Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Alipour, Yousef
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Processing.
    Machining of CoCr28Mo62011Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The machining process of Cobait-Chromium medical ailoys become a veryessential topic for research due to widening range of application. They aregeneraily used because of their high wear resistance, low corrosioncharacteristics and high fatigue strength. This project describes an investigationof chip formation during the machining of Cobalt-Chromium-Molybdenum highcarbon alloy. A quick stop device has been employed to investigate mechanismof chip formation through analyzing of shear zone and shear plane. Thicknessmeasurement of segments, surface conditions after finishing, lowest valley andhighest peak with three different cutting tool inserts were studied as weil.Moreover cutting force measurement at different cutting speeds, feeds and radialnoses were performed. Microstructure and hardness of work material before andafter machining has been studied. Tool life of inserts was evaluated bymeasuring flank wear.

    The consequences obtained from the study illuminated:

    1. For the constant cutting speed and nose radius flank wear increased whenthe feed increased.
    2. For the constant feed and nose radius, increase in the cutting speedlowered flank and crater wear.
    3. Cutting force increased with the increase in feed.
    4. Increase in cutting speed to 40 m/min raised cutting force. However afterthat cutting force decreased.
    5. Insert CNMG 120408-MF1 TS2000 with cutting data v~=70 m/min, ap= 3mm and f=0.1 mm seemed fit the best in base of lower flank and craterwear, almost lower cutting force and smoother finish roughness.
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf