kth.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Guan, Tianfu
    et al.
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Chen, Wei
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany.;Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen Key Lab Ultraintense Laser & Adv Mat Tech, Shenzhen 518118, Peoples R China.;Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China..
    Tang, Haodong
    Shenzhen Technol Univ, Coll Integrated Circuits & Optoelect Chips, Shenzhen 518118, Peoples R China..
    Li, Dong
    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China..
    Wang, Xiao
    Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen Key Lab Ultraintense Laser & Adv Mat Tech, Shenzhen 518118, Peoples R China.;Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China..
    Weindl, Christian L.
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Wang, Yawen
    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China..
    Liang, Zhiqiang
    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China..
    Liang, Suzhe
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Xiao, Tianxiao
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Tu, Suo
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany..
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany..
    Jiang, Lin
    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China..
    Mueller-Buschbaum, Peter
    Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, D-85748 Garching, Germany.;Tech Univ Munich, Heinz Maier Leibnitz Zent MLZ, D-85748 Garching, Germany..
    Decoding the Self-Assembly Plasmonic Interface Structure in a PbS Colloidal Quantum Dot Solid for a Photodetector2023In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 17, no 22, p. 23010-23019Article in journal (Refereed)
    Abstract [en]

    Hybrid plasmonic nanostructures have gained enormous attention in a variety of optoelectronic devices due to their surface plasmon resonance properties. Self-assembled hybrid metal/quantum dot (QD) architectures offer a means of coupling the properties of plasmonics and QDs to photodetectors, thereby modifying their functionality. The arrangement and localization of hybrid nanostructures have an impact on exciton trapping and light harvesting. Here, we present a hybrid structure consisting of self-assembled gold nanospheres (Au NSs) embedded in a solid matrix of PbS QDs for mapping the interface structures and the motion of charge carriers. Grazing-incidence small-angle X-ray scattering is utilized to analyze the localization and spacing of the Au NSs within the hybrid structure. Furthermore, by correlating the morphology of the Au NSs in the hybrid structure with the corresponding differences observed in the performance of photodetectors, we are able to determine the impact of interface charge carrier dynamics in the coupling structure. From the perspective of architecture, our study provides insights into the performance improvement of optoelectronic devices.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf