kth.sePublications
Change search
Refine search result
1 - 31 of 31
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Atoufi, Zhaleh
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Gordeyeva, Korneliya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Cortes Ruiz, Maria F.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hall, Stephen A
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wet-resilient foams based on heat-treated β-lactoglobulin and cellulose nanofibrilsManuscript (preprint) (Other academic)
  • 2.
    Atoufi, Zhaleh
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Gordeyeva, Korneliya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Cortes Ruiz, Maria F.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Synergistically stabilized wet foams from heat treated β-lactoglobulin and cellulose nanofibrils and their application for green foam productionManuscript (preprint) (Other academic)
  • 3.
    Betker, Marie
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Harder, Constantin
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85; Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Erbes, Elisabeth
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85; Institute for X-ray Physics, Goettingen University, Friedrich Hund Platz 1, 37077 Goettingen, Germany, Friedrich Hund Platz 1.
    Heger, Julian Eliah
    Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Alexakis, Alexandros Efraim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Sochor, Benedikt
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Chen, Qing
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Schwartzkopf, Matthias
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Körstgens, Volker
    Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Müller-Buschbaum, Peter
    Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1; Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany, Lichtenbergstr. 1.
    Schneider, Konrad
    Abteilung Werkstofftechnik, Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany.
    Techert, Simone Agnes
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85; Institute for X-ray Physics, Goettingen University, Friedrich Hund Platz 1, 37077 Goettingen, Germany, Friedrich Hund Platz 1.
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Sprayed Hybrid Cellulose Nanofibril-Silver Nanowire Transparent Electrodes for Organic Electronic Applications2023In: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 6, no 14, p. 13677-13688Article in journal (Refereed)
    Abstract [en]

    In times of climate change and resource scarcity, researchers are aiming to find sustainable alternatives to synthetic polymers for the fabrication of biodegradable, eco-friendly, and, at the same time, high-performance materials. Nanocomposites have the ability to combine several favorable properties of different materials in a single device. Here, we evaluate the suitability of two kinds of inks containing silver nanowires for the fast, facile, and industrial-relevant fabrication of two different types of cellulose-based silver nanowire electrodes via layer-by-layer spray deposition only. The Type I electrode has a layered structure, which is composed of a network of silver nanowires sprayed on top of a cellulose nanofibrils layer, while the Type II electrode consists of a homogeneous mixture of silver nanowires and cellulose nanofibrils. A correlation between the surface structure, conductivity, and transparency of both types of electrodes is established. We use the Haacke figure of merit for transparent electrode materials to demonstrate the favorable influence of cellulose nanofibrils in the spray ink by identifying Type II as the electrode with the lowest sheet resistance (minimum 5 ± 0.04 Ω/sq), while at the same time having a lower surface roughness and shorter fabrication time than Type I. Finally, we prove the mechanical stability of the Type II electrode by bending tests and its long-time stability under ambient conditions. The results demonstrate that the mixed spray ink of silver nanowires and cellulose nanofibrils is perfectly suitable for the fast fabrication of highly conductive organic nanoelectronics on an industrial scale.

  • 4.
    Bragone, Federica
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).
    Rosén, Tomas
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Morozovska, Kateryna
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST). KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.), Sustainability, Industrial Dynamics & Entrepreneurship.
    Laneryd, Tor
    Hitachi Energy, Västerås, Sweden.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Markidis, Stefano
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).
    Unsupervised Learning Analysis of Flow-Induced Birefringence in Nanocellulose: Differentiating Materials and ConcentrationsManuscript (preprint) (Other academic)
    Abstract [en]

    Cellulose nanofibrils (CNFs) can be used as building blocks for future sustainable materials including strong and stiff filaments. The goal of this paper is to introduce a data analysis of flow-induced birefringence experiments by means of unsupervised learning techniques. By reducing the dimensionality of the data with Principal Component Analysis (PCA) we are able to exploit information for the different cellulose materials at several concentrations and compare them to each other. Our approach aims at classifying the CNF materials at different concentrations by applying unsupervised machine learning algorithms, like k-means and Gaussian Mixture Models (GMMs). Finally, we analyze the autocorrelation function (ACF) and the partial autocorrelation function (PACF) of the first principal component, detecting seasonality in lower concentrations. The focus is given to the initial relaxation of birefringence after the flow is stopped to have a better understanding of the Brownian dynamics for the given materials and concentrations.

    Our method can be used to distinguish the different materials at specific concentrations and could help to identify possible advantages and drawbacks of one material over the other. 

  • 5.
    Brett, Calvin
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Forslund, Ola Kenji
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Nocerino, Elisabetta
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Kreuzer, Lucas
    Wiedmann, Tobias
    Porcar, Lionel
    Yamada, Norifumi
    Matsubara, Nami
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Månsson, Martin
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Müller-Buschbaum, Peter
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Humidity-induced Nanoscale Restructuring in PEDOT:PSS and Cellulose reinforced Bio-based Organic ElectronicsManuscript (preprint) (Other academic)
  • 6.
    Brett, Calvin
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Forschungszentrum Helmholtz Gemeinschaft, Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany.
    Ohm, Wiebke
    Forschungszentrum Helmholtz Gemeinschaft, Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Fricke, Bjorn
    Forschungszentrum Helmholtz Gemeinschaft, Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Alexakis, Alexandros Efraim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Laarmann, Tim
    Forschungszentrum Helmholtz Gemeinschaft, Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany.;Hamburg Ctr Ultrafast Imaging CUI, D-22761 Hamburg, Germany..
    Korstgens, Volker
    Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Materialien, D-85748 Garching, Germany..
    Muller-Buschbaum, Peter
    Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Materialien, D-85748 Garching, Germany.;Tech Univ Munich, Heinz Maier Leibnitz Zentrum MLZ, D-85748 Garching, Germany..
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Roth, Stephan, V
    Forschungszentrum Helmholtz Gemeinschaft, Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany.;Dept Fibre & Polymer Technol, Div Coating Technol, S-10044 Stockholm, Sweden..
    Nanocellulose-Assisted Thermally Induced Growth of Silver Nanoparticles for Optical Applications2021In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 13, no 23, p. 27696-27704Article in journal (Refereed)
    Abstract [en]

    Optically responsive materials are present in everyday life, from screens to sensors. However, fabricating large-area, fossil-free materials for functional biocompatible applications is still a challenge today. Nanocelluloses from various sources, such as wood, can provide biocompatibility and are emerging candidates for templating organic optoelectronics. Silver (Ag) in its nanoscale form shows excellent optical properties. Herein, we combine both materials using thin-film large-area spray-coating to study the fabrication of optical response applications. We characterize the Ag nanoparticle formation by X-ray scattering and UV-vis spectroscopy in situ during growth on the nanocellulose template. The morphology and optical properties of the nanocellulose film are compared to the rigid reference surface SiO2. Our results clearly show the potential to tailor the energy band gap of the resulting hybrid material.

  • 7.
    Brett, Calvin
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Ohm, Wiebke
    Fricke, Björn
    Laarmann, Tim
    Körstgens, Volker
    Müller-Buschbaum, Peter
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Nanocellulose-Assisted Thermally-Induced Growth of Silver Nanoparticles for Optical ApplicationsManuscript (preprint) (Other academic)
  • 8.
    Castro, Daniele Oliveira
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. MoRe Research Örnsköldsvik AB, Örnsköldsvik, Sweden.
    Karim, Zoheb
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. MoRe Research Örnsköldsvik AB, Örnsköldsvik, Sweden.
    Medina, Lilian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Häggström, J. -O
    Carosio, F.
    Svedberg, A.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Berglund, Lars A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites2018In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 162, p. 215-224Article in journal (Refereed)
    Abstract [en]

    Nanostructured materials are difficult to prepare rapidly and at large scale. Melt-processed polymer-clay nanocomposites are an exception, but the clay content is typically below 5 wt%. An approach for manufacturing of microfibrillated cellulose (MFC)/kaolinite nanocomposites is here demonstrated in pilot-scale by continuous production of hybrid nanopaper structures with thickness of around 100 μm. The colloidal nature of MFC suspensions disintegrated from chemical wood fiber pulp offers the possibility to add kaolinite clay platelet particles of nanoscale thickness. For initial lab scale optimization purposes, nanocomposite processing (dewatering, small particle retention etc) and characterization (mechanical properties, density etc) were investigated using a sheet former (Rapid Köthen). This was followed by a continuous fabrication of composite paper structures using a pilot-scale web former. Nanocomposite morphology was assessed by scanning electron microscopy (SEM). Mechanical properties were measured in uniaxial tension. The fire retardancy was evaluated by cone calorimetry. Inorganic hybrid composites with high content of in-plane oriented nanocellulose, nanoclay and wood fibers were successfully produced at pilot scale. Potential applications include fire retardant paperboard for semi structural applications.

  • 9.
    Chen, Qing
    et al.
    DESY, D-22607 Hamburg, Germany.;Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Peoples R China..
    Brett, Calvin
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. DESY, D-22607 Hamburg, Germany..
    Chumakov, Andrei
    DESY, D-22607 Hamburg, Germany..
    Gensch, Marc
    DESY, D-22607 Hamburg, Germany.;Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat, D-85748 Garching, Germany..
    Schwartzkopf, Matthias
    DESY, D-22607 Hamburg, Germany..
    Koerstgens, Volker
    Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat, D-85748 Garching, Germany..
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Plech, Anton
    Karlsruhe Inst Technol KIT, Inst Photon Sci & Synchrotron Radiat, D-76021 Karlsruhe, Germany..
    Zhang, Peng
    Sun Yat Sen Univ, Sch Mat Sci & Engn, PCFM Lab, Guangzhou 510275, Peoples R China..
    Mueller-Buschbaum, Peter
    Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat, D-85748 Garching, Germany.;Tech Univ Munich, Heinz Maier Leibniz Zentrum MLZ, D-85748 Garching, Germany..
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. DESY, D-22607 Hamburg, Germany..
    Layer-by-Layer Spray-Coating of Cellulose Nanofibrils and Silver Nanoparticles for Hydrophilic Interfaces2021In: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 4, no 1, p. 503-513Article in journal (Refereed)
    Abstract [en]

    Silver nanoparticles (AgNPs) and AgNP-based composite materials have attracted growing interest due to their structure-dependent optical, electrical, catalytic, and stimuli-responsive properties. For practical applications, polymeric materials are often combined with AgNPs to provide flexibility and offer a scaffold for homogenous distribution of the AgNPs. However, the control over the assembly process of AgNPs on polymeric substrates remains a big challenge. Herein, we report the fabrication of AgNP/cellulose nanofibril (CNF) thin films via layer-by-layer (LBL) spray-coating. The morphology and self-assembly of AgNPs with increasing number of spray cycles are characterized by atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), and grazing-incidence wide-angle X-ray scattering (GIWAXS). We deduce that an individual AgNP (radius = 15 +/- 3 nm) is composed of multiple nanocrystallites (diameter = 2.4 +/- 0.9 nm). Our results suggest that AgNPs are assembled into large agglomerates on SiO2 substrates during spray-coating, which is disadvantageous for AgNP functionalization. However, the incorporation of CNF substrates contributes to a more uniform distribution of AgNP agglomerates and individual AgNPs by its network structure and by absorbing the partially dissolved AgNP agglomerates. Furthermore, we demonstrate that the spray-coating of the AgNP/CNF mixture results in similar topography and agglomeration patterns of AgNPs compared to depositing AgNPs onto a precoated CNF thin film. Contact-angle measurements and UV/vis spectroscopy suggest that the deposition of AgNPs onto or within CNFs could increase the hydrophilicity of AgNP-containing surfaces and the localized surface plasmon resonance (LSPR) intensity of AgNP compared to AgNPs sprayed on SiO(2 )substrates, suggesting their potential applications in antifouling coatings or label-free biosensors. Thereby, our approach provides a platform for a facile and scalable production of AgNP/CNF films with a low agglomeration rate by two different methods as follows: (1) multistep layer-by-layer (LBL) spray-coating and (2) direct spray-coating of the AgNP/CNF mixture. We also demonstrate the ability of CNFs as a flexible framework for directing the uniform assembly of AgNPs with tailorable wettability and plasmonic properties.

  • 10.
    Fijoł, Natalia
    et al.
    Department of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, 106 91, Stockholm, Sweden; Wallenberg Wood Science Center, Teknikringen 56-58, 100 44, Stockholm, Sweden.
    Aguilar-Sánchez, Andrea
    Department of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, 106 91, Stockholm, Sweden.
    Ruiz-Caldas, Maria Ximena
    Department of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, 106 91, Stockholm, Sweden.
    Redlinger-Pohn, Jakob D.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Mautner, Andreas
    Polymer and Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Wien, Austria.
    Mathew, Aji P.
    Department of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, 106 91, Stockholm, Sweden; Wallenberg Wood Science Center, Teknikringen 56-58, 100 44, Stockholm, Sweden.
    3D printed polylactic acid (PLA) filters reinforced with polysaccharide nanofibers for metal ions capture and microplastics separation from water2023In: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 457, article id 141153Article in journal (Refereed)
    Abstract [en]

    The need for multifunctional, robust, reusable, and high-flux filters is a constant challenge for sustainable water treatment. In this work, fully biobased and biodegradable water purification filters were developed and processed by the means of three-dimensional (3D) printing, more specifically by fused deposition modelling (FDM). The polylactic acid (PLA) – based composites reinforced with homogenously dispersed TEMPO-oxidized cellulose nanofibers (TCNF) or chitin nanofibers (ChNF) were prepared within a four-step process; i. melt blending, ii. thermally induced phase separation (TIPS) pelletization method, iii. freeze drying and iv. single-screw extrusion to 3D printing filaments. The monolithic, biocomposite filters were 3D printed in cylindrical as well as hourglass geometries with varying, multiscale pore architectures. The filters were designed to control the contact time between filter's active surfaces and contaminants, tailoring their permeance. All printed filters exhibited high print quality and high water throughput as well as enhanced mechanical properties, compared to pristine PLA filters. The improved toughness values of the biocomposite filters clearly indicate the reinforcing effect of the homogenously dispersed nanofibers (NFs). The homogenous dispersion is attributed to the TIPS method. The NFs effect is also reflected in the adsorption capacity of the filters towards copper ions, which was shown to be as high as 234 and 208 mg/gNF for TCNF and ChNF reinforced filters, respectively, compared to just 4 mg/g for the pure PLA filters. Moreover, the biocomposite-based filters showed higher potential for removal of microplastics from laundry effluent water when compared to pure PLA filters with maximum separation efficiency of 54 % and 35 % for TCNF/PLA and ChNF/PLA filters, respectively compared to 26 % for pure PLA filters, all that while maintaining their high permeance. The combination of environmentally friendly materials with a cost and time-effective technology such as FDM allows the development of customized water filtration systems, which can be easily adapted in the areas most affected by the inaccessibility of clean water.

  • 11.
    Gopakumar, Aswin
    et al.
    Umeå Universirty, 901 87 Umeå, Sweden.
    Rajasekar, Kirthana
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Sridharan, Shrihari
    Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Kerala 695551, India, Kerala.
    SIMULTANEOUS ACTION OF FINITELY MANY INTERVAL MAPS: SOME DYNAMICAL AND STATISTICAL PROPERTIES2024In: Real Analysis Exchange, ISSN 0147-1937, E-ISSN 1930-1219, Vol. 49, no 1, p. 13-66Article in journal (Refereed)
    Abstract [en]

    We consider finitely many interval maps simultaneously acting on the unit interval I = [0, 1] in the real line R; each with utmost finitely many jump discontinuities and study certain important statistical properties. Even though we use the symbolic space on N letters to reduce the case of simultaneous dynamics to maps on an appropriate space, our aim in this paper remains to resolve ergodicity, rates of recurrence, decay of correlations and invariance principles leading to the central limit theorem for the dynamics that evolves through simultaneous action. In order to achieve our ends, we define various Ruelle operators, normalise them by various means and exploit their spectra.

  • 12.
    Gowda, V. Krishne
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Rosén, Tomas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. DESY, D-22607 Hamburg, Germany..
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Nanofibril Alignment during Assembly Revealed by an X-ray Scattering-Based Digital Twin2022In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 16, no 2, p. 2120-2132Article in journal (Refereed)
    Abstract [en]

    The nanostructure, primarily particle orientation, controls mechanical and functional (e.g., mouthfeel, cell compatibility, optical, morphing) properties when macroscopic materials are assembled from nanofibrils. Understanding and controlling the nanostructure is therefore an important key for the continued development of nanotechnology. We merge recent developments in the assembly of biological nanofibrils, X-ray diffraction orientation measurements, and computational fluid dynamics of complex flows. The result is a digital twin, which reveals the complete particle orientation in complex and transient flow situations, in particular the local alignment and spatial variation of the orientation distributions of different length fractions, both along the process and over a specific cross section. The methodology forms a necessary foundation for analysis and optimization of assembly involving anisotropic particles. Furthermore, it provides a bridge between advanced in operandi measurements of nanostructures and phenomena such as transitions between liquid crystal states and in silico studies of particle interactions and agglomeration.

  • 13.
    Gowda, V. Krishne
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Rosén, Tomas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Effects of fluid properties, flow parameters and geometrical variations on viscous threads in microfluidic channelsManuscript (preprint) (Other academic)
    Abstract [en]

    We report a combined experimental and numerical investigation to decipher and delineate the role of fluid properties, flow parameters, and geometries on the dynamics of viscous thread formation in microchannels with miscible solvents. A methodological analysis based on the evolution of viscous threads unveils the significance of effective interfacial tension (EIT) induced by the virtue of concentration gradients between the non-equilibrium miscible fluid pair colloidal dispersions and their own solvent.  Functional scaling relationships developed with dimensionless capillary and Weber numbers, together with thread quantities thread detachment length, and thread width, shed light on the complex interplay of hydrodynamic effects and viscous microflow processes. The detachment of viscous threads inside microchannels is governed by the unified hydrodynamic effects of inertia, capillary, and viscous stresses in contrast to the natural phenomenon of self-lubrication,  bringing new insights to the physical phenomena involved in the confined microsystems. Exploiting the experimentally measured thread quantities, the scaling laws are practically applied to estimate the inherent fluid properties such as EIT between two inhomogeneous miscible fluids, and the fluid viscosities. In addition, the cross-sectional aspect ratio of the channels is varied numerically in conjunction with the converging shaped sections.  For specified flow rates and given rheologies of the fluids,  a flow-focusing configuration producing the shortest thread detachment length, and a longer region of strain rate along the centreline is identified. Overall, this work provides a consolidated description of the effect of fluid properties, flow parameters, and geometry on the formation of miscible viscous threads in microchannel flows. 

  • 14.
    Guan, Tianfu
    et al.
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Chen, Wei
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany.;Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen Key Lab Ultraintense Laser & Adv Mat Tech, Shenzhen 518118, Peoples R China.;Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China..
    Tang, Haodong
    Shenzhen Technol Univ, Coll Integrated Circuits & Optoelect Chips, Shenzhen 518118, Peoples R China..
    Li, Dong
    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China..
    Wang, Xiao
    Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen Key Lab Ultraintense Laser & Adv Mat Tech, Shenzhen 518118, Peoples R China.;Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China..
    Weindl, Christian L.
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Wang, Yawen
    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China..
    Liang, Zhiqiang
    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China..
    Liang, Suzhe
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Xiao, Tianxiao
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Tu, Suo
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Jiang, Lin
    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China..
    Mueller-Buschbaum, Peter
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany.;Tech Univ Munich, Heinz Maier Leibnitz Zent MLZ, D-85748 Garching, Germany..
    Decoding the Self-Assembly Plasmonic Interface Structure in a PbS Colloidal Quantum Dot Solid for a Photodetector2023In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 17, no 22, p. 23010-23019Article in journal (Refereed)
    Abstract [en]

    Hybrid plasmonic nanostructures have gained enormous attention in a variety of optoelectronic devices due to their surface plasmon resonance properties. Self-assembled hybrid metal/quantum dot (QD) architectures offer a means of coupling the properties of plasmonics and QDs to photodetectors, thereby modifying their functionality. The arrangement and localization of hybrid nanostructures have an impact on exciton trapping and light harvesting. Here, we present a hybrid structure consisting of self-assembled gold nanospheres (Au NSs) embedded in a solid matrix of PbS QDs for mapping the interface structures and the motion of charge carriers. Grazing-incidence small-angle X-ray scattering is utilized to analyze the localization and spacing of the Au NSs within the hybrid structure. Furthermore, by correlating the morphology of the Au NSs in the hybrid structure with the corresponding differences observed in the performance of photodetectors, we are able to determine the impact of interface charge carrier dynamics in the coupling structure. From the perspective of architecture, our study provides insights into the performance improvement of optoelectronic devices.

  • 15.
    Harder, Constantin
    et al.
    Deutsch Elekt Synchrot DESY, D-22607 Hamburg, Germany.;Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Betker, Marie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. Deutsch Elekt Synchrot DESY, D-22607 Hamburg, Germany.
    Alexakis, Alexandros Efraim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Bulut, Yusuf
    Deutsch Elekt Synchrot DESY, D-22607 Hamburg, Germany.;Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Sochor, Benedikt
    Deutsch Elekt Synchrot DESY, D-22607 Hamburg, Germany..
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Muller-Buschbaum, Peter
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany.;Tech Univ Munich, Heinz Maier Leibnitz Zent MLZ, D-85748 Garching, Germany..
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. Deutsch Elekt Synchrot DESY, D-22607 Hamburg, Germany.
    Poly(sobrerol methacrylate) Colloidal Inks Sprayed onto Cellulose Nanofibril Thin Films for Anticounterfeiting Applications2024In: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 7, no 9, p. 10840-10851Article in journal (Refereed)
    Abstract [en]

    The colloidal layer formation on porous materials is a crucial step for printing and applying functional coatings, which can be used to fabricate anticounterfeiting paper. The deposition of colloidal layers and subsequent thermal treatment allows for modifying the hydrophilicity of the surface of a material. In the present work, wood-based colloidal inks are applied by spray deposition on spray-deposited porous cellulose nanofibrils (CNF) films. The surface modification by thermal annealing of the fabricated colloid-cellulose hybrid thin films is investigated in terms of layering and hydrophobicity. The polymer colloids in the inks are core-shell nanoparticles with different sizes and glass transition temperatures (T-g), thus enabling different and low thermal treatment temperatures. The ratio between the core polymers, poly(sobrerol methacrylate) (PSobMA), and poly(-butyl methacrylate) (PBMA) determines the T-g and hence allows for tailoring of the T-g. The layer formation of the colloidal inks on the porous CNF layer depends on the imbibition properties of the CNF layer which is determined by their morphology. The water adhesion of the CNF layer decreases due to the deposition of the colloids and thermal treatment except for the colloids with a size smaller than the void size of the porous CNF film. In this case, the colloids are imbibed into the CNF layer when T-g of the colloids is reached and the polymer chains transit in a mobile phase. Tailored aggregate and nanoscale-embedded hybrid structures are achieved depending on the colloid properties. The imbibition of these colloids into the porous CNF films is verified with grazing incidence small-angle X-ray scattering. This study shows a route for tuning the nanoscale structure and macroscopic physicochemical properties useful for anticounterfeiting paper.

  • 16.
    Kalbfleisch, Sebastian
    et al.
    Lund Univ, Max IV Lab, S-22100 Lund, Sweden..
    Zhang, Yuhe
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Kahnt, Maik
    Lund Univ, Max IV Lab, S-22100 Lund, Sweden..
    Buakor, Khachiwan
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Langer, Max
    Univ Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup,Grenoble INP,TIMC, F-38000 Grenoble, France..
    Dreier, Till
    Lund Univ, Dept Med Radiat Phys, Clin Sci Lund, S-22185 Lund, Sweden.;Excillum AB, Jan Stenbecks Torg 17, S-16440 Kista, Sweden..
    Dierks, Hanna
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Stjarneblad, Philip
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Larsson, Emanuel
    Lund Univ, Dept Construct Sci, Div Solid Mech, S-22100 Lund, Sweden.;Lund Univ, Dept Construct Sci, LUNARC, S-22100 Lund, Sweden..
    Gordeyeva, Korneliya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Chayanun, Lert
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Wallentin, Jesper
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Bech, Martin
    Lund Univ, Dept Med Radiat Phys, Clin Sci Lund, S-22185 Lund, Sweden..
    Villanueva-Perez, Pablo
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    X-ray in-line holography and holotomography at the NanoMAX beamline2022In: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 29, p. 224-229Article in journal (Refereed)
    Abstract [en]

    Coherent X-ray imaging techniques, such as in-line holography, exploit the high brilliance provided by diffraction-limited storage rings to perform imaging sensitive to the electron density through contrast due to the phase shift, rather than conventional attenuation contrast. Thus, coherent X-ray imaging techniques enable high-sensitivity and low-dose imaging, especially for low-atomic-number (Z) chemical elements and materials with similar attenuation contrast. Here, the first implementation of in-line holography at the NanoMAX beamline is presented, which benefits from the exceptional focusing capabilities and the high brilliance provided by MAX IV, the first operational diffractionlimited storage ring up to approximately 300 eV. It is demonstrated that in-line holography at NanoMAX can provide 2D diffraction-limited images, where the achievable resolution is only limited by the 70 nm focal spot at 13 keV X-ray energy. Also, the 3D capabilities of this instrument are demonstrated by performing holotomography on a chalk sample at a mesoscale resolution of around 155 nm. It is foreseen that in-line holography will broaden the spectra of capabilities of MAX IV by providing fast 2D and 3D electron density images from mesoscale down to nanoscale resolution.

  • 17.
    Kulkarni, Rohan Ajit
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Apazidis, Nicholas
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Larsson, Per Tomas
    Wallenberg Wood Sci Ctr, S-11428 Stockholm, Sweden..
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Experimental studies of dynamic compression of cellulose pulp fibers2023In: Sustainable Materials and Technologies, ISSN 2214-9937, Vol. 38, article id e00774Article in journal (Refereed)
    Abstract [en]

    The ability to control the structure of the wood-pulp fiber cell wall is an attractive means to obtain increased accessibility to the fiber interior, providing routes for functionalization of the fibers that support further processing and novel material concepts, e.g. improved degree of polymerization, nanofiltration as demonstrated in previous studies. It has been proposed that dynamic compression and decompression of the cellulose pulp fibers in the wet state make it possible to modify the cell wall significantly. We hypothesize that hydrostatic pressure exerted on fibers fully submerged in water will increase the accessibility of the fiber wall by penetrating the fiber through weak spots in the cell wall. To pursue this, we have developed an experimental facility that can subject wet cellulose pulp samples to a pressure pulse -10 ms long and with a peak pressure of -300 MPa. The experiment is thus specifically designed to elucidate the effect of a rapid high-pressure pulse passing through the cellulose sample and enables studies of changes in structural properties over different size ranges. Different characterization techniques, including Scanning electron microscopy, X-ray diffraction, and wide- and small-angle X-ray scattering, have been used to evaluate the material exposed to pulsed pressure. The mechanism of pressure build-up is estimated computationally to complement the results. Key findings from the experiments consider a decrease in crystallinity and changes in the surface morphology of the cellulose sample.

  • 18.
    Motezakker, Ahmad Reza
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Cordoba, Andres
    Kummer, Nico
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Rosén, Tomas
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Nyström, Gustav
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Coarse-grained modeling of oppositely charged polyelectrolytes: cellulose nanocrystals and amyloid systemManuscript (preprint) (Other academic)
  • 19.
    Motezakker, Ahmad Reza
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Córdoba, Andrés
    Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
    Rosén, Tomas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Effect of Stiffness on the Dynamics of Entangled Nanofiber Networks at Low Concentrations2023In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 56, no 23, p. 9595-9603Article in journal (Refereed)
    Abstract [en]

    Biopolymer network dynamics play a significant role in both biological and materials science. This study focuses on the dynamics of cellulose nanofibers as a model system given their relevance to biology and nanotechnology applications. Using large-scale coarse-grained simulations with a lattice Boltzmann fluid coupling, we investigated the reptation behavior of individual nanofibers within entangled networks. Our analysis yields essential insights, proposing a scaling law for rotational diffusion, quantifying effective tube diameter, and revealing release mechanisms during reptation, spanning from rigid to semiflexible nanofibers. Additionally, we examine the onset of entanglement in relation to the nanofiber flexibility within the network. Microrheology analysis is conducted to assess macroscopic viscoelastic behavior. Importantly, our results align closely with previous experiments, validating the proposed scaling laws, effective tube diameters, and onset of entanglement. The findings provide an improved fundamental understanding of biopolymer network dynamics and guide the design of processes for advanced biobased materials. 

  • 20.
    Motezakker, Ahmad Reza
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Greca, Luiz G
    Boschi, Enrico
    siqueira, Gilberto
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Rosén, Tomas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Nyström, Gustav
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Stick, Slide, or bounce: charge density controls nanoparticle diffusionManuscript (preprint) (Other academic)
  • 21.
    Nordenström, Malin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Hollertz, Rebecca
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wennmalm, Stefan
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics.
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Mehandzhiyski, Aleksandar
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrköping, Sweden..
    Rolland, Nicolas
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrköping, Sweden..
    Zozoulenko, Igor
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrköping, Sweden..
    Söderberg, Daniel
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    The structure of cellulose nanofibril networks at low concentrations and their stabilizing action on colloidal particles2022In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 297, p. 120046-, article id 120046Article in journal (Refereed)
    Abstract [en]

    The structure and dynamics of networks formed by rod-shaped particles can be indirectly investigated by measuring the diffusion of spherical tracer particles. This method was used to characterize cellulose nanofibril (CNF) networks in both dispersed and arrested states, the results of which were compared with coarse-grained Brownian dynamics simulations. At a CNF concentration of 0.2 wt% a transition was observed where, below this concentration tracer diffusion is governed by the increasing macroscopic viscosity of the dispersion. Above 0.2 wt%, the diffusion of small particles (20-40 nm) remains viscosity controlled, while particles (100-500 nm) become trapped in the CNF network. Sedimentation of silica microparticles (1-5 mu m) in CNF dispersions was also determined, showing that sedimentation of larger particles is significantly affected by the presence of CNF. At concentrations of 0.2 wt%, the sedimentation velocity of 5 mu m particles was reduced by 99 % compared to pure water.

  • 22.
    Nygård, K.
    et al.
    MAX IV Laboratory, Lund University, Lund, Sweden.
    Rosén, Tomas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Gordeyeva, Korneliya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Cerenius, Y.
    MAX IV Laboratory, Lund University, Lund, Sweden.
    et al.,
    ForMAX – a beamline for multiscale and multimodal structural characterization of hierarchical materials2024In: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 31, no 2, p. 363-377Article in journal (Refereed)
    Abstract [en]

    The ForMAX beamline at the MAX IV Laboratory provides multiscale and multimodal structural characterization of hierarchical materials in the nanometre to millimetre range by combining small- and wide-angle X-ray scattering with full-field microtomography. The modular design of the beamline is optimized for easy switching between different experimental modalities. The beamline has a special focus on the development of novel fibrous materials from forest resources, but it is also well suited for studies within, for example, food science and biomedical research.

  • 23.
    Redlinger-Pohn, Jakob D.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. Treesearch, S-11428 Stockholm, Sweden..
    Petkovsek, Martin
    Univ Ljubljana, Fac Mech Engn, Lab Water & Turbine Machines, Ljubljana 1000, Slovenia..
    Gordeyeva, Korneliya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Zupanc, Mojca
    Univ Ljubljana, Fac Mech Engn, Lab Water & Turbine Machines, Ljubljana 1000, Slovenia..
    Gordeeva, Alisa
    Stockholm Univ, Dept Mat & Environm Chem, S-11418 Stockholm, Sweden..
    Zhang, Qilun
    Linköping Univ, Lab Organ Elect, S-58330 Linköping, Sweden..
    Dular, Matevz
    Univ Ljubljana, Fac Mech Engn, Lab Water & Turbine Machines, Ljubljana 1000, Slovenia..
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Cavitation Fibrillation of Cellulose Fiber2022In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 23, no 3, p. 847-862Article in journal (Refereed)
    Abstract [en]

    Cellulose fibrils are the structural backbone of plants and, if carefully liberated from biomass, a promising building block for a bio-based society. The mechanism of the mechanical release-fibrillation-is not yet understood, which hinders efficient production with the required reliable quality. One promising process for fine fibrillation and total fibrillation of cellulose is cavitation. In this study, we investigate the cavitation treatment of dissolving, enzymatically pretreated, and derivatized (TEMPO oxidized and carboxymethylated) cellulose fiber pulp by hydrodynamic and acoustic (i.e., sonication) cavitation. The derivatized fibers exhibited significant damage from the cavitation treatment, and sonication efficiently fibrillated the fibers into nanocellulose with an elementary fibril thickness. The breakage of cellulose fibers and fibrils depends on the number of cavitation treatment events. In assessing the damage to the fiber, we presume that microstreaming in the vicinity of imploding cavities breaks the fiber into fibrils, most likely by bending. A simple model showed the correlation between the fibrillation of the carboxymethylated cellulose (CMCe) fibers, the sonication power and time, and the relative size of the active zone below the sonication horn.

  • 24.
    Reus, Manuel A.
    et al.
    Tech Univ Munich, Chair Funct Mat, TUM Sch Nat Sci, Dept Phys, James Franck Str 1, D-85748 Garching, Germany..
    Baier, Thomas
    Tech Univ Munich, Chair Funct Mat, TUM Sch Nat Sci, Dept Phys, James Franck Str 1, D-85748 Garching, Germany..
    Lindenmeir, Christoph G.
    Tech Univ Munich, Chair Funct Mat, TUM Sch Nat Sci, Dept Phys, James Franck Str 1, D-85748 Garching, Germany..
    Weinzierl, Alexander F.
    Tech Univ Munich, Chair Funct Mat, TUM Sch Nat Sci, Dept Phys, James Franck Str 1, D-85748 Garching, Germany..
    Buyan-Arivjikh, Altantulga
    Tech Univ Munich, Chair Funct Mat, TUM Sch Nat Sci, Dept Phys, James Franck Str 1, D-85748 Garching, Germany..
    Wegener, Simon A.
    Tech Univ Munich, Chair Funct Mat, TUM Sch Nat Sci, Dept Phys, James Franck Str 1, D-85748 Garching, Germany..
    Kosbahn, David P.
    Tech Univ Munich, Chair Funct Mat, TUM Sch Nat Sci, Dept Phys, James Franck Str 1, D-85748 Garching, Germany..
    Reb, Lennart K.
    Tech Univ Munich, Chair Funct Mat, TUM Sch Nat Sci, Dept Phys, James Franck Str 1, D-85748 Garching, Germany..
    Rubeck, Jan
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany..
    Schwartzkopf, Matthias
    Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany..
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Mueller-Buschbaum, Peter
    Tech Univ Munich, Chair Funct Mat, TUM Sch Nat Sci, Dept Phys, James Franck Str 1, D-85748 Garching, Germany..
    Modular slot-die coater for in situ grazing-incidence x-ray scattering experiments on thin films2024In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 95, no 4, article id 043907Article in journal (Refereed)
    Abstract [en]

    Multimodal in situ experiments during slot-die coating of thin films pioneer the way to kinetic studies on thin-film formation. They establish a powerful tool to understand and optimize the formation and properties of thin-film devices, e.g., solar cells, sensors, or LED films. Thin-film research benefits from time-resolved grazing-incidence wide- and small-angle x-ray scattering (GIWAXS/GISAXS) with a sub-second resolution to reveal the evolution of crystal structure, texture, and morphology during the deposition process. Simultaneously investigating optical properties by in situ photoluminescence measurements complements in-depth kinetic studies focusing on a comprehensive understanding of the triangular interdependency of processing, structure, and function for a roll-to-roll compatible, scalable thin-film deposition process. Here, we introduce a modular slot-die coater specially designed for in situ GIWAXS/GISAXS measurements and applicable to various ink systems. With a design for quick assembly, the slot-die coater permits the reproducible and comparable fabrication of thin films in the lab and at the synchrotron using the very same hardware components, as demonstrated in this work by experiments performed at Deutsches Elektronen-Synchrotron (DESY). Simultaneous to GIWAXS/GISAXS, photoluminescence measurements probe optoelectronic properties in situ during thin-film formation. An environmental chamber allows to control the atmosphere inside the coater. Modular construction and lightweight design make the coater mobile, easy to transport, quickly extendable, and adaptable to new beamline environments.

  • 25.
    Reus, Manuel A.
    et al.
    Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Reb, Lennart K.
    Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Kosbahn, David P.
    Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany, Notkestraße 85.
    Müller-Buschbaum, Peter
    Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1; Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstraße 1, 85748 Garching, Germany, Lichtenbergstraße 1.
    INSIGHT: in situ heuristic tool for the efficient reduction of grazing-incidence X-ray scattering data2024In: Journal of applied crystallography, ISSN 0021-8898, E-ISSN 1600-5767, Vol. 57, p. 509-528Article in journal (Refereed)
    Abstract [en]

    INSIGHT is a Python-based software tool for processing and reducing 2D grazing-incidence wide- and small-angle X-ray scattering (GIWAXS/GISAXS) data. It offers the geometric transformation of the 2D GIWAXS/GISAXS detector image to reciprocal space, including vectorized and parallelized pixelwise intensity correction calculations. An explicit focus on efficient data management and batch processing enables full control of large time-resolved synchrotron and laboratory data sets for a detailed analysis of kinetic GIWAXS/ GISAXS studies of thin films. It processes data acquired with arbitrarily rotated detectors and performs vertical, horizontal, azimuthal and radial cuts in reciprocal space. It further allows crystallographic indexing and GIWAXS pattern simulation, and provides various plotting and export functionalities. Customized scripting offers a one-step solution to reduce, process, analyze and export findings of large in situ and operando data sets.

  • 26.
    Ribca, Iuliana
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Sochor, Benedikt
    Deutsches-Elektronen Synchrotron (DESY).
    Betker, Marie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. Deutsches-Elektronen Synchrotron (DESY).
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. Deutsches-Elektronen Synchrotron (DESY).
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Sevastyanova, Olena
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Meier, Michael A.R.
    Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany;Institute of Biological and Chemical Systems─Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Impact of lignin source on the performance of thermoset resins2023In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 194, p. 112141-112141, article id 112141Article in journal (Refereed)
    Abstract [en]

    A series of different technical hardwood lignin-based resins have been successfully synthesized, characterized, and utilised to produce thiol-ene thermoset polymers. Firstly, technical lignin was fractionated and allylated, whereafter it was crosslinked with a trifunctional thiol. Structural and morphological characteristics of the lignin fractions were studied by 1H NMR, 31P NMR, SEC, FTIR, DSC, TGA, and WAXS. The hardwood lignin fractions have a high content of C5-substituted OH groups. The WAXS studies on lignin fractions revealed the presence of two π-π stacking conformations, sandwiched (4.08–4.25 Å) and T-shaped (6.52–6.91 Å). The presence of lignin superstructures with distances/sizes between 10.5 and 12.8 Å was also identified. The curing reaction of the thermosets was investigated by RT-FTIR. Almost all thermosets (excepting one fraction) reached 95% of the thiol conversion in less than 17 h, revealing the enhanced reactivity of the allylated hardwood lignin samples.

    The mechanical properties of the thermosets were investigated by DMA. The curing performance, as well as the final thermoset properties, have been correlated to variations in chemical composition and morphological differences of lignin fractions. The described results clearly demonstrate that technical hardwood lignins can be utilized for these applications, but also that significant differences compared to softwood lignins have to be considered for material design.

    Download (pdf)
    Impact of lignin source on the performance of thermoset resins
  • 27.
    Rosén, Tomas
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Department of Chemistry, Stony Brook University, Stony Brook, 11794-3400, NY, United States.
    He, HongRui
    Wang, Ruifu
    Gordeyeva, Korneliya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Motezakker, Ahmad Reza
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Fluerasu, Andrei
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser.
    Hsiao, Benjamin S.
    Exploring nanofibrous networks with x-ray photon correlation spectroscopy through a digital twin2023In: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 108, no 1, article id 014607Article in journal (Refereed)
    Abstract [en]

    We demonstrate a framework of interpreting data from x-ray photon correlation spectroscopy experiments with the aid of numerical simulations to describe nanoscale dynamics in soft matter. This is exemplified with the transport of passive tracer gold nanoparticles in networks of charge-stabilized cellulose nanofibers. The main structure of dynamic modes in reciprocal space could be replicated with a simulated system of confined Brownian motion, a digital twin, allowing for a direct measurement of important effective material properties describing the local environment of the tracers. 

  • 28.
    Rosén, Tomas
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hsiao, Benjamin S.
    Chemistry Department, Stony Brook University, Stony Brook, NY, 11794‐3400 USA.
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Elucidating the Opportunities and Challenges for Nanocellulose Spinning2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 28, p. 2001238-Article in journal (Refereed)
    Abstract [en]

    Man-made continuous fibers play an essential role in society today. With the increase in global sustainability challenges, there is a broad spectrum of societal needs where the development of advanced biobased fibers could provide means to address the challenges. Biobased regenerated fibers, produced from dissolved cellulose are widely used today for clothes, upholstery, and linens. With new developments in the area of advanced biobased fibers, it would be possible to compete with high-performance synthetic fibers such as glass fibers and carbon fibers as well as to provide unique functionalities. One possible development is to fabricate fibers by spinning filaments from nanocellulose, Nature's nanoscale high-performance building block, which will require detailed insights into nanoscale assembly mechanisms during spinning, as well as knowledge regarding possible functionalization. If successful, this could result in a new class of man-made biobased fibers. This work aims to identify the progress made in the field of spinning of nanocellulose filaments, as well as outline necessary steps for efficient fabrication of such nanocellulose-based filaments with controlled and predictable properties.

  • 29.
    Rosén, Tomas
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA;Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden;Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
    Wang, Ruifu
    Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA.
    He, HongRui
    Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA.
    Zhan, Chengbo
    Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA.
    Chodankar, Shirish
    National Synchrotron Light Source II, Brookhaven National Lab, Upton, NY, USA.
    Hsiao, Benjamin S.
    Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA.
    Understanding ion-induced assembly of cellulose nanofibrillar gels through shear-free mixing and in situ scanning-SAXS2021In: Nanoscale Advances, E-ISSN 2516-0230, Vol. 3, no 17, p. 4940-4951Article in journal (Refereed)
    Abstract [en]

    During the past decade, cellulose nanofibrils (CNFs) have shown tremendous potential as a building block to fabricate new advanced materials that are both biocompatible and biodegradable. The excellent mechanical properties of the individual CNF can be transferred to macroscale fibers through careful control in hydrodynamic alignment and assembly processes. The optimization of such processes relies on the understanding of nanofibril dynamics during the process, which in turn requires in situ characterization. Here, we use a shear-free mixing experiment combined with scanning small-angle X-ray scattering (scanning-SAXS) to provide time-resolved nanoscale kinetics during the in situ assembly of dispersed cellulose nanofibrils (CNFs) upon mixing with a sodium chloride solution. The addition of monovalent ions led to the transition to a volume-spanning arrested (gel) state. The transition of CNFs is associated with segmental aggregation of the particles, leading to a connected network and reduced Brownian motion, whereby an aligned structure can be preserved. Furthermore, we find that the extensional flow seems to enhance the formation of these segmental aggregates, which in turn provides a comprehensible explanation for the superior material properties obtained in shear-free processes used for spinning filaments from CNFs. This observation clearly highlights the need for different assembly strategies depending on morphology and interactions of the dispersed nanoparticles, where this work can be used as a guide for improved nanomaterial processes.

  • 30.
    Xiao, Tianxiao
    et al.
    Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1.
    Tu, Suo
    Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1.
    Tian, Ting
    Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1.
    Chen, Wei
    Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, and College of Engineering Physics, Shenzhen Technology University, 518118 Shenzhen, China.
    Cao, Wei
    Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433 Shanghai, China.
    Liang, Suzhe
    Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1.
    Guo, Renjun
    Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1.
    Liu, Liangzhen
    Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany.
    Li, Yanan
    Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1.
    Guan, Tianfu
    Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1.
    Liu, Haochen
    Department of Electrical & Electronic Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055 Shenzhen, China, 1088 Xueyuan Avenue.
    Wang, Kai
    Department of Electrical & Electronic Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055 Shenzhen, China, 1088 Xueyuan Avenue.
    Schwartzkopf, Matthias
    Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany, Notkestraße 85.
    Fischer, Roland A.
    Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany, Notkestraße 85.
    Müller-Buschbaum, Peter
    Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1.
    Autonomous self-healing hybrid energy harvester based on the combination of triboelectric nanogenerator and quantum dot solar cell2024In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 125, article id 109555Article in journal (Refereed)
    Abstract [en]

    Realization of multi-source energy harvesting with one single device would maximize power output. Thus, it is emerging as a promising strategy towards renewable energy generation and has attracted worldwide attention in the past decades. Capable of capturing mechanical energy that is ubiquitous in the ambient environment, triboelectric nanogenerator (TENG) has been considered a novel yet effective source towards next-generation energy harvesting. In this work, a flexible hybrid energy harvester (HEH) is developed via the rational integration of autonomous self-healing TENG and high bending-stable lead sulfide quantum dot (PbS QD) solar cell, enabling independent electricity generation by two different mechanisms. The single-electrode mode TENG component with self-healing is realized by a polydimethylsiloxane/Triton X-100 (PDMS/TX100) mixture as the dielectric layer and the shared gold (Au) electrode, which generates 0.39 µA of output current (Iout), 24.6 V of output voltages (Vout), 15.4 nC of transfer charges (Qsc), and 7.80 mW m−2 of output power peak density. The thin-film solar cell component is based on a PbS QD layer as the light absorber with a planar structure fabricated under low-cost and compatible conditions, achieving 22.8 mA cm−2 of short-circuit current density (Jsc) and 4.92% of power conversion efficiency (PCE). As a proof of concept, an electronic watch is successfully powered by harnessing ambient mechanical and solar energy with a hybridized energy cell. This approach will offer more opportunities to construct a versatile platform towards remote monitoring and smart home systems.

  • 31.
    Östmans, Rebecca
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Sellman, Farhiya Alex
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Rosén, Tomas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Advanced characterization of nanocelluloses and their dispersions - linked to final material properties2024Manuscript (preprint) (Other academic)
1 - 31 of 31
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf