Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jiang, Wangshu
    et al.
    Uppsala Univ, Dept Cell & Mol Biol, Biomed Ctr, POB 596, SE-75124 Uppsala, Sweden..
    Askarieh, Glareh
    Uppsala Univ, Dept Cell & Mol Biol, Biomed Ctr, POB 596, SE-75124 Uppsala, Sweden..
    Shkumatov, Alexander
    Vrije Univ Brussel, Struct Biol Brussels, B-1050 Brussels, Belgium.;VIB VUB Ctr Struct Biol, B-1050 Brussels, Belgium..
    Hedhammar, My
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Knight, Stefan D.
    Uppsala Univ, Dept Cell & Mol Biol, Biomed Ctr, POB 596, SE-75124 Uppsala, Sweden..
    Structure of the N-terminal domain of Euprosthenops australis dragline silk suggests that conversion of spidroin dope to spider silk involves a conserved asymmetric dimer intermediate2019In: Acta Crystallographica Section D: Structural Biology, ISSN 2059-7983, Vol. 75, p. 618-627Article in journal (Refereed)
    Abstract [en]

    Spider silk is a biomaterial with exceptional mechanical toughness, and there is great interest in developing biomimetic methods to produce engineered spider silk-based materials. However, the mechanisms that regulate the conversion of spider silk proteins (spidroins) from highly soluble dope into silk are not completely understood. The N-terminal domain (NT) of Euprosthenops australis dragline silk protein undergoes conformational and quaternary-structure changes from a monomer at a pH above 7 to a homodimer at lower pH values. Conversion from the monomer to the dimer requires the protonation of three conserved glutamic acid residues, resulting in a low-pH 'locked' dimer stabilized by symmetric electrostatic interactions at the poles of the dimer. The detailed molecular events during this transition are still unresolved. Here, a 2.1 angstrom resolution crystal structure of an NT T61A mutant in an alternative, asymmetric, dimer form in which the electrostatic interactions at one of the poles are dramatically different from those in symmetrical dimers is presented. A similar asymmetric dimer structure from dragline silk of Nephila clavipes has previously been described. It is suggested that asymmetric dimers represent a conserved intermediate state in spider silk formation, and a revised 'lock-and-trigger' mechanism for spider silk formation is presented.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf