydration network becomes mobile and fully accessible for individual water molecules, and the motion of hydrated XG segments becomes faster. Yet, the polymer network retains a heterogeneous gel-like structure even at the highest level of hydration. We show that the observed distribution of relaxations times arises from the spatial heterogeneity of chain mobility that in turn is a result of heterogeneous distribution of water-chain and chain chain interactions. Our findings contribute to the picture of hydration-dependent dynamics in other macromolecules such as proteins, DNA, and synthetic polymers, and hold important implications for the mechanical properties of polysaccharide matrixes in plants and plant-based materials.

  • 30.
    Chen, Pan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Engn Res Ctr Cellulose & Its Derivat, 5 South Zhongguancun St, Beijing 100081, Peoples R China..
    Terenzi, Camilla
    Wageningen Univ & Res, Lab Biophys, Stippeneng 4, NL-6708 WE Wageningen, Netherlands..
    Furo, Istvan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Quantifying Localized Macromolecular Dynamics within Hydrated Cellulose Fibril Aggregates2019Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 52, nr 19, s. 7278-7288Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Molecular dynamics (MD) simulations of C-13 NMR longitudinal relaxation (T-1) distributions were recently established as a powerful tool for characterizing moisture adsorption in natural amorphous polymers. Here, such computational-experimental synergy is demonstrated in a system with intrinsically high structural heterogeneity, namely crystalline cellulose nanofibrils (CNFs) in highly hydrated aggregated state. In such a system, structure-function properties on the nanoscale remain largely uncovered by experimental means alone. In this work, broadly polydispersed experimental C-13 NMR T-1 distributions could be successfully reproduced in simulations and, for the first time, were decomposed into contributions from distinct molecular sources within the aggregated CNFs, namely, (i) the core and (ii) the less-accessible and accessible surface regions of the CNFs. Furthermore, within the surface groups structurally different sites such as (iii) residues with different hydroxymethyl orientations and (iv) center and origin chains could be discerned based on their distinct molecular dynamics. The MD simulations unravel a direct correlation between dynamical and structural heterogeneity at an atomistic-level resolution that cannot be accessed by NMR experiments. The proposed approach holds the potential to enable quantitative interpretation of NMR data from a range of multicomponent high-performance nanocomposites with significantly heterogeneous macromolecular structure.

  • 31.
    Dang, Binh T. T.
    et al.
    Chalmers Univ Technol, Dept Chem & Biol Engn, Forest Prod & Chem Engn, SE-41296 Gothenburg, Sweden..
    Brelid, Harald
    Sodra Innovat, SE-43286 Varobacka, Sweden..
    Theliander, Hans
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Chalmers Univ Technol, Dept Chem & Chem Engn, Forest Prod & Chem Engn, SE-41296 Gothenburg, Sweden.
    Carbohydrate content of black liquor and precipitated lignin at different ionic strengths in flow-through kraft cooking2018Ingår i: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 72, nr 7, s. 539-547Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The influence of sodium ion concentration [Na+] on the dissolution of carbohydrates in black liquor (BL) during flow-through kraft cooking of Scots pine wood meal (Pinus sylvestris) was studied. Fractions of BL were collected at different times and the carbohydrate content of the various fractions was analysed. Lignin was precipitated from the BL by lowering the pH, and the carbohydrate content of the precipitated lignins (L-prec) was also examined. The molecular weight distribution (MWD) of the L-prec samples was analysed. Xylose (Xyl) was found to be the most predominant sugar in BL aside from arabinose (Ara) and galactose (Gal), while the amounts of these sugars decreased with increasing levels of [Na+] in the cooking liquor. The minor amounts of mannose (Man) found in BL was not influenced by the [Na+]. The effects of NaCl and Na2CO3 on the carbohydrate dissolution were similar, but slightly lower concentrations of Ara and Xyl were found in the case of NaCl application. All of the L-prec samples contained some carbohydrate residues, the contents of which increased with increasing cooking time and decreased with higher [Na+]. It can be concluded that arabinoglucuronoxylan (AGX) along with arabinogalactans (AG) and arabinan, are covalently linked to lignin. The glucose (Glc) residue detected in L-prec may originate from 1,3-beta-glucan linked to lignin.

  • 32.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Asem, Heba
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Brismar, Hjalmar
    KTH, Tidigare Institutioner (före 2005), Fysik. KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Zhang, Yuning
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Malkoch, Michael
    KTH, Tidigare Institutioner (före 2005), Fiber- och polymerteknologi. KTH, Tidigare Institutioner (före 2005), Polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Malmström, Eva
    KTH, Tidigare Institutioner (före 2005), Fiber- och polymerteknologi.
    In situ encapsulation of Nile red or Doxorubicinduring RAFT‐mediated emulsion polymerizationvia PISAManuskript (preprint) (Övrigt vetenskapligt)
  • 33.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Benselfelt, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    D'Agosto, Franck
    UCBL, CPE Lyon, CPE, C2P2,CNRS, Bat 308F, Villeurbanne, France..
    Lansalot, Muriel
    UCBL, CPE Lyon, CPE, C2P2,CNRS, Bat 308F, Villeurbanne, France..
    Carlmark, Anna
    RISE, Nanocellulose, Stockholm, Sweden..
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Tailored cationic PISA-latexes for strong adhesion to anionic surfaces: Importance of purity and chain-extension as shown by adsorption2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 34.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Benselfelt, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    D'Agosto, Franck
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), LCPP, 69616 Villeurbanne, France .
    Lansalot, Muriel
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), LCPP, 69616 Villeurbanne, France .
    Carlmark, Anna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. RISE.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state2019Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, s. 4287-4302Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cationic latexes with Tgs ranging between −40 °C and 120 °C were synthesised using n-butyl acrylate (BA) and/or methyl methacrylate (MMA) as the core polymers. Reversible addition–fragmentation chain transfer (RAFT) combined with polymerisation-induced self-assembly (PISA) allowed for in situ chain-extension of a cationic macromolecular RAFT agent (macroRAFT) of poly(N-[3-(dimethylamino)propyl] methacrylamide) (PDMAPMA), used as stabiliser in so-called surfactant-free emulsion polymerisation. The resulting narrowly distributed nanosized latexes adsorbed readily onto silica surfaces and to model surfaces of cellulose nanofibrils, as demonstrated by quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. Adsorption to anionic surfaces increased when increasing ionic strength to 10 mM, indicating the influence of the polyelectrolyte effect exerted by the corona. The polyelectrolyte corona affected the interactions in the wet state, the stability of the latex and re-dispersibility after drying. The QCM-D measurements showed that a lower Tg of the core results in a more strongly interacting adsorbed layer at the solid–liquid interface, despite a comparable adsorbed mass, indicating structural differences of the investigated latexes in the wet state. The two latexes with Tg below room temperature (i.e. PBATg-40 and P(BA-co-MMA)Tg3) exhibited film formation in the wet state, as shown by AFM colloidal probe measurements. It was observed that P(BA-co-MMA)Tg3 latex resulted in the largest pull-off force, above 200 m Nm−1 after 120 s in contact. The strongest wet adhesion was achieved with PDMAPMA-stabilized latexes soft enough to allow for interparticle diffusion of polymer chains, and stiff enough to create a strong adhesive joint. Fundamental understanding of interfacial properties of latexes and cellulose enables controlled and predictive strategies to produce strong and tough materials with high nanocellulose content, both in the wet and dry state.

  • 35.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Brett, Calvin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Roth, Stephan V.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Film formation of soft and rigid PISA‐latexes –analysis of thin films using GISAXSManuskript (preprint) (Övrigt vetenskapligt)
  • 36.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Hatton, Fiona
    Loughborough Univ, Dept Mat, Loughborough, Leics, England..
    Benselfelt, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Freire, Carmen
    Univ Aveiro, Aveiro Inst Mat, Aveiro, Portugal..
    Vilela, Carla
    Univ Aveiro, Aveiro Inst Mat, Aveiro, Portugal..
    Boujemaoui, Assya
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Sanchez, Carmen
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Lo Re, Giada
    Chalmers Univ Technol, Gothenburg, Sweden..
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    D'Agosto, Franck
    UCBL, CPE Lyon, C2P2, CNRS,CPE, Bat 308F, Villeurbanne, France..
    Lansalot, Muriel
    UCBL, CPE Lyon, C2P2, CNRS,CPE, Bat 308F, Villeurbanne, France..
    Carlmark, Anna
    RISE, Stockholm, Sweden..
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Tailored PISA-latexes for modification of nanocellulosics: Investigating compatibilizing and plasticizing effects2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 37.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hatton, Fiona
    Univ Sheffield, Dept Chem, Sheffield, S Yorkshire, England..
    Boujemaoui, Assya
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Sanchez, Carmen Cobo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    D'Agosto, Franck
    C2P2 CNRS CPE UCBL, CPE Lyon, Bat 308F, Villeurbanne, France..
    Lansalot, Muriel
    C2P2 CNRS CPE UCBL, CPE Lyon, Bat 308F, Villeurbanne, France..
    Fogelstrom, Linda
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Carlmark, Anna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. RISE Res Inst Sweden Div Bioecon, Nanocellulose, Stockholm, Sweden..
    Tailored nano-latexes for modification of nanocelluloses: Compatibilizing and plasticizing effects2018Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Artikel i tidskrift (Övrigt vetenskapligt)
  • 38.
    Engström, Joakim
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hatton, Fiona
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    D'Agosto, F.
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France .
    Lansalot, M.
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France .
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification-a comparative study2017Ingår i: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 8, nr 6, s. 1061-1073Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Latex nanoparticles comprising cationically charged coronas and hydrophobic cores with different glass transition temperatures (Tg) have been prepared by surfactant-free, RAFT-mediated emulsion polymerization, where the particles form through a polymerization-induced self-assembly (PISA) type mechanism. Poly(2-dimethylaminoethyl methacrylate-co-methacrylic acid) (P(DMAEMA-co-MAA)) was utilized as a hydrophilic macroRAFT agent for the polymerization of methyl methacrylate (MMA) or n-butyl methacrylate (nBMA), respectively, resulting in two different latexes, with either a core of high (PMMA) or low (PnBMA) Tg polymer. By varying the molar mass of the hydrophobic block, latexes of different sizes were obtained (DHca. 40-120 nm). The adsorption of the latexes to cellulose model surfaces and cellulose nanofibrils (CNF) was studied using quartz crystal microbalance with dissipation monitoring (QCM-D). The surfaces with adsorbed PnBMA latexes yielded hydrophobic surfaces both before and after annealing, whereas surfaces with adsorbed PMMA latex became hydrophobic only after annealing, clearly showing the influence of the Tg of the core. The latexes were also used to modify macroscopic cellulose in the form of filter papers. Similar to the CNF surfaces, no annealing was required to achieve hydrophobic surfaces with PnBMA latexes. Finally, nanocomposites of CNF and the polymer nanoparticles were prepared through a one-pot mixing procedure. It was found that the largest synthesized PMMA latex (120 nm) facilitated a more strainable CNF network at 50% relative humidity, with a nearly 200% increase in strain at break compared to the neat CNF reference film as well as to the composite films with PnBMA latexes or to the smaller sized PMMA latexes. This difference was attributed to the spherical shape and rigidity of the large PMMA latex nanoparticles during composite formation. This highly interesting result should indeed be considered in the future design of novel biocomposites.

  • 39.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Jimenez, Andrew
    Columbia University.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Kumar, Sanat
    Columbia University.
    Nanoparticle Rearrangement Under Stress inCellulose Nanofibrils Networks using in situ SAXSMeasurements During Tensile TestingManuskript (preprint) (Övrigt vetenskapligt)
  • 40.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Stamm, Arne
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Tengdelius, Mattias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Syrén, Per-Olof
    KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Fogelström, Linda
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Cationic latexes of bio‐based hydrophobicmonomer Sobrerol methacrylate (SobMA)Manuskript (preprint) (Övrigt vetenskapligt)
  • 41.
    Erlandsson, Johan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Francon, Hugo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Marais, Andrew
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Granberg, Hjalmar
    RISE Bioecon, Papermaking & Packaging, Box 5604, SE-11486 Stockholm, Sweden..
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils2019Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, nr 2, s. 728-737Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Chemically cross-linked highly porous nano cellulose aerogels with complex shapes have been prepared using a freeze-linking procedure that avoids common post activation of cross-linking reactions and freeze-drying. The aerogel shapes ranged from simple geometrical three-dimensional bodies to swirls and solenoids. This was achieved by molding or extruding a periodate oxidized cellulose nanofibril (CNF) dispersion prior to chemical cross-linking in a regular freezer or by reshaping an already prepared aerogel by plasticizing the structure in water followed by reshaping and locking the aerogel into its new shape. The new shapes were most likely retained by new cross-links formed between CNFs brought into contact by the deformation during reshaping. This self-healing ability to form new bonds after plasticization and redrying also contributed to the mechanical resilience of the aerogels, allowing them to be cyclically deformed in the dry state, reswollen with water, and redried with good retention of mechanical integrity. Furthermore, by exploiting the shapeability and available inner structure of the aerogels, a solenoid-shaped aerogel with all surfaces coated with a thin film of conducting polypyrrole was able to produce a magnetic field inside the solenoid, demonstrating electromagnetic properties. Furthermore, by biomimicking the porous interior and stiff exterior of the beak of a toucan bird, a functionalized aerogel was created by applying a 300 mu m thick stiff wax coating on its molded external surfaces. This composite material displayed a 10-times higher elastic modulus compared to that of the plain aerogel without drastically increasing the density. These examples show that it is possible to combine advanced shaping with functionalization of both the inner structure and the surface of the aerogels, radically extending the possible use of CNF aerogels.

  • 42.
    Erlandsson, Johan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Pettersson, Torbjörn
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Ingverud, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Granberg, H.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Malkoch, Michael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels2018Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, nr 40, s. 19371-19380Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The underlying mechanism related to freezing-induced crosslinking of aldehyde-containing cellulose nanofibrils (CNFs) has been investigated, and the critical parameters behind this process have been identified. The aldehydes introduced by periodate oxidation allows for formation of hemiacetal bonds between the CNFs provided the fibrils are in sufficiently close contact before the water is removed. This is achieved during the freezing process where the cellulose components are initially separated, and the growth of ice crystals forces the CNFs to come into contact in the thin lamellae between the ice crystals. The crosslinked 3-D structure of the CNFs can subsequently be dried under ambient conditions after solvent exchange and still maintain a remarkably low density of 35 kg m-3, i.e. a porosity greater than 98%. A lower critical amount of aldehydes, 0.6 mmol g-1, was found necessary in order to generate a crosslinked 3-D CNF structure of sufficient strength not to collapse during the ambient drying. The chemical stability of the 3-D structure can be further enhanced by converting the hemiacetals to acetals by treatment with an alcohol under acidic conditions.

  • 43.
    Fang, Mei
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap.
    Li, Hao
    Cent S Univ, Sch Phys & Elect, Hunan Key Lab Super Microstruct & Ultrafast Proc, Changsha 410083, Hunan, Peoples R China..
    Riazanova, Anastasiia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Rao, K Venkat
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap.
    Belova, Lyubov
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap.
    Tuning room temperature ferromagnetism of 'in-situ' inkjet printed Fe-doped ZnO films2019Ingår i: Semiconductor Science and Technology, ISSN 0268-1242, E-ISSN 1361-6641, Vol. 34, nr 5, artikel-id 055006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    ZnO is a wide-band gap semiconductor widely used in optical and electric devices, associating with ferromagnetism at low dimension endowing its possibility for functional applications with magneto-optical and magneto-electric properties. We prepared ZnO and Fe-doped ZnO thin films 'in-situ' on substrate by inkjet printing, and tuned the room temperature ferromagnetism (RTFM) of the film by Fe-doping concentration, film thickness and post annealing temperature. It was found that by Fe doping the saturation magnetization (M-s) of the film can be enhanced by more than 4 folds comparing with the un-doped film, i.e. from 0.9 emu g(-1) for the ZnO film to 3.8 emu g(-1) for the Fe-doped ZnO film with comparable thickness. The enhancement was attributed to the introduction of un-paired 3d electrons which formed long range ferromagnetic ordering, as well as the consequent structure changes with smaller grains which increased the interface induced magnetism. By changing the annealing temperature and the film thickness, the defect-induced ferromagnetism was investigated. The RTFM shows thickness dependence with peak saturation magnetization value of 4.44 emu g(-1) for the 45 nm thick film. The work provides an effective way of tuning magnetism in ZnO based films for functional device applications.

  • 44.
    Farahani, Saina Kishani
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Escalante, Alfredo
    Toriz, Guillermo
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Gatenholm, Paul
    Hansson, Per
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Experimental and Theoretical Evaluation of the Solubility/Insolubility Spruce Xylan (Arabino Glucuronoxylan)2019Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, nr 3, s. 1263-1270Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The molecular solubility of softwood arabinoglucuronoxylan (AGX) has been thoroughly investigated, and it has been shown that the chemical and physical structures of the extracted hemicellulose are not significantly influenced by different purification steps, but a transient molecular solubility of AGX was observed in aqueous media at low concentrations (1 g/L) when the dissolved macromolecules had a hydrodynamic diameter of up to 10 nm. A phase separation was detected when the concentration was increased to 15 g/L leading to an association of the smaller molecules into fractal structures with a considerably larger diameter, even though the dispersions were still transparent to ocular inspection. Dynamic Light Scattering and Cryo-Transmission Electron Microscopy showed dimensions in the range of 1000 nm. The phase separation of the sample was further characterized by estimating the χ-interaction parameter of AGX in water using the Flory-Huggins theory, and the results supported that water is a poor solvent for AGX. This behavior is crucial when films and hydrogels based on these biopolymers are made, since the association will dramatically affect barrier and mechanical properties of films made from these materials.

  • 45.
    Farahani, Saina Kishani
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hansson, Per
    Uppsala Univ, Uppsala, Sweden..
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Influence of solubility on the adsorption of different Xyloglucan fractions to cellulose model surfaces2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 46.
    Fogelström, Linda
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Norström, Emelie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Khabbaz, Farideh
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Brucher, Jorg
    Holmen, Holmen Dev, Örnskoldsvik, Sweden..
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Stockholm, Sweden.;KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Stockholm, Sweden..
    A fully green wood adhesive based on hemicelluloses derived from pulp processes2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 47.
    Francon, Hugo
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Benselfelt, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Granberg, Hjalmar
    RISE Bioecon, Stockholm, Sweden..
    Larsson, Per A.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Wågberg, Lars
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Fibre & Polymer Technol, Stockholm, Sweden..
    3D printable nanocellulose aerogels via a green crosslinking approach and a facile evaporation procedure2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 48.
    Fu, Qiliang
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Hierarchically structured nanoporous template based on balsa wood2016Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Artikel i tidskrift (Övrigt vetenskapligt)
  • 49.
    Fu, Qiliang
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Honeycomb like templates prepared from balsa wood2015Ingår i: ICCM International Conferences on Composite Materials, International Committee on Composite Materials , 2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    In the current study, we have used sodium chlorite and sodium hydroxide as extraction solutions, to remove lignin and hemicelluloses from the Balsa (Ochroma Lagopus) wood tissues, without damaging the wood honeycomb architecture. Surface morphologies are studied using scanning electron microscopy (SEM). In addition, sugars analysis of the chemically extracted wood is reported. 

  • 50.
    Fu, Qiliang
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Yan, Min
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Jungstedt, Erik
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Yang, Xuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Li, Yuanyuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Transparent plywood as a load-bearing and luminescent biocomposite2018Ingår i: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 164, s. 296-303Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Transparent wood (TW) structures in research studies were either thin and highly anisotropic or thick and isotropic but weak. Here, transparent plywood (TPW) laminates are investigated as load-bearing biocomposites with tunable mechanical and optical performances. Structure-property relationships are analyzed. The plies of TPW were laminated with controlled fiber directions and predetermined stacking sequence in order to control the directional dependence of modulus and strength, which would give improved properties in the weakest direction. Also, the angular dependent light scattering intensities were investigated and showed more uniform distribution. Luminescent TPW was prepared by incorporation of quantum dots (QDs) for potential lighting applications. TPW can be designed for large-scale use where multiaxial load-bearing performance is combined with new optical functionalities.

1234 1 - 50 av 185
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf