kth.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Padovani, Filippo
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Sommerfeldt, Nelson
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration. Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA.;Michigan Technol Univ, Dept Elect & Comp Engn, Houghton, MI 49931 USA..
    Longobardi, Francesca
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Pearce, Joshua M.
    Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA.;Michigan Technol Univ, Dept Elect & Comp Engn, Houghton, MI 49931 USA.;Western Univ, Dept Elect & Comp Engn, London, ON, Canada..
    Decarbonizing rural residential buildings in cold climates: A techno-economic analysis of heating electrification2021In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 250, article id 111284Article in journal (Refereed)
    Abstract [en]

    Given the need for decarbonization of the heating sector and the acute need of a propane replacement in the U.S. Upper Midwest, this study quantifies the techno-economic characteristics of sustainable heating electrification in isolated rural, residential buildings in cold climates without natural gas supply. Archetypal buildings are modeled under four levels of electrification. At each electrification level, a parametric solar photovoltaic (PV) sizing analysis is performed and the total life cycle cost, renewable fraction and greenhouse gas (GHG) emissions are calculated based on the primary energy supply for each building type. Cost optimal solutions are stress-tested with multi-dimensional sensitivity analyses. The results show that the total life cycle cost favors heating electrification in all cases and combining PV with heat pumps can reduce residential building GHG emissions by up to 50% immediately. This effect will grow over time, with over 90% reduction of building emissions if renewable energy targets are met. In using primary energy and emissions along with the multi-dimensional sensitivities, this study unique demonstrates the complex techno-economic interactions of PV and heat pumps. It is concluded that electrification is an economically viable decarbonization method for cold climates both now and in the future.

  • 2.
    Sommerfeldt, Nelson
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration. Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA..
    Pearce, Joshua M.
    Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA.;Western Univ, Ivey Business Sch, Dept Elect & Comp Engn, London, ON, England..
    Can grid-tied solar photovoltaics lead to residential heating electrification?: A techno-economic case study in the midwestern US2023In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 336, article id 120838Article in journal (Refereed)
    Abstract [en]

    This study aims to quantify the techno-economic potential of using solar photovoltaics (PV) to support heat pumps (HP) towards the replacement of natural gas heating in a representative North American residence from a house owner's point of view. For this purpose, simulations are performed on: (1) a residential natural gas-based heating system and grid electricity, (2) a residential natural gas-based heating system with PV to serve the electric load, (3) a residential HP system with grid electricity, and (4) a residential HP+PV system. Detailed descriptions are provided along with a comprehensive sensitivity analysis for identifying specific boundary conditions that enable lower total life cycle cost. The results show that under typical inflation conditions, the lifecycle cost of natural gas and reversable, air-source heat pumps are nearly identical, however the electricity rate structure makes PV costlier. With higher rates of inflation or lower PV capital costs, PV becomes a hedge against rising prices and encourages the adoption of HPs by also locking in both electricity and heating cost growth. The real internal rate of return for such prosumer technologies is 20x greater than a long-term certificate of deposit, which demonstrates the additional value PV and HP technologies offer prosumers over comparably secure investment vehicles while making substantive reductions in carbon emissions. Using the large volume of results generated, impacts on energy policy are discussed, including rebates, net-metering, and utility business models.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf