Change search
Refine search result
12 1 - 50 of 62
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andrén, Oliver C. J.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Ingverud, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Hult, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Håkansson, Joakim
    Bogestål, Yalda
    Caous, Josefin S.
    Blom, Kristina
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Andersson, Therese
    Pedersen, Emma
    Björn, Camilla
    Löwenhielm, Peter
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Antibiotic-Free Cationic Dendritic Hydrogels as Surgical-Site-Infection-Inhibiting Coatings2019In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 8, no 5Article in journal (Refereed)
    Abstract [en]

    Abstract A non-toxic hydrolytically fast-degradable antibacterial hydrogel is herein presented to preemptively treat surgical site infections during the first crucial 24 h period without relying on conventional antibiotics. The approach capitalizes on a two-component system that form antibacterial hydrogels within 1 min and consist of i) an amine functional linear-dendritic hybrid based on linear poly(ethylene glycol) and dendritic 2,2-bis(hydroxymethyl)propionic acid, and ii) a di-N-hydroxysuccinimide functional poly(ethylene glycol) cross-linker. Broad spectrum antibacterial effect is achieved by multivalent representation of catatonically charged ?-alanine on the dendritic periphery of the linear dendritic component. The hydrogels can be applied readily in an in vivo setting using a two-component syringe delivery system and the mechanical properties can accurately be tuned in the range equivalent to fat tissue and cartilage (G? = 0.5?8 kPa). The antibacterial effect is demonstrated both in vitro toward a range of relevant bacterial strains and in an in vivo mouse model of surgical site infection.

  • 2.
    Arseneault, Mathieu
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Granskog, Viktor
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Khosravi, Sara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Heckler, Ilona
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Mesa-Antunez, Pablo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Hult, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Highly crosslinked triazine-trione materials for fracture fixation based on TEC and TYC chemistryManuscript (preprint) (Other academic)
  • 3.
    Benselfelt, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Nordenström, Malin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Lindstrom, Stefan B.
    Linkoping Univ, Div Solid Mech, Dept Management & Engn, S-58183 Linkoping, Sweden..
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH Royal Inst Technol, Div Fibre Technol, Dept Fiber & Polymer Technol, Tekn Ringen 56-58, S-10044 Stockholm, Sweden.;KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Dept Fiber & Polymer Technol, Tekn Ringen 56-58, S-10044 Stockholm, Sweden..
    Explaining the Exceptional Wet Integrity of Transparent Cellulose Nanofibril Films in the Presence of Multivalent Ions-Suitable Substrates for Biointerfaces2019In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, no 13, article id 1900333Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibrils (CNFs) assemble into water-resilient materials in the presence of multivalent counter-ions. The essential mechanisms behind these assemblies are ion-ion correlation and specific ion effects. A network model shows that the interfibril attraction indirectly influences the wet modulus by a fourth power relationship to the solidity of the network (E-w proportional to phi(4)). Ions that induce both ion-ion correlation and specific ion effects significantly reduce the swelling of the films, and due to the nonlinear relationship dramatically increase the wet modulus. Herein, this network model is used to explain the elastoplastic behavior of wet films of 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized, carboxymethylated, and phosphorylated CNFs in the presence of different counter-ions. The main findings are that the aspect ratio of the CNFs influences the ductility of the assemblies, that the bivalency of phosphorylate ligands probably limits the formation of interfibril complexes with divalent ions, and that a higher charge density increases the friction between fibrils by increasing the short-range attraction from ion-ion correlation and specific ion effects. These findings can be used to rationally design CNF materials for a variety of applications where wet strength, ductility, and transparency are important, such as biomaterials or substrates for bioelectronics.

  • 4. Boström, M.
    et al.
    Corkery, Robert
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Lima, E. R. A.
    Malyi, O. I.
    Buhmann, S. Y.
    Persson, C.
    Brevik, I.
    Parsons, D. F.
    Fiedler, J.
    Dispersion Forces Stabilize Ice Coatings at Certain Gas Hydrate Interfaces That Prevent Water Wetting2019In: ACS Earth and Space Chemistry, ISSN 2472-3452, Vol. 3, no 6, p. 1014-1022Article in journal (Refereed)
    Abstract [en]

    Gas hydrates formed in oceans and permafrost occur in vast quantities on Earth representing both a massive potential fuel source and a large threat in climate forecasts. They have been predicted to be important on other bodies in our solar systems such as Enceladus, a moon of Saturn. CO 2 -hydrates likely drive the massive gas-rich water plumes seen and sampled by the spacecraft Cassini, and the source of these hydrates is thought to be due to buoyant gas hydrate particles. Dispersion forces can in some cases cause gas hydrates at thermal equilibrium to be coated in a 3-4 nm thick film of ice, or to contact water directly, depending on which gas they contain. As an example, the results are valid at a quadruple point of the water-CO 2 gas hydrate system, where a film is formed not only for the model with pure ice but also in the presence of impurities in water or in the ice layer. These films are shown to significantly alter the properties of the gas hydrate clusters, for example, whether they float or sink. It is also expected to influence gas hydrate growth and gas leakage.

  • 5.
    Brännström, Sara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Exploring bio-based monomers for UV-curable polymer networks2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Increased environmental awareness and concern has led to a high demand for sustainable, bio-based materials. Consequently, there is a need for research and development of new bio-based polymeric materials that can be synthesized via routes eliminating excessively toxic reactants and by-products. The work presented in this thesis has focused on the utilization of catalysis, mainly enzymatic, and photopolymerization in order to create efficient synthesis of polymeric networks from bio-based monomers.Polyesters from bio-based monomers have been polymerized in bulk and thereafter crosslinked by UV initiation to yield polymer networks with tunable properties. The synthesis was also studied more in detail by varying the different types of catalysts and comparing their effect on the polymer products. Polyesters are a promising class of polymers that can be made from bio-based resources due to the wide range of available bio-based carboxylic acids and alcohols that can be combined to yield many polymers with different properties. However, the synthesis of polyesters is rather time-consuming in order to reach high conversions.As a more efficient alternative, short chain esters monomers and oligomers that have vinyl ether (VE) functionalities were developed. These VE-esters can be synthesized partly from bio-based resources, such as acids, fatty acids and diols, and their synthesis is efficient with enzymatic catalysis. The VE functionality provides a reactive group which can be polymerized rapidly with cationic polymerization. In general, the vinyl ether-esters can be synthesized in less than one hour and crosslinked within a few minutes, which is significantly faster than traditional polyester-synthesis and crosslinking. The enzymatic synthesis of vinyl ether esters also provided a method for developing monomers with orthogonal functionality which was explored by developing functionalizable materials with a variety of macromolecular architectures.

  • 6.
    Brännström, Sara
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Enzymatically Synthesized Vinyl Ether-Disulfide Monomer Enablingan Orthogonal Combination of Free Radical and Cationic Chemistry toward Sustainable Functional Networks2019In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 3, p. 1308-1316, article id 10.1021/acs.biomac.8b01710Article in journal (Refereed)
    Abstract [en]

    This work demonstrates a versatile and environmentally friendly route for the development of new orthogonal monomers that can be used for postfunctionalizable polymer networks. A monomer containing both vinyl ether (VE) and cyclic disulfide moieties was synthesized via enzyme catalysis under benign reaction conditions. The bifunctional monomer could be polymerized to form macromolecues with differing architectures by the use of either cationic or radical photo polymerization. When cationic polymerization was performed, a linear polymer was obtained with pendant disulfide units in the side chain, whereas in the presence of radical initiator, the VE reacted with the disulfide to yield a branched structure. The monomer was thereafter used to design networks that could be postfunctionalized; the monomer was cross-linked with cationic initiation together with a difunctional VE oligomer and after cross-linking the unreacted disulfides were coupled to RhodamineVE by radical UV-initiation.

  • 7. Cho, I.
    et al.
    Prier, C. K.
    Jia, Z. -J
    Zhang, R. K.
    Görbe, Tamás
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Arnold, F. H.
    Enantioselective Aminohydroxylation of Styrenyl Olefins Catalyzed by an Engineered Hemoprotein2019In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 58, no 10, p. 3138-3142Article in journal (Refereed)
    Abstract [en]

    Chiral 1,2-amino alcohols are widely represented in biologically active compounds from neurotransmitters to antivirals. While many synthetic methods have been developed for accessing amino alcohols, the direct aminohydroxylation of alkenes to unprotected, enantioenriched amino alcohols remains a challenge. Using directed evolution, we have engineered a hemoprotein biocatalyst based on a thermostable cytochrome c that directly transforms alkenes to amino alcohols with high enantioselectivity (up to 2500 TTN and 90 % ee) under anaerobic conditions with O-pivaloylhydroxylamine as an aminating reagent. The reaction is proposed to proceed via a reactive iron-nitrogen species generated in the enzyme active site, enabling tuning of the catalyst's activity and selectivity by protein engineering.

  • 8.
    Cobo Sanchez, Carmen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Inorganic and organic polymer-grafted nanoparticles: their nanocomposites and characterization2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Nanocomposites (NCs) have been widely studied in the past decades due to the promising properties that nanoparticles (NPs) offer to a polymer matrix, such as increased thermal stability and non-linear electrical resistivity. It has also been shown that the interphase between the two components is the key to achieving the desired improvements. In addition, polymer matrices are often hydrophobic while NPs are generally hydrophilic, leading to NP aggregation. To overcome these challenges, NPs can be surface-modified by adding specific molecules and polymers. In the present work, a range of organic and inorganic NPs have been surface-modified with polymers synthesized by atom transfer radical polymerization (ATRP) or surface-initiated ATRP (SI-ATRP).Cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) are highly crystalline NPs that can potentially increase the Young’s modulus of the NC. In this study, a matrix-free NC was prepared by physisorption of a block-copolymer containing a positively charged (quaternized poly(2-(dimethylamino)ethyl methacrylate), qPDMAEMA) and a thermo-responsive (poly di(ethylene glycol) methyl ether methacrylate, PDEGMA). The modified CNF exhibited a thermo-responsive, reversible behavior. CNCs were polymer-modified either via SI-ATRP or physisorbed with poly (butyl methacrylate) (PBMA) to improve the dispersion and interphase between them and a polycaprolactone (PCL) matrix during extrusion. The mechanical properties of the NCs containing CNC modified via SI-ATRP were superior to the reference and unmodified materials, even at a high relative humidity.Reduced graphene oxide (rGO) and aluminum oxide (Al2O3) are interesting for electrical and electronic applications. However, the matrices used for these applications, such as poly(ethylene-co-butyl acrylate) (EBA) and low density polyethylene (LDPE) are mainly hydrophobic, while the NPs are hydrophilic. rGO was modified via SI-ATRP using different chain lengths of PBMA and subsequently mixed with an EBA matrix. Al2O3 was modified with two lengths of poly(lauryl methacrylate) (PLMA), and added to LDPE prior to extrusion. Agglomeration and dispersion of the NCs were dependent on the lengths and miscibilities of the grafted polymers and the matrices. rGO-EBA NCs showed non-linear direct current (DC) resistivity upon modification, as the NP dispersion improved with increasing PBMA length. Al2O3-LDPE systems improved the mechanical properties of the NCs when low amounts of NPs (0.5 to 1 wt%) were added, while decreasing power dissipation on the material.Finally, PLMA-grafted NPs with high polymer quantities and two grafting densities in Al2O3 and silicon oxide (SiO2) nanoparticles were synthesized by de-attaching some of the silane groups from the surfaces, either by hydrolysis or by a mild tetrabutylammonium fluoride (TBAF) cleavage. These compounds were characterized and compared to the bulk PLMA, and were found to have very interesting thermal properties.

    The full text will be freely available from 2020-04-24 14:42
  • 9.
    Engström, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Tailored adhesion of PISA-latexes for cellulose modification and new materials2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is focused on applying modification chemistry to already known cellulosic substrates from wood (i.e. cellulose nanofibrils, CNFs, and cellulose nanocrystals, CNCs). The modification is needed to overcome the drawbacks with the nanocellulosics alone, such as sensitivity to water (hydrophilicity) and the brittle material properties (however great stiffness). The first aim is to incorporate nanocellulosics into hydrophobic degradable materials of poly(ε-caprolactone) (PCL), resulting in aggregation if not modified. The challenge is to reach high fraction of nanocellulosics, whilst maintaining the flexibility of PCL and improving the properties of the resulting nanocomposite with the corresponding stiffness of the nanocellulosics. The second aim is to increase toughness and strain-at-break for nanocomposite materials of CNF-networks, to increase the plastic deformation equivalent of fossil-based polymeric materials such as polypropylene (PP). Aiming to achieve these goals, the thesis also includes new synthetic strategies of tailored-made set of block copolymers as modifying components. The modifying components, were synthesised by surfactant-free emulsion polymerisation and polymerisation induced self-assembly (PISA), so called PISA-latexes.

    Two types of cationic polyelectrolytes, (poly(2-dimethylaminoethy methacrylate) (PDMAEMA) and poly(N-[3-(dimethylamino)propyl] methacrylamide (PDMAPMA)), being the corona of the latex, were synthesised. Followed by chain-extension with different hydrophobic monomers such as methyl methacrylate and butyl methacrylate, making up the core polymer of the resulting PISA-latex. The cationic PISA-latexes show narrow size distributions and the glass transition (Tg) of the core polymer can be varied between -40 °C to 150 °C. The PISA-latexes show strong adhesion to silica and cellulose surfaces as assessed by quartz crystal microbalance (QCM-D). Results also indicate that latexes with Tg below room temperature, considered soft, behave different in the wet state than latexes with Tg above room temperature, considered rigid. The softer latexes form clusters (visualised by imaging with microscopy and atomic force measurements (AFM)) and undergo film formation in the wet state. The latter, shown by colloidal probe measurements using AFM resulting in very large work of adhesion and pull-off forces.

    The PISA-latexes compatibilize CNCs and different CNFs with PCL as a matrix polymer, observed by a small increase in stiffness for the final nanocomposites, however not at a level expected by rule-of-mixtures. The promising wet feeding technique results in large increase in stiffness but maintain PCL’s flexibility, above 200% strain-at-break, which is rarely observed for CNF-reinforced nanocomposites. The, in this case, rigid latex facilitate the dispersion of CNFs in the matrix without aggregation, until finally coalescing after processing and possibly giving rise to improved adhesion between CNF and the latex in the matrix, indicated by rheology measurements. Lastly, new nanocomposite films consisting of 75wt% CNF and 25wt% of PISA-latexes were produced and evaluated. The results show that CNF and rigid 100 nm sized PISA-latex, with PMMA core, gives a very tough double network, with strain-at-break above 28%, stiffness of 3.5 GPa and a strength of 110 MPa. These are impressive properties compared to commonly used fossil-based plastic materials.

    The full text will be freely available from 2020-02-01 15:00
  • 10.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Asem, Heba
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Brismar, Hjalmar
    KTH, Superseded Departments (pre-2005), Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malkoch, Michael
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology. KTH, Superseded Departments (pre-2005), Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malmström, Eva
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology.
    In situ encapsulation of Nile red or Doxorubicinduring RAFT‐mediated emulsion polymerizationvia PISAManuscript (preprint) (Other academic)
  • 11.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    D'Agosto, Franck
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), LCPP, 69616 Villeurbanne, France .
    Lansalot, Muriel
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), LCPP, 69616 Villeurbanne, France .
    Carlmark, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. RISE.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state2019In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, p. 4287-4302Article in journal (Refereed)
    Abstract [en]

    Cationic latexes with Tgs ranging between −40 °C and 120 °C were synthesised using n-butyl acrylate (BA) and/or methyl methacrylate (MMA) as the core polymers. Reversible addition–fragmentation chain transfer (RAFT) combined with polymerisation-induced self-assembly (PISA) allowed for in situ chain-extension of a cationic macromolecular RAFT agent (macroRAFT) of poly(N-[3-(dimethylamino)propyl] methacrylamide) (PDMAPMA), used as stabiliser in so-called surfactant-free emulsion polymerisation. The resulting narrowly distributed nanosized latexes adsorbed readily onto silica surfaces and to model surfaces of cellulose nanofibrils, as demonstrated by quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. Adsorption to anionic surfaces increased when increasing ionic strength to 10 mM, indicating the influence of the polyelectrolyte effect exerted by the corona. The polyelectrolyte corona affected the interactions in the wet state, the stability of the latex and re-dispersibility after drying. The QCM-D measurements showed that a lower Tg of the core results in a more strongly interacting adsorbed layer at the solid–liquid interface, despite a comparable adsorbed mass, indicating structural differences of the investigated latexes in the wet state. The two latexes with Tg below room temperature (i.e. PBATg-40 and P(BA-co-MMA)Tg3) exhibited film formation in the wet state, as shown by AFM colloidal probe measurements. It was observed that P(BA-co-MMA)Tg3 latex resulted in the largest pull-off force, above 200 m Nm−1 after 120 s in contact. The strongest wet adhesion was achieved with PDMAPMA-stabilized latexes soft enough to allow for interparticle diffusion of polymer chains, and stiff enough to create a strong adhesive joint. Fundamental understanding of interfacial properties of latexes and cellulose enables controlled and predictive strategies to produce strong and tough materials with high nanocellulose content, both in the wet and dry state.

  • 12.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hatton, Fiona
    Loughborough Univ, Dept Mat, Loughborough, Leics, England..
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Freire, Carmen
    Univ Aveiro, Aveiro Inst Mat, Aveiro, Portugal..
    Vilela, Carla
    Univ Aveiro, Aveiro Inst Mat, Aveiro, Portugal..
    Boujemaoui, Assya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Sanchez, Carmen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Lo Re, Giada
    Chalmers Univ Technol, Gothenburg, Sweden..
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    D'Agosto, Franck
    UCBL, CPE Lyon, C2P2, CNRS,CPE, Bat 308F, Villeurbanne, France..
    Lansalot, Muriel
    UCBL, CPE Lyon, C2P2, CNRS,CPE, Bat 308F, Villeurbanne, France..
    Carlmark, Anna
    RISE, Stockholm, Sweden..
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Tailored PISA-latexes for modification of nanocellulosics: Investigating compatibilizing and plasticizing effects2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 13.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Stamm, Arne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Tengdelius, Mattias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Syrén, Per-Olof
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Fogelström, Linda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Cationic latexes of bio‐based hydrophobicmonomer Sobrerol methacrylate (SobMA)Manuscript (preprint) (Other academic)
  • 14.
    Erlandsson, Johan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ingverud, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Granberg, H.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels2018In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 40, p. 19371-19380Article in journal (Refereed)
    Abstract [en]

    The underlying mechanism related to freezing-induced crosslinking of aldehyde-containing cellulose nanofibrils (CNFs) has been investigated, and the critical parameters behind this process have been identified. The aldehydes introduced by periodate oxidation allows for formation of hemiacetal bonds between the CNFs provided the fibrils are in sufficiently close contact before the water is removed. This is achieved during the freezing process where the cellulose components are initially separated, and the growth of ice crystals forces the CNFs to come into contact in the thin lamellae between the ice crystals. The crosslinked 3-D structure of the CNFs can subsequently be dried under ambient conditions after solvent exchange and still maintain a remarkably low density of 35 kg m-3, i.e. a porosity greater than 98%. A lower critical amount of aldehydes, 0.6 mmol g-1, was found necessary in order to generate a crosslinked 3-D CNF structure of sufficient strength not to collapse during the ambient drying. The chemical stability of the 3-D structure can be further enhanced by converting the hemiacetals to acetals by treatment with an alcohol under acidic conditions.

  • 15.
    Farhat, Wissam
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stamm, Arne
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Robert-Monpate, Maxime
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Ecole Super Chim Organ & Minerale, 1 Allee Reseau Jean Marie Buckmaster, F-60200 Compiegne, France.
    Biundo, Antonino
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Syrén, Per-Olof
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Biocatalysis for terpene-based polymers2019In: Zeitschrift für Naturforschung C - A Journal of Biosciences, ISSN 0939-5075, E-ISSN 1865-7125, Vol. 74, no 3-4, p. 90-99Article in journal (Refereed)
    Abstract [en]

    Accelerated generation of bio-based materials is vital to replace current synthetic polymers obtained from petroleum with more sustainable options. However, many building blocks available from renewable resources mainly contain unreactive carbon-carbon bonds, which obstructs their efficient polymerization. Herein, we highlight the potential of applying biocatalysis to afford tailored functionalization of the inert carbocyclic core of multicyclic terpenes toward advanced materials. As a showcase, we unlock the inherent monomer reactivity of norcamphor, a bicyclic ketone used as a monoterpene model system in this study, to afford polyesters with unprecedented backbones. The efficiencies of the chemical and enzymatic Baeyer-Villiger transformation in generating key lactone intermediates are compared. The concepts discussed herein are widely applicable for the valorization of terpenes and other cyclic building blocks using chemoenzymatic strategies.

  • 16.
    Fogelström, Linda
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Norström, Emelie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Khabbaz, Farideh
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Brucher, Jorg
    Holmen, Holmen Dev, Örnskoldsvik, Sweden..
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Stockholm, Sweden.;KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Stockholm, Sweden..
    A fully green wood adhesive based on hemicelluloses derived from pulp processes2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 17.
    Fogelström, Linda
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Stamm, Arne
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Tengdelius, Mattias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Syrén, Per-Olof
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Malmström, Eva
    KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Stockholm, Sweden..
    New chemo-enzymatic pathways for sustainable terpene-based polymeric materials2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 18.
    Francon, Hugo
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Granberg, Hjalmar
    RISE Bioecon, Stockholm, Sweden..
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, Fibre & Polymer Technol, Stockholm, Sweden..
    3D printable nanocellulose aerogels via a green crosslinking approach and a facile evaporation procedure2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 19.
    Granskog, Viktor
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Thiol-Ene/Yne Adhesives for Tissue Fixation2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The utilization of adhesives in surgery has not reached its full potential and research in the field is encouraged by the surgeons’ desire for improved alternatives to today’s tissue fixation strategies. Here, adhesive resins based on thiol-ene coupling (TEC) chemistry or thiol-yne coupling (TYC) chemistry are exploited to develop tissue adhesives that cure fast and on-demand via photoinitiation. In order to make safer adhesives, macromolecular components and systems with high conversion of functional groups were developed to minimize leakage of unreacted monomers.To develop macromolecular resin components, allyl-functional dendritic-linear-dendritic (DLD) co-polymers were synthesized with a poly(ethylene glycol) (PEG) core chain and hyperbranched structures of 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) to capitalize on the rheological properties of dendritic structures. The dendritic structures interfered with the crystallization of the PEG segment and the DLD’s liquid appearance enabled their use as macromolecular components without solvent. The DLDs were cured with a thiol crosslinker and the strategy disclosed degradable soft tissue adhesives with good adhesion to wet porcine skin.Mussel inspired dopamine derivatives was evaluated as adhesion-enhancing primers for bone adhesives. The addition of NaOH to the primer solutions increased the shear bond strengths of the adhesive to bone. The highest bond strengths with the tested dopamine derivatives were obtained when a combination of thiol and ene-functional derivatives were used.With inspiration from dental resin adhesives, a fully TEC based adhesive system was developed with excellent shear bond strength to wet bone substrates. The adhesive system enabled superior fixation of phalangeal fracture models compared to the daily used Kirschner wires and could even compete with a screw fixated metal plate. The adhesive materials proved biocompatible in initial in vitro and in vivo studies.Strong and rigid materials for fracture fixation were developed via a strategy of using highly crosslinked triazine-trione monomers and TEC or TYC chemistry. The development resulted in TYC resin based materials with mechanical properties that very well can compete with poly(ether ether ketone) (PEEK) that is used in biomedical load bearing applications due to its high strength, toughness and inertness.

  • 20.
    Granskog, Viktor
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    García-Gallego, Sandra
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    von Kieseritzky, Johanna
    Department of Clinical Science and Education and the Department of Hand Surgery, Karolinska Institutet.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Bioscience and Materials–Medical Device Technology.
    Stenlund, Patrik
    RISE Research Institutes of Sweden, Bioscience and Materials–Medical Device Technology.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Petronis, Sarunas
    RISE Research Institutes of Sweden, Bioscience and Materials–Medical Device Technology.
    Lyvén, Benny
    RISE Research Institutes of Sweden, Bioscience and Materials–Medical Device Technology.
    Arner, Marianne
    Department of Clinical Science and Education and the Department of Hand Surgery, Karolinska Institutet.
    Håkansson, Joakim
    RISE Research Institutes of Sweden, Bioscience and Materials–Medical Device Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    High-Performance Thiol–Ene Composites Unveil a New Era of Adhesives Suited for Bone Repair2018In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, no 26, article id 1800372Article in journal (Refereed)
    Abstract [en]

    The use of adhesives for fracture fixation can revolutionize the surgical procedures toward more personalized bone repairs. However, there are still no commercially available adhesive solutions mainly due to the lack of biocompatibility, poor adhesive strength, or inadequate fixation protocols. Here, a surgically realizable adhesive system capitalizing on visible light thiol–ene coupling chemistry is presented. The adhesives are carefully designed and formulated from a novel class of chemical constituents influenced by dental resin composites and self-etch primers. Validation of the adhesive strengthis conducted on wet bone substrates and accomplished via fiber-reinforced adhesive patch (FRAP) methodology. The results unravel, for the first time, on the promise of a thiol–ene adhesive with an unprecedented shear bondstrength of 9.0 MPa and that surpasses, by 55%, the commercially available acrylate dental adhesive system Clearfil SE Bond of 5.8 MPa. Preclinical validation of FRAPs on rat femur fracture models details good adhesion to the bone throughout the healing process, and are found biocompatible not giving rise to any inflammatory response. Remarkably, the FRAPs are found to withstand loads up to 70 N for 1000 cycles on porcine metacarpal fractures outperforming clinically used K-wires and match metal plates and screw implants.

  • 21.
    He, Yunjuan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Boluk, Yaman
    Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB, Canada..
    Pan, Jinshan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Ahniyaz, Anwar
    RISE Res Inst Sweden, Div Biosci & Mat, Stockholm, Sweden..
    Deltin, Tomas
    PTE Coatings AB, Gamleby, Sweden..
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Comparative study of CNC and CNF as additives in waterborne acrylate-based anti-corrosion coatings2019In: Journal of Dispersion Science and Technology, ISSN 0193-2691, E-ISSN 1532-2351Article in journal (Refereed)
    Abstract [en]

    Nanocomposite coatings are of great interest as barrier coatings since synergy effects between matrix and additive properties can be achieved. This, however, requires favorable additive-matrix interactions to provide a strong interphase (interface region). In this work we elucidate the properties of two environmentally benign nanocomposite coatings based on a waterborne acrylate formulation with additives from renewable sources, i.e. either cellulose nanocrystals, CNC; or, alternatively, cellulose nanofibrils, CNF. We focus on the corrosion protective properties of these coatings and discuss the reason why the nanocomposite with CNC displays favorable corrosion protection properties whereas that with CNF does not. To this end we utilized scanning electron microscopy, water contact angle measurement, Fourier transform infrared spectroscopy and electrochemical impedance spectroscopy techniques to investigate the microstructure, surface wetting, interactions between cellulosic materials and matrix as well as corrosion protective properties of both composite coatings.

  • 22.
    Hendrikse, Natalie
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Swedish Orphan Biovitrum AB, Stockholm, Sweden.
    Charpentier, Gwenaelle
    KTH, Centres, Science for Life Laboratory, SciLifeLab. ESCOM, 1 Allee Reseau Jean Marie Buckmaster, F-60200 Compiegne, France..
    Nordling, Erik
    Swedish Orphan Biovitrum AB, Stockholm, Sweden..
    Syrén, Per-Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Swedish Orphan Biovitrum AB, Stockholm, Sweden.
    Ancestral diterpene cyclases show increased thermostability and substrate acceptance2018In: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 285, no 24, p. 4660-4673Article in journal (Refereed)
    Abstract [en]

    Bacterial diterpene cyclases are receiving increasing attention in biocatalysis and synthetic biology for the sustainable generation of complex multicyclic building blocks. Herein, we explore the potential of ancestral sequence reconstruction (ASR) to generate remodeled cyclases with enhanced stability, activity, and promiscuity. Putative ancestors of spiroviolene synthase, a bacterial class I diterpene cyclase, display an increased yield of soluble protein of up to fourfold upon expression in the model organism Escherichia coli. Two of the resurrected enzymes, with an estimated age of approximately 1.7 million years, display an upward shift in thermostability of 7-13 degrees C. Ancestral spiroviolene synthases catalyze cyclization of the natural C-20-substrate geranylgeranyl diphosphate (GGPP) and also accept C-15 farnesyl diphosphate (FPP), which is not converted by the extant enzyme. In contrast, the consensus sequence generated from the corresponding multiple sequence alignment was found to be inactive toward both substrates. Mutation of a nonconserved position within the aspartate-rich motif of the reconstructed ancestral cyclases was associated with modest effects on activity and relative substrate specificity (i.e., k(cat)/K-M for GGPP over k(cat)/K-M for FPP). Kinetic analyses performed at different temperatures reveal a loss of substrate saturation, when going from the ancestor with highest thermostability to the modern enzyme. The kinetics data also illustrate how an increase in temperature optimum of biocatalysis is reflected in altered entropy and enthalpy of activation. Our findings further highlight the potential and limitations of applying ASR to biosynthetic machineries in secondary metabolism.

  • 23.
    Hohn, Nuri
    et al.
    Tech Univ Munich, Lehrstuhl Funkt Mat, Dept Phys, James Franck Str 1, D-85748 Garching, Germany. chwartzkopf, Matthias; Roth, Stephan V..
    Shlosser, Steffen J.
    Biessmann, Lorenz
    Song, Lin
    Grott, Sebastian
    Xia, Senlin
    Wang, Kun
    Schwartzkopf, Matthias
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Mueller-Buschbaum, Peter
    Impact of Catalytic Additive on Spray Deposited and Nanoporous Titania in Films Observed via in Situ X-ray Scattering: Implications for hanced Photovoltaics2018In: ACS Applied Nano Materials, ISSN 2574-0970, Vol. 1, no 8, p. 4227-4235Article in journal (Refereed)
    Abstract [en]

    With the aim of obtaining nanostructured titania thin films for the tential use in hybrid or dye sensitized solar cells, the amphiphilic block copolymer polystyrene-b-poly(ethylene oxide) is employed as a ructure directing template in combination with solgel chemistry. For sy upscaling, spraying is used as a deposition technique. In situ azing incidence small-angle X-ray scattering (GISAXS) measurements are rformed during spraying and show that most titania structures are ready formed within the solution prior to deposition. However, ructural rearrangement is enabled during the deposition period when all amounts of hydrochloric acid (HCl) are used as a catalytic ditive to the spray solution. This behavior is ascribed to an altering the reaction dynamics and phase separation in the presence of HCl, ich significantly improves the templating effect of the employed block copolymer. With HCl as an additive the final nanoscale rphologies exhibit smaller pore sizes and strongly enhanced order as mpared to thin films sprayed from solutions that do not contain HCl as antified with atomic force microscopy, scanning electron microscopy, d GISAXS.

  • 24.
    Hult, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Versatile Synthetic Strategies to Highly Functional Polyesters and Polycarbonates2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Polymers have become ubiquitous in today’s society and are found in everything from household items to airplanes and automobiles. Synthetic polymeric materials are as diverse as their applications and their final properties are highly reliant on the building blocks and methods used to assemble them. In the field of biomedical materials, polyesters and polycarbonates have been hailed as excellent materials in large part due to their inherent hydrolytic degradability. With this in mind, careful choice of monomers can ensure that materials not only conform to the desired physical properties, but also elicit a favorable biological response. The utilization of post-polymerization modification of these promising materials has the capability of opening up further avenues to target even more advanced applications. Unfortunately, rigorous and difficult reaction conditions, including multi-step synthesis have to a certain extent held back the adoption of these complex functional materials in applied research. In a pragmatic approach, a sustainable framework was developed in this thesis to seek out more practical methods, limiting the amount of reaction steps and overtly hazardous chemicals.

    In a first study, we set out to simplify and scale-up the synthesis of cyclic carbonates with pendant functional groups, capable of undergoing controlled ring-opening polymerization. By avoiding the use of protective-group chemistry we were able two devise a two-step method to create a library of functional monomers. Results in this study show that reactive intermediates could be isolated on 100 g scales, which in a second step was functionalized with a desired alcohol.

    With this framework in mind, key practical decisions were made to drastically re-think the work up procedures for greater scalability of bis-MPA dendrimers. In this work, a more efficient, scalable and sustainable approach was devised. Elimination of traditional arduous purification steps led to the synthesis of monodisperse dendrimers up to the sixth generation, with 192 functional groups on 50 g scales. Further work included the omission of protective group-chemistry, using orthogonal functional groups to cut the number of synthetic steps by half.

    The know-how developed in the first two projects led us to pursue greater scalability of functional polycarbonates through a simpler polymerization technique. The method allowed the step-growth polymerization of functional materials from more easily accessible monomers isolated on 100 g scales. Subsequent polymerization afforded materials with glass transition temperatures in the range of -45 °C to 169 °C. The method served as a complement to cyclic carbonates, offering a wider range of functional monomers. Furthermore, by careful choice of assembly method, both alternating and scrambled compositions could be achieved.

    In a final study, we set out to take advantage of the scrambling mechanism. Control of the final composition of highly rigid degradable polycarbonates was pursued, using renewable building-blocks derived from sugar. In a proof of concept study, thermal and hydrolytic stability of these materials is shown to be dependent on both amount and configuration of each monomer in the final material.

  • 25.
    Hult, Daniel
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Garcia-Gallego, Sandra
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Ingverud, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Andrén, Oliver
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Degradable High Tg Sugar Derived Polycarbonates from Isosorbide and Dihydroxyacetone2018In: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 9, no 17, p. 2238-2246Article in journal (Refereed)
    Abstract [en]

    Polycarbonates from isosorbide and dihydroxyacetone (DHA) have been synthesised using organocatalytic step-growth polymerization of their corresponding diols and bis-carbonylimidazolides monomers. By choice of feed ratio and monomer activation, either isosorbide or ketal protected DHA, random and alternating poly(Iso-co-DHA) carbonates have been formed. Thermal properties by DSC and TGA were herein strongly correlated to monomer composition. Dilution studies using 1H-NMR of a model compound DHA-diethyl carbonate in acetonitrile and deuterated water highlighted the influence of α-substituents on the keto/hydrate equilibrium of DHA. Further kinetics studies of in the pH* range of 4.7 to 9.6 serve to show the hydrolytic pH-profile of DHA-carbonates. The Hydrolytic degradation of deprotected polymer pellets show an increased degradation with increasing DHA content. Pellets with a random or alternating configuration show different characteristics in terms of mass loss and molecular weight loss profile over time.

  • 26.
    Ihrner, Niklas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Structural Lithium Ion Battery Electrolytes2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A major challenge in the electrification of vehicles in the transport industry is that batteries are heavy, which reduces their effectiveness in mobile applications. A solution to this is structural batteries, which are batteries that can carry mechanical load while simultaneously storing energy. This can potentially lead to large weight savings on a systems level, since they may allow replacement of load bearing structures with structural batteries. Carbon fibers are suitable for structural batteries because they have superb mechanical properties and readily intercalate lithium ions, i.e. they can be used as electrodes in a lithium ion battery. However, to utilize carbon fibers in structural batteries, a polymer (matrix) is needed to form a composite battery. The polymer is required to have high modulus and high ion transport properties, which are inversely related, to function as an electrolyte. This thesis focuses on the development and characterization of such polymer electrolytes.

    The first study was performed on a homogenous polymer electrolyte based on plasticized polyethylene glycol-methacrylate. The influence of crosslink density, salt concentration and plasticizer concentration on the mechanical and electrochemical properties were investigated. Increases in both ionic conductivity and storage modulus were obtained when, compared to non-plasticized systems. However, at high storage modulus (E’>500 MPa) the ionic conductivity (𝜎<10-7 S cm-1) is far from good enough for the realization of structural batteries.

    In a second study, phase separated systems were therefore investigated. Polymerization induced phase separation (PIPS) via UV-curing was utilized to the produce structural battery electrolytes (SBE), consisting of liquid electrolyte and a stiff vinyl ester thermoset. The effect of monomer structure and volume fraction of liquid electrolyte on the morphology, electrochemical and mechanical properties were investigated. High storage modulus (750 MPa) in combination with high ionic conductivity (1.5 x 10-4 S cm-1) were obtained at ambient temperature. A SBE carbon fiber lamina half-cell was prepared via vacuum infusion and electrochemically cycled vs lithium metal. The results showed that both ion transport and load transfer was enabled through the SBE matrix.

    In the third study the mechanical and electrochemical properties of the SBE-carbon fiber lamina were investigated and the multifunctional performance was evaluated. A new formulation of SBE, with a small addition of thiol monomer, were prepared with improved electrochemical and mechanical properties. The mechanical properties of the SBE carbon fiber lamina did not deteriorate after electrochemical cycling. The capacity of the SBE carbon fiber lamina half-cell was 232 ± 26 mAh g-1, at a C/20 charge rate. Furthermore, the lamina displayed multifunctional performance, compared to the monofunctional properties of its constituents.

    In the final study, a new curing method was investigated, since UV-curing cannot be used to prepare full-cell carbon fiber composite structural batteries. Thermal curing was investigated to prepare the SBE. The PIPS was not adversely affected by the change in curing method, and the length scale of the phase separation in the SBE was slightly larger compared to UV-cured SBEs. The thermally cured SBEs exhibited improved thermomechanical properties without a reduction in the electrochemical properties. Thermal curing did not affect the electrochemical properties of the SBE carbon fiber lamina, however the type of carbon fiber utilized was found to negatively affect the cycling performance.

    The full text will be freely available from 2020-03-25 10:42
  • 27.
    Ingverud, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Exploring crosslinked networks of polymers and hybrid cellulose materials2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The field of polymer chemistry has in recent decades had an immense development, resulting in new functional materials with groundbreaking applications. This has been driven partly by strong interdisciplinary alliances between the fields of medicine, biology, chemistry, and materials science. Thermoresponsive block copolymers, have been built for their ability to self-assemble, giving possibility of encapsulation and release of medicine. The dendritic polymer family have been demonstrated as a prime example of highly reactive and interactive functional materials, suitable for biomedical applications. The importance of amines is greatly appreciated in general and especially in polymer chemistry, due to their nucleophilic characteristics in reactions, but also for their ability to interact with other species. There’s also an increase in awareness of standard of living, the effects of climate change and population growth. These are challenges, in need of our outmost focus and knowledge, to direct our path to, towards a more bio based circular economy. This starts, in Sweden, by taking better care of our forest and utilizing its resourceful crop. This thesis seek out spontaneous crosslinking, of various functional polymers, with focus towards hybridizing with nanocellulosic material.

    Initially, interactive permanently charged amine-functional thermoresponsive tri- and star-block copolymers were composed. These were evaluated and used as electrostatic macro-crosslinker of cellulose nanofibrils (CNFs), resulting in thermoresponsive, low dry weight content hydrogels, with notable temperature dependent storage modulus.

    Secondly, reactive and interactive amine-functional dendritic-linear-dendritic (DLD) species were constructed and evaluated in vitro and in vivo. The DLD scaffolds were utilized as fast-degrading, inhibiting surgical site infection (SSIs) antibacterial hydrogel coatings. The crosslinking of the poly(ethylene glycol) (PEG) system was optimized in order to create a two component system, which could be applied with dual syringes. This enabled instantaneous gelation under physiological conditions. The hydrogels moduli could be varied to match various tissues.

    Thirdly, insights and characterizations were provided in the commercial heterofunctional poly(amido amine) carboxylate hyperbranched Helux. Amine post-modifications and intrinsic heterofunctionality alterations of Helux were explored, by increasing the molecular weight and forming Helux self-crosslinked films. Furthermore, two component hydrogels based on Helux and PEG demonstrated curing temperature dependent moduli in the rheometer.

    Finally, utilizing Helux in combination with CNFs to demonstrate the potential to mix on the nanoscale without aggregation. The CNF-Helux could form hydrogels, and wet-stable thermo-crosslinked CNF-Helux composites assemblies such as films and aerogels, with further excess of amines ready for post-modifications of the crosslinked 3D-network.

    The full text will be freely available from 2020-04-16 12:13
  • 28.
    Ingverud, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    The combination of a dendritic polyampholyte and cellulose nanofibrils – a new type of functional materialManuscript (preprint) (Other academic)
  • 29.
    Ingverud, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Helux: A heterofunctional hyperbranched poly(amido amine) carboxylateManuscript (preprint) (Other academic)
  • 30.
    Ingverud, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Helux: A Heterofunctional Hyperbranched Poly(amido amine) Carboxylate2019In: ACS APPLIED POLYMER MATERIALS, ISSN 2637-6105, Vol. 1, no 7, p. 1845-1853Article in journal (Refereed)
    Abstract [en]

    Herein we present the first scientific report on the commercially available Helux 33/16 - a heterofunctional poly(amido amine carboxylate) hyperbranched polymer (Native Helux). The Native Helux, built from diethyl maleate (DEM) and diaminohexane (HMDA), was characterized, in part aided by reverse engineering of a similar scaffold with the same monomers. Different purification methods resulted in higher molecular weight polymers ranging from 8.4 to 51.7 kDa (M-w), and the Helux considered the purest, having 10 mmol (primary and secondary amines)/g as well as 2-4 mmol carboxylic/g Helux. Additionally, aqueous-mediated postmodifications of Helux were achieved including Michael addition, guanylation, and ring-opening of sultone, as well as water/ethyl acetate-mediated amidation of imidazole-activated pentenoic acid. The inherent heterofunctionality of Helux, amines and carboxylic groups, was further explored by a one-component self-cross-linking approach that yielded a dendritic poly(amido amine) network with autofluorescence-exhibiting properties and a T-g of 59 degrees C. The Helux network exhibited a storage modulus (G') of 7.9 MPa at 25 degrees C and in dry state, and 0.9 MPa (G') when plasticized by 50 wt % swelling (in water) of the network. Finally, dendritic hydrogels based on Helux were produced by a spontaneous NHS-amidation reaction with difunctional 10kPEG-NHS. The mechanical properties of the hydrogels were found to be dependent on the curing temperature for the hydrogel, yielding a G' of 8 and 14.5 kPa, a stress at break of 11.5 and 22.7 kPa, and a strain-at-break of 161 and 163%, at 25 and 37 degrees C, respectively.

  • 31.
    Jawerth, Marcus
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Renewable thermosetting resins based on refined technical lignin: fractionation, modification and valorization2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 32.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    New vinyl ether monomers via lipase catalysis towards cationically crosslinkable thermosets2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 33.
    Kaldéus, Tahani
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Surface modification approaches of cellulose nanofibrils and their effect on dispersibility2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the strive to find and develop sustainable bio-based materials an increased interest for nanocellulosic materials as attractive alternatives has arisen during the past decades. This can be attributed to their abundant renewability, remarkable inherent mechanical properties and their capability to be chemically modified. Cellulose nanofibrils (CNFs) are commonly obtained from wood pulp fibres and prepared through mechanical, chemical and/or enzymatic treatments. However, due to their hydrophilic nature and tendency to self-aggregate, their surface chemistry need to be altered to fully utilise their inherent properties and enable their usage in conventional large-scale industrial processes.

    This thesis work focuses on elucidating the fundamental aspects of the colloidal stability of highly concentrated CNF dispersions and the redispersibility of dried CNFs. Small amounts of amine-terminated poly(ethylene glycol) (PEG) were used to sterically stabilise the CNFs at higher fibril concentrations and delay the dispersion-arrested state transition (Paper I). The redispersibility of dried CNFs was studied for differently charged CNFs as a function of redispersing agents such as carboxymethyl cellulose (CMC), PEG and lignin (Paper II).

    This thesis presents green, facile modification approaches as well as strategies for improved dispersibility and compatibility with polymer matrices. The commercially established carboxymethylation process was expanded with a subsequent functionality step, yielding a mild, versatile one-pot protocol for the preparation of bi-functional CNFs (Paper III). Further, reactive amphiphilic macromolecules with targeted side-chain functionalities were used to compatibilise the CNF surface by water-based approaches. In the first study, a macroinitiator was used for the development of a versatile, yet facile, protocol for the controlled polymerisation of both hydrophilic and hydrophobic monomers in water from the CNF surface (Paper IV). In the second study, a reactive macro-compatibiliser was used to molecularly engineer the interface between CNFs and a polymer matrix by reactive-melt processing, yielding nanocomposites with improved stiffness while maintaining the deformability (Paper V).

    The full text will be freely available from 2020-02-22 11:00
  • 34.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Nordenström, Malin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Redispersibility properties of dried cellulose nanofibrils - influence on structure and mechanical propertiesManuscript (preprint) (Other academic)
  • 35.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Nordenström, Malin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Redispersibility properties of dried cellulose nanofibrils - influence on structure and mechanical properties2019In: Article in journal (Other academic)
  • 36.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Telaretti Leggieri, Maria Rosella
    Cobo Sanchez, Carmen
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    All-aqueous SI-ARGET ATRP from cellulose nanofibrils using hydrophilic and hydrophobic monomers2019In: Article in journal (Other academic)
  • 37.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Träger, Andrea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Berglund, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lo Re, Giada
    Chalmers University of Technology.
    Molecular engineering of cellulose-PCL bio-nanocomposite interface by reactive amphiphilic copolymer nanoparticles2019In: Article in journal (Refereed)
  • 38.
    Kürten, Charlotte
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Eriksson, Adam
    Maddalo, Gianluca
    Edfors, Fredrik
    Uhlén, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Syrén, Per-Olof
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Engineering of water networks in class II terpene cyclases underscores the importance of amino acid hydration and entropy in biocatalysis and enzyme designManuscript (preprint) (Other academic)
  • 39.
    Lo Re, Giada
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Engström, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wu, Qiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Gedde, Ulf W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Improved Cellulose Nanofibril Dispersion in Melt-Processed Polycaprolactone Nanocomposites by a Latex-Mediated Interphase and Wet Feeding as LDPE Alternative2018In: ACS Applied Nano Materials, ISSN 2574-0970, Vol. 1, no 6, p. 2669-2677Article in journal (Refereed)
    Abstract [en]

    This work reports the development of a sustainable and green one-step wet-feeding method to prepare tougher and stronger nanocomposites from biodegradable cellulose nanofibrils (CNF)/polycaprolactone (PCL) constituents, compatibilized with reversible addition fragmentation chain transfer-mediated surfactant-free poly(methyl methacrylate) (PMMA) latex nanoparticles. When a PMMA latex is used, a favorable electrostatic interaction between CNF and the latex is obtained, which facilitates mixing of the constituents and hinders CNF agglomeration. The improved dispersion is manifested in significant improvement of mechanical properties compared with the reference material. The tensile tests show much higher modulus (620 MPa) and strength (23 MPa) at 10 wt % CNF content (compared to the neat PCL reference modulus of 240 and 16 MPa strength), while maintaining high level of work to fracture the matrix (7 times higher than the reference nanocomposite without the latex compatibilizer). Rheological analysis showed a strongly increased viscosity as the PMMA latex was added, that is, from a well-dispersed and strongly interacting CNF network in the PCL.

  • 40.
    Långberg, Marie
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. SWERIM, SE-16407 Kista, Sweden..
    Örnek, Cem
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Zhang, Fan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Cheng, J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Liu, M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Granaes, E.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Wiemann, C.
    Res Ctr Julich, Peter Grunberg Inst PGI 6, D-52425 Julich, Germany..
    Gloskovskii, A.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Matveyev, Y.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Kulkarni, S.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Noei, H.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Keller, T. F.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany.;Univ Hamburg, Phys Dept, D-20355 Hamburg, Germany..
    Lindell, D.
    SWERIM, SE-16407 Kista, Sweden..
    Kivisakk, U.
    AB Sandvik Mat Technol, SE-81181 Sandviken, Sweden..
    Lundgren, E.
    Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden..
    Stierle, A.
    Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany.;Univ Hamburg, Phys Dept, D-20355 Hamburg, Germany..
    Pan, Jinshan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Characterization of Native Oxide and Passive Film on Austenite/Ferrite Phases of Duplex Stainless Steel Using Synchrotron HAXPEEM2019In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 166, no 11, p. C3336-C3340Article in journal (Refereed)
    Abstract [en]

    A new measurement protocol was used for microscopic chemical analysis of surface oxide films with lateral resolution of 1 mu m. The native air-formed oxide and an anodic passive film on austenite and ferrite phases of a 25Cr-7Ni super duplex stainless steel were investigated using synchrotron hard X-ray photoemission electron microscopy (HAXPEEM). Pre-deposited Pt-markers, in combination with electron backscattering diffraction mapping (EBSD), allowed analysis of the native oxide on individual grains of the two phases and the passive film formed on the same area after electrochemical polarization of the sample. The results showed a certain difference in the composition of the surface films between the two phases. For the grains with (001) crystallographic face // sample surface, the native oxide film on the ferrite contained more Cr oxide than the austenite. Anodic polarization up to 1000 mV/(Ag/AgCl) in 1M NaCl solution at room temperature resulted in a growth of the Cr- and Fe-oxides, diminish of Cr-hydroxide, and an increased proportion of Fe3+ species. by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.

  • 41.
    Malmström, Eva
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Fogelström, Linda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Stamm, Arne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Tengdelius, Mattias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Biundo, Antonino
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Syrén, Per-Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Sustainable terpene-based polymeric materials2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 42.
    Malmström, Eva
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden.;KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Stockholm, Sweden..
    Telaretti Leggieri, Rosella
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Kaldéus, Tahani
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden.;KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, Stockholm, Sweden..
    Polymer modification of nanocellulose in water: A versatile approach to new materials2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 43.
    Martin-Serrano Ortiz, Angela
    et al.
    IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Res Lab, Plaza Hosp Civil, Malaga 29009, Spain.;IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Allergy Unit, Plaza Hosp Civil, Malaga 29009, Spain.;BIONAND Andalusian Ctr Nanomed & Biotechnol, Parque Tecnol Andalucia, Malaga 29590, Spain..
    Stenström, Patrik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Antunez, Pablo Mesa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Andrén, Oliver C. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Torres, Maria J.
    IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Res Lab, Plaza Hosp Civil, Malaga 29009, Spain.;IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Allergy Unit, Plaza Hosp Civil, Malaga 29009, Spain.;BIONAND Andalusian Ctr Nanomed & Biotechnol, Parque Tecnol Andalucia, Malaga 29590, Spain..
    Montanez, Maria I.
    IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Res Lab, Plaza Hosp Civil, Malaga 29009, Spain.;IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Allergy Unit, Plaza Hosp Civil, Malaga 29009, Spain.;BIONAND Andalusian Ctr Nanomed & Biotechnol, Parque Tecnol Andalucia, Malaga 29590, Spain..
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Design of multivalent fluorescent dendritic probes for site-specific labeling of biomolecules2018In: Journal of Polymer Science Part A: Polymer Chemistry, ISSN 0887-624X, E-ISSN 1099-0518, Vol. 56, no 15, p. 1609-1616Article in journal (Refereed)
    Abstract [en]

    Herein, the synthesis and characterization of orthogonal dendrons decorated with multiple units of fluorescent and a chemoselective group at a focal point, followed by specific antibody labeling, is presented. Fluorescence results confirm the applicability of the fluorescent probes for biomolecule labeling and fluorescent signal amplification.

  • 44.
    Meister, Sebastian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Hendrikse, Natalie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Löfblom, John
    KTH, School of Engineering Sciences (SCI).
    Directed evolution of the 3C protease from coxsackievirus using a novel fluorescence-assisted intracellular method2019In: Biological chemistry (Print), ISSN 1431-6730, E-ISSN 1437-4315, Vol. 400, no 3, p. 405-415Article in journal (Refereed)
    Abstract [en]

    Proteases are crucial for regulating biological processes in organisms through hydrolysis of peptide bonds. Recombinant proteases have moreover become important tools in biotechnological, and biomedical research and as therapeutics. We have developed a label-free high-throughput method for quantitative assessment of proteolytic activity in Escherichia coli. The screening method is based on co-expression of a protease of interest and a reporter complex. This reporter consists of an aggregation-prone peptide fused to a fluorescent protein via a linker that contains the corresponding substrate sequence. Cleavage of the substrate rescues the fluorescent protein from aggregation, resulting in increased fluorescence that correlates to proteolytic activity, which can be monitored using flow cytometry. In one round of flow-cytometric cell sorting, we isolated an efficiently cleaved tobacco etch virus (TEV) substrate from a 1:100 000 background of non-cleavable sequences, with around 6000-fold enrichment. We then engineered the 3C protease from coxsackievirus B3 (CVB3 3C(pro)) towards improved proteolytic activity on the substrate LEVLFQ down arrow GP. We isolated highly proteolytic active variants from a randomly mutated CVB3 3C(pro) library with up to 4-fold increase in activity. The method enables simultaneous measurement of proteolytic activity and protease expression levels and can therefore be applied for protease substrate profiling, as well as directed evolution of proteases.

  • 45.
    Nameer, Samer
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Deltin, Tomas
    PTE Coatings AB, Gamleby, SE-594 31, Sweden.
    Sundell, P. -E
    SSAB EMEA, Borlänge, SE-781 84, Sweden.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Bio-based multifunctional fatty acid methyl esters as reactive diluents in coil coatings2019In: Progress in organic coatings, ISSN 0300-9440, E-ISSN 1873-331X, Vol. 136, article id 105277Article in journal (Refereed)
    Abstract [en]

    The increased environmental awareness has driven academia and industry to utilize environmentally benign sources. An industrially available process that is effective in the coatings industry is the coil-coating process where sheet steel can be pre-coated. During this process volatile organic compounds (VOCs) are generated and incinerated for energy recovery. One way to minimize VOCs is to use a reactive diluent i.e. a molecule that acts both as a solvent as well as chemically react into the final coating upon curing. Fatty acid methyl esters obtained from renewable resources such as vegetable oils are suitable candidates as reactive diluents. In this paper epoxidized fatty acid methyl esters (e-FAMEs) obtained from epoxidized linseed oil where compared with fatty acid methyl esters (FAMEs) obtained from rapeseed oil as reactive diluents in coil-coating formulations. Coil-coating formulations were followed by real-time Fourier transform infrared spectroscopy (RT-FTIR) in order to evaluate the e-FAMEs or the FAMEs reactivity in the coating system. In addition, coil-coating formulation containing e-FAME or FAME where cured in a pilot scale simulated coil-coating process. Moreover, thermal properties of the final coatings were evaluated by differential scanning calorimetry (DSC).

  • 46.
    Nameer, Samer
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. Royal Institute of Technology.
    Deltin, Tomas
    PTE Coatings AB, SE-594 31, Gamleby, Sweden.
    Sundell, Per-Erik
    SSAB EMEA, SE-781 84, Borlänge, Sweden.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Bio-based multifunctional fatty acid methyl esters as reactive diluents in coil coatingsManuscript (preprint) (Other academic)
  • 47.
    Nameer, Samer
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Larsen, Daniel B.
    Tech Univ Denmark, Dept Chem & Biochem Engn, DPC, Soltofts Plads Bldg 227, DK-2800 Lyngby, Denmark.;Tech Univ Denmark, Dept Chem, Bygning 207, DK-2800 Lyngby, Denmark..
    Duus, Jens O.
    Tech Univ Denmark, Dept Chem, Bygning 207, DK-2800 Lyngby, Denmark..
    Daugaard, Anders E.
    Tech Univ Denmark, Dept Chem & Biochem Engn, DPC, Soltofts Plads Bldg 227, DK-2800 Lyngby, Denmark..
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Biobased Cationically Polymerizable Epoxy Thermosets from Furan and Fatty Acid Derivatives2018In: ACS Sustainable Chemistry and Engineering, ISSN 2168-0485, Vol. 6, no 7, p. 9442-9450Article in journal (Refereed)
    Abstract [en]

    In the pursuit of environmentally friendly building blocks in polymer chemistry the utilization of biobased monomers is highly desired. In the present study, the biobased monomer 2,5-furandicarboxylic acid (FDCA) has been extended into epoxy thermosets. The study presents the synthesis of diallyl furan-2,5-dicarboxylate (DAFDC) followed by an epoxidation of the allyls to form diglycidyl furan-2,5-dicarboxylate (DGFDC). DGFDC was then copolymerized in both stoichiometric and off-stoichiometric ratios with epoxidized fatty methyl esters to form a range of thermosets. The cross-linking reaction was either thermally or UV-induced cationic polymerization utilizing onium salt initiators where the reactivity was studied by DSC and real-time fourier transform infrared analysis. Furthermore, the structure-property relationships of the final thermosets were determined by dynamic mechanical thermal analysis revealing a possibility to tune the properties over a wide range. In addition thermosets were made from diglycidyl Bisphenol-A (DGEBA) with epoxidized fatty methyl esters made for comparative purposes.

  • 48.
    Nordstrom, Randi
    et al.
    Uppsala Univ, Dept Pharm, SE-75123 Uppsala, Sweden..
    Andrén, Oliver C. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Singh, Shalini
    Uppsala Univ, Dept Pharm, SE-75123 Uppsala, Sweden..
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Davoudi, Mina
    Lund Univ, Dept Clin Sci, Div Dermatol & Venereol, SE-22184 Lund, Sweden..
    Schmidtchen, Artur
    Lund Univ, Dept Clin Sci, Div Dermatol & Venereol, SE-22184 Lund, Sweden.;Univ Copenhagen, Bispebjerg Hosp, Wound Healing Ctr, Dept Biomed Sci, DK-2200 Copenhagen, Denmark..
    Malmsten, Martin
    Uppsala Univ, Dept Pharm, SE-75123 Uppsala, Sweden.;Univ Copenhagen, Dept Pharm, DK-2100 Copenhagen, Denmark..
    Degradable dendritic nanogels as carriers for antimicrobial peptides2019In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 554, p. 592-602Article in journal (Refereed)
    Abstract [en]

    In the present study, we investigate degradable anionic dendritic nanogels (DNG) as carriers for antimicrobial peptides (AMPS). In such systems, the dendritic part contains carboxylic acid-based anionic binding sites for cationic AMPs, whereas linear poly(ethylene glycol) (PEG) chains form a shell for promotion of biological stealth. In order to clarify factors influencing membrane interactions of such systems, we here address effects of nanogel charge, cross-linking, and degradation on peptide loading/release, as well as consequences of these factors for lipid membrane interactions and antimicrobial effects. The DNGs were found to bind the AMPs LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) and DPK-060 (GKHKNKGKKNGKHNGWKWWW). For the smaller DPK-060 peptide, loading was found to increase with increasing nanogel charge density. For the larger LL-37, on the other hand, peptide loading was largely insensitive to nanogel charge density. In line with this, results on the secondary structure, as well as on the absence of stabilization from proteolytic degradation by the nanogels, show that the larger LL-37 is unable to enter into the interior of the nanogels. While 40-60% nanogel degradation occurred over 10 days, promoted at high ionic strength and lower cross-linking density/higher anionic charge content, peptide release at physiological ionic strength was substantially faster, and membrane destabilization not relying on nanogel degradation. Ellipsometry and liposome leakage experiments showed both free peptide and peptide/DNG complexes to cause membrane destabilization, indicated also by antimicrobial activities being comparable for nanogel-bound and free peptide. Finally, the DNGs were demonstrated to display low toxicity towards erythrocytes even at peptide concentrations of 100 mu M.

  • 49.
    Nordström, Randi
    et al.
    Ms, Dept Pharm, Uppsala, Sweden..
    Nyström, Lina
    Uppsala Univ, Dept Pharm, Uppsala, Sweden..
    Andrén, Oliver C. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Umerska, Anita
    MINT Univ Angers, Angers, France..
    Davoudi, Mina
    Lund Univ, Dept Clin Sci, Lund, Sweden..
    Schmidtchen, Artur
    Lund Univ, Dept Clin Sci, Lund, Sweden..
    Malmsten, Martin
    Uppsala Univ, Dept Pharm, Uppsala, Sweden..
    Poly(acrylic acid) microgels as carriers for antimicrobial peptides2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 50.
    Norström, Emelie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Hemicelluloses and other Polysaccharides for Wood Adhesive Applications2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The growing environmental awareness has led to an increased interest in bio-based polymers as replacement for fossil-based materials. The purpose of the work described in this thesis was to investigate the possibility of using hemicelluloses and other polysaccharides as replacement for fossil-based polymers in wood adhesives. Together with cellulose and lignin, hemicellulose is the main constituent of wood. In the pulp industry, significant amounts of hemicelluloses are obtained as by-products and combusted for energy recovery, but there is a growing interest in the biorefinery concept where all side-streams are utilized. If valuable applications, such as adhesives, of hemicelluloses and other by-products are found, large amounts can be obtained from the pulp industry. Water dispersions of hemicelluloses and other polysaccharides have been prepared and evaluated as adhesives for bonding different wood substrates together. The dry bond strength, water resistance, and heat resistance were investigated by exposing the bonded wood specimens to different conditioning methods and thereafter measuring the tensile shear strengths. As a replacement, the bio-based wood adhesive must possess similar or even better properties than the fossil-based adhesives. A commercial poly(vinyl acetate) (PVAc) wood adhesive used for indoor applications has been used as a reference benchmark. Wood hemicelluloses themselves do not have sufficient bonding performance probably because their low molecular weight does not provide adequate strength and makes the adhesive too brittle. The addition of dispersing agents and crosslinkers to the hemicellulose dispersions can significantly improve the bonding performance, and hemicellulose in combination with poly(vinyl amine) showed promising results superior those of PVAc. A fully bio-based adhesive comprising of hemicellulose and chitosan, another bio-based polysaccharide, obtain surprisingly good bonding performance especially with regard to water resistance. Gums, polysaccharides with similar structures to those of hemicelluloses but with higher molecular weights, have also been studied and locust bean gum dispersions without any modification showed a very good bonding performance with high dry bond strength and water resistance on a par with those of PVAc and a heat resistance superior to that of PVAc. Chitosan has very good adhesive properties especially with regard to water resistance, but the high viscosity of the chitosan dispersion makes it difficult to apply. Chitosan-grafted-PVAc dispersions were therefore prepared and an adhesive very similar in appearance to PVAc was obtained with a good bonding performance as well as good applicability.

12 1 - 50 of 62
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf