Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Heusser, Stephanie A.
    et al.
    Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    Lycksell, Marie
    Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    Wang, Xueqing
    Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    McComas, Sarah E.
    Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    Howard, Rebecca J.
    Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    Lindahl, Erik
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, Centres, Science for Life Laboratory, SciLifeLab. Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    Allosteric potentiation of a ligand-gated ion channel is mediated by access to a deep membrane-facing cavity2018In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 115, no 42, p. 10672-10677Article in journal (Refereed)
    Abstract [en]

    Theories of general anesthesia have shifted in focus from bulk lipid effects to specific interactions with membrane proteins. Target receptors include several subtypes of pentameric ligand-gated ion channels; however, structures of physiologically relevant proteins in this family have yet to define anesthetic binding at high resolution. Recent cocrystal structures of the bacterial protein GLIC provide snapshots of state-dependent binding sites for the common surgical agent propofol (PFL), offering a detailed model system for anesthetic modulation. Here, we combine molecular dynamics and oocyte electrophysiology to reveal differential motion and modulation upon modification of a transmembrane binding site within each GLIC subunit. WT channels exhibited net inhibition by PFL, and a contraction of the cavity away from the pore-lining M2 helix in the absence of drug. Conversely, in GLIC variants exhibiting net PFL potentiation, the cavity was persistently expanded and proximal to M2. Mutations designed to favor this deepened site enabled sensitivity even to subclinical concentrations of PFL, and a uniquely prolonged mode of potentiation evident up to similar to 30 min after washout. Dependence of these prolonged effects on exposure time implicated the membrane as a reservoir for a lipid-accessible binding site. However, at the highest measured concentrations, potentiation appeared to be masked by an acute inhibitory effect, consistent with the presence of a discrete, water-accessible site of inhibition. These results support a multisite model of transmembrane allosteric modulation, including a possible link between lipid- and receptor-based theories that could inform the development of new anesthetics.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf