kth.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Khan, Monsurul
    et al.
    Purdue Univ, Dept Mech Engn, Indiana, PA 47905 USA..
    More, Rishabh V.
    Purdue Univ, Dept Mech Engn, Indiana, PA 47905 USA.;MIT, Dept Mech Engn, Cambridge, MA 02139 USA..
    Banaei, Arash Alizad
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for High Performance Computing, PDC.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.
    Ardekani, Arezoo M.
    Purdue Univ, Dept Mech Engn, Indiana, PA 47905 USA..
    Rheology of concentrated fiber suspensions with a load-dependent friction coefficient2023In: Physical Review Fluids, E-ISSN 2469-990X, Vol. 8, no 4, article id 044301Article in journal (Refereed)
    Abstract [en]

    We investigate the effects of fiber aspect ratio, roughness, flexibility, and volume fraction on the rheology of concentrated suspensions in a steady shear flow using direct numerical simulations. We model the fibers as inextensible continuous flexible slender bodies with the Euler-Bernoulli beam equation governing their dynamics suspended in an incompressible Newtonian fluid. The fiber dynamics and fluid flow coupling is achieved using the immersed boundary method. In addition, the fiber surface roughness might lead to interfiber contacts, resulting in normal and tangential forces between the fibers, which follow Coulomb's law of friction. The surface roughness is modeled as hemispherical pro-trusions on the fiber surfaces. Their deformation results in a normal load-dependent friction coefficient. Our simulations accurately predict the experimentally observed shear thinning in fiber suspensions. Furthermore, we find that the suspension viscosity eta increases with increasing the volume fraction, roughness, fiber rigidity, and aspect ratio. The increase in eta is the macroscopic manifestation of a similar increase in the microscopic contact contribution to the total stress with these parameters. In addition, we observe positive and negative first N1 and second N2 normal stress differences, respectively, with |N2| < |N1|, in agreement with previous experiments. Last, we propose a modified Maron-Pierce law to quantify the reduction in the jamming volume fraction by increasing the fiber aspect ratio and roughness. Our results and analysis establish the use of fiber surface tribology to tune the suspension flow behavior.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf