kth.sePublications
Change search
Refine search result
123 1 - 50 of 123
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Berg, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Fröidh, Oskar
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    TOSCA. Rail freight transport: Techno-economic analysis of energy and greenhouse gas reductions2011Report (Other academic)
    Abstract [en]

    In Stage 1 of the EU/FP7-funded project TOSCA (Technology Opportunities and Strategies toward Climate-friendly trAnsport) the techno-economical feasibility of different technolo-gies and means to reduce greenhouse gas (GHG) emissions is being analysed for different modes of transport. This is made over the long-term perspective until 2050, with 2009 as the reference year. This is the report on the rail freight transport market, applicable to the European Union (EU-27).The analysis presented in this report estimates that a number of efficient technologies and means are available, individually and in combination, to significantly reduce energy use and the resulting GHG emissions on the rail freight market until 2050. The analysis has considered the following technologies and means:

    – heavy freight trains (high payload capacity per metre of train as well as longer trains)

    – eco-driving, including traffic flow management

    – energy recovery

    – high-efficiency machinery in locomotives and electric supply

    – low air drag

    – incremental improvements, in particular reduced tare mass of wagons.

    Despite anticipated higher train speeds in most future train operations the above-mentioned technologies and means have, according to the analysis, the potential to reduce the average energy use per net-tonne-km (tkm) of payload by 40–50 % until 2050. As a consequence also the direct and indirect GHG emissions will be reduced. Energy use and GHG emissions are measured per net-tonne-km, assuming representative load factors in different operations.

  • 2.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Berg, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Fröidh, Oskar
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    TOSCA. Rail passenger transport: Techno-economic analysis of energy and greenhouse gas reductions2011Report (Other academic)
    Abstract [en]

    In Stage 1 of the EU/FP7-funded project TOSCA (Technology Opportunities and Strategies toward Climate-friendly trAnsport) the techno-economical feasibility of different technologies and means to reduce greenhouse gas (GHG) emissions is being analysed for the different modes of transport. This is made in the long-term perspective until 2050, with 2009 as the reference year. This is the report on rail passenger transport, applicable to the European Union (EU-27).The present report has been subject to review among railway experts, representing train suppliers, railway operators as well as academia. They have also responded to a questionnaire. Further, a workshop was held, where the report with assumptions and results was discussed.In the analysis presented in this report it is estimated that a number of efficient improvements that, individually and in combination, are available in order to significantly reduce energy use and the resulting GHG emissions on the rail passenger market until 2050. The analysis has considered different technologies and means:

    – low air drag

    – low train mass

    – energy recovery

    – eco-driving, including traffic flow management

    – space efficiency in trains (increasing payload per metre of train)

    – incremental improvements of energy efficiency, in particular reduced losses.

    Despite anticipated higher average train speeds in the future these combined approaches will, according to the analysis, have the potential to reduce the average specific energy use per passenger-km (pkm) in the order of 45–50 % in the very long term until 2050. As a consequ-ence also the direct and indirect GHG emissions will be reduced. The highest reductions are possible in city and regional rail operations. Reductions are more limited in high-speed opera-tions, because of the advanced technologies already applied. However, high-speed rail has today a comparatively low energy use per passenger-km, partly due to its high average load factor. To be consistent with other work packages of TOSCA, energy use and GHG emissions are measured per passenger-km, assuming representative load factors in different operations.

  • 3.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Berg, Mats
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Stichel, Sebastian
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Varför behövs Nya Stambanor i Sverige?2020Report (Other academic)
    Abstract [sv]

    Stora investeringar och omdaningar planeras i vårt transportsystem. Transporterna väntas öka starkt i framtiden och mera kapacitet måste skapas på ett hållbart sätt. Diskussionerna om vilka transportmedel som ska prioriteras, såväl som vilka objekt som vi ska satsa på, är livliga.

    En viktig fråga är satsningen på Nya Stambanor avsedda för snabba persontransporter i de redan idag hårt belastade stråken Stockholm‒Göteborg och Stockholm‒Malmö, med ett stort antal mellanliggande orter. Denna typ av järnvägar finns redan eller planeras i de flesta av världens ledande ekonomier. Syftet med att bygga nya stambanor är att öka den totala kapaciteten för person- och godstrafik på järnväg, öka punktligheten och öka tillgängligheten genom korta restider. Det ger också förutsättningar för större regionala arbetsmarknader och ökat bostadsbyggande utanför storstäderna samt en bättre miljö. Nuvarande stambanor avlastas och lämnar plats för bl a effektivare godstransporter.

    Denna rapport behandlar först järnvägens egenskaper. Järnvägen är det energieffektivaste transportmedel vi känner till, den tar liten plats och är mycket trafiksäker. Moderna tåg på modern bana är vårt snabbaste transportmedel till lands. Tåg kan bereda plats och komfort för arbete och avkoppling under resan. Enligt författarnas uppfattning bör dessa egenskaper göra järnvägen till ett förstahandsalternativ för effektiva och hållbara transporter i de segment där järnvägen är eller kan bli konkurrenskraftig.

    Prognoser och analys, samt erfaren­heter från utlandet, visar att trafikunderlaget i Sverige är tillräckligt för nya stambanor. Med de förslagna banorna väntas järnvägens totala kapacitet öka till mer än det dubbla i de mest belastade stråken. En viktig faktor är att den snabba och långsamma tågtrafiken separeras. Denna åtgärd ger ökad kapacitet, utöver vad de dubblerade spåren ger, eftersom tågen kan köra tätare efter varandra och störningarna i tågtrafiken minskar.

    Restiderna för orterna längs de nya stambanorna minskar kraftigt, i regel mellan 30 och 65%. Tillsammans med ökad turtäthet och minskade störningar ger det stora ökningar av tågtrafiken. De officiella prognoserna lider dock av ett antal allvarliga brister, varför både trafikökningen och den samhällsekonomiska lönsamheten beräkningsmässigt framstår som mindre än vad den enligt KTH:s prognoser och internationell erfarenhet borde vara.

    Författarna anser att anläggningskostnaderna är rimliga i relation till nyttorna och jämfört med vad andra omställningar i samhällets transportsystem kostar. Detsamma gäller den engångs ”klimatskuld” som uppkommer vid de flesta satsningar för framtiden inom alla trafikslag. Nya transportslag i ett tidigt utvecklingsskede (elflyg, magnettåg, Hyperloop etc) är mycket osäkra beträffande när eller om de överhuvudtaget kommer att bli tillgängliga för användning i stor skala. I flera fall skulle krävas stora tekniska genombrott som vi idag inte känner till. Vi anser att man rimligen inte idag kan besluta att satsa på helt nya tekniska system för vilka framtiden är mycket osäker. Vi kan inte heller ”vänta och se”, eftersom ytterligare kapacitet behövs redan idag och ledtiderna är långa.

    Sammanfattningsvis är de nya stambanorna ett samhällsbyggnadsprojekt och en del i transportsektorns nödvändiga omställning. De ger korta restider och effektiva transporter mellan våra största städer, liksom till och från ett stort antal mellanliggande orter, med omnejd. Godstransporterna kan också få plats på spåren och de kan utvecklas och effektiviseras. Det handlar om hållbar mobilitet för människor och gods i framtiden.

    Download full text (pdf)
    fulltext
  • 4.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Kottenhoff, Karl
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Extra wide-body passenger trains in Sweden2001Conference paper (Refereed)
  • 5.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Effektiva Tågsystem för framtida persontrafik – analys av förutsättningar och möjligheter för attraktiv tågtrafik1997Report (Other academic)
  • 6.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Sammanfattning av Effektiva Tågsystem för framtida persontrafik – analys av förutsättningar och möjligheter för attraktiv tågtrafik1997Report (Other academic)
  • 7.
    Antonsson, Hans
    et al.
    Swedish National Road and Transport Research Institute.
    Finnveden, Göran
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms).
    Gullberg, Anders
    Beser Hugosson, Muriel
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, System Analysis and Economics.
    Höjer, Mattias
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms).
    Isaksson, Karolina
    Swedish National Road and Transport Research Institute.
    Kaijser, Arne
    KTH, School of Architecture and the Built Environment (ABE), Philosophy and History, History of Science, Technology and Environment.
    Laestadius, Staffan
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.), Sustainability and Industrial Dynamics.
    Mattsson, Lars-Göran
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science.
    Summerton, Jane
    Swedish National Road and Transport Research Institute.
    Åkerman, Jonas
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms).
    Nu finns chansen att riva upp beslutet om förbifarten2014In: Dagens nyheter, ISSN 1101-2447, no 2014-09-16Article in journal (Other (popular science, discussion, etc.))
  • 8.
    Antonsson, Hans
    et al.
    Swedish National Road and Transport Research Institute.
    Finnveden, Göran
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms).
    Gullberg, Anders
    Höjer, Mattias
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms).
    Isaksson, Karolina
    Swedish National Road and Transport Research Institute.
    Kaijser, Arne
    KTH, School of Architecture and the Built Environment (ABE), Philosophy and History, History of Science, Technology and Environment.
    Laestadius, Staffan
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.), Sustainability and Industrial Dynamics.
    Mattsson, Lars-Göran
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science.
    Summerton, Jane
    Swedish National Road and Transport Research Institute.
    Åkerman, Jonas
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms).
    Elbilar och förnybara bränslen räcker inte.2014In: Dagens nyheter, ISSN 1101-2447Article in journal (Other (popular science, discussion, etc.))
  • 9.
    Casanueva, Carlos
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Krishna, Visakh V.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Jönsson, R.
    NTnet AB, Malmö, Sweden .
    Nelldal, Bo Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Transport Planning, Economics and Engineering.
    Payload optimization of articulated wagons considering train length and vehicle dynamic behaviour2016In: Civil-Comp Proceedings, ISSN 1759-3433, Vol. 110Article in journal (Refereed)
    Abstract [en]

    The Capacity4Rail EU project aims are improving the competitiveness and reliability of rail freight in order to make it more attractive for modern, more sophisticated market requirements. The work described in this paper, focuses on novel vehicle designs that can account for a higher payload per meter, both from the payload optimization and the vehicle dynamic response point of view. We analyze an articulated spine wagon composed of five car bodies and six bogies, of which four of them are shared between two car bodies. In the work package, there has been an effort to look into the implications of these very long wagons in all aspects of freight operation, and this paper focuses on two of these aspects: the gain in payload by using different configurations, and the analysis of the dynamic response of the running gear. The conclusion is that, from vehicle performance point of view, it is worth exploring the possibility of increasing payload by slightly reducing the dynamic behavior of the system, as the twelve-axle vehicle is much more flexible when it comes to modern multimodal transportation.

  • 10. Coviello, N.
    et al.
    Chiara, B. D.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    An assessment model of the single-track line carrying capacity: Influence of the signalling system and application to the Trans-Mongolian railways2014In: Ingegneria Ferroviaria, ISSN 0020-0956, Vol. 69, no 7-8, p. 627-651Article in journal (Refereed)
    Abstract [en]

    The Trans-Mongolian railway represents an interesting study case within the Trans-Asian connections, since - in these years - they have been subject to radical upgrading intended to increase its carrying capacity. This article presents a study aimed at quantifying the potential benefits that may be expected from the introduction of signalling systems based on radio block, (radio cab signalling), as the level 2 and level 3 ERTMS/ETCS; the study will resort to a dedicated analysis methodology which takes into explicit consideration the particularities of the single-track railway service and the need to set up the appropriate timetables in order to exploit at its best the potential of a more effective signalling system. To this purpose, beside the technical parameters, two operational ones are introduced, in the intent of modelling the train fleeting or platooning effects. Once the appropriate analysis formula was defined, it has been applied to the Mongolian line, thus obtaining results in the form of daily capacity maps, which are presented and discussed.

  • 11.
    Francisco, F.
    et al.
    Univ Lisbon, Inst Super Tecn, CERIS CESUR, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal.;Univ Porto, Dept Fis & Astron, Fac Ciencias, Rua Campo Alegre 687, P-4169007 Porto, Portugal.;Univ Porto, Ctr Fis Porto, Fac Ciencias, Rua Campo Alegre 687, P-4169007 Porto, Portugal..
    Teixeira, P. F.
    Univ Lisbon, Inst Super Tecn, CERIS CESUR, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal..
    Toubol, A.
    Univ Paris I Pantheon Sorbonne, Master Transports Int 2, 90 Rue Tolbiac, F-75013 Paris, France..
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Is large technological investment really a solution for a major shift to rail?: A discussion based on a Mediterranean freight corridor case-study2021In: Journal of Rail Transport Planning & Management, ISSN 2210-9706, E-ISSN 2210-9714, Vol. 19, article id 100271Article in journal (Refereed)
    Abstract [en]

    The aim of this paper is to assess how the introduction of technological innovations into a capacity constrained rail corridor may increase its ability to capture market share from road transport. The Montpellier-Perpignan section, a bottle-neck in the Mediterranean corridor, is used as a case study for the effects of implementing new rolling stock that allows for freight trains up to 1500 m, a new ballastless track replacing existing one, resilient switches and crossings, and monitoring systems that allow for a reduction in maintenance costs and closure times. The results of a cost-benefit analysis show positive net impacts, however, the increases in capacity are only enough to maintain current rail freight market shares. Evidence suggests that a heavy investment in technology in existing lines is not the most effective way to increase rail market share.

  • 12.
    Fröidh, Oskar
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Lindfeldt, Olov
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Framtida marknad, tågtrafik och kapacitet inom Stockholms Central2005Book (Refereed)
  • 13.
    Fröidh, Oskar
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Regional high-speed trains on the Svealand line: Evaluation of effects2008In: Railway development: Impacts on urban dynamics, Heidelberg: Physica-Verlag , 2008, p. 295-314Chapter in book (Refereed)
    Abstract [en]

    Several new or upgraded railway lines, primarily for regional or medium distance travel at high speed, have been opened in Sweden since the 1990s. The investment decisions were based on the expected societal benefits of increased accessibility. It was thought that it might be possible to turn regional imbalances, for example in the Stockholm-Mälaren region, into regional development through high-speed train commuting, and unemployment might thus decrease. However, some economists and organisations, for various reasons, have questioned the whole idea of constructing new railways and their possible effects on the travel market and regional development. Therefore, in order to evaluate the effects of the radical change in train service supply, a before and after study was conducted on the new Svealand line.

  • 14.
    Fröidh, Oskar
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Transport Science.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science.
    The impact of market opening on the supply of interregional train services2015In: Journal of Transport Geography, ISSN 0966-6923, E-ISSN 1873-1236, Vol. 46, p. 189-200Article in journal (Refereed)
    Abstract [en]

    A stepwise deregulation of all interregional passenger rail services in Sweden was legally completed in 2010. The incumbent operator (SJ) thereby lost the sole rights to commercial services. The most evident supply increase is the establishment of services in the low-cost niche, which rather complements than competes with the incumbent's supply. Public Transport Authorities' (PTAs) joint services have however resulted in strong competition on at least one main line. Despite a period of almost five years since deregulation, the potential effects of the market opening have not yet fully materialised. The business risk for commercial rail operators seems to be much greater than for other modes like air and long distance coach services. SJ have also during decades of deregulated intermodal and years of intramodal competition developed their products and skills and seem well prepared for competition.

  • 15.
    Fröidh, Oskar
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Transport and Economics, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport and Economics, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Tåget till framtiden: järnvägen 200 år 20562008Report (Other academic)
  • 16.
    Fröidh, Oskar
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Troche, Gerhard
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Hochgeschwindigkeitsverkehr in Schweden: Planungen und Entwicklungsperspektiven2010In: ETR Eisenbahntechnische Rundschau, ISSN 0013-2845, Vol. 59, no 3, p. 86-91Article in journal (Refereed)
    Abstract [de]

    Zunehmender Bedarf an Streckenkapazität und ein starkes Interesse an der Verbesserung der räumlichen Erreichbarkeit haben in Schweden zur Planung von Hochgeschwindigkeitsstrecken geführt. Diese können bis nach Deutschland weitergeführt werden. Ziel ist ein leistungsfähiger Eisenbahnkorridor für Personen- und Güterverkehr zwischen Skandinavien und Kontinentaleuropa.

  • 17. Islam, Dewan Md Zahurul
    et al.
    Ricci, Stefano
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE).
    How to make modal shift from road to rail possible in the European transport market, as aspired to in the EU Transport White Paper 20112016In: European Transport Research Review, ISSN 1867-0717, E-ISSN 1866-8887, Vol. 8, no 3, article id 18Article in journal (Refereed)
    Abstract [en]

    Introduction The total demand for freight transport in Europe has increased significantly in recent decades, but most of it has been handled by road transport. To fulfil the modal shift targets set in the EU White Paper 2011, it will be necessary to double rail's market share from today's 18 %, by 2050. Translating this into reality means rail will have to handle 3 to 4 times the cargo volume it does today. With this in mind, the paper develops a vision of an efficient rail freight system in 2050. Methodology To achieve the above objective, the research applies literature survey and group discussion methodology and applying a system approach. Keeping on board the EU Transport White Paper 2011 modal shift targets, as well as future freight demand and customer requirements, the current research attempts to answer the following three critical questions: How can rail offer the quality of service that will attract customers and fulfil the targets? How can rail offer its customers a price that is competitive with road? How can rail offer the capacity to meet the increased demand from modal shift? Results The authors find that the service quality can be improved by better planning, application of appropriate ICT-systems and adoption of an integrated supply chain approach. A more customer-orientated service can also be achieved by further deregulation of rail. There is also an urgent need for a faster implementation of Rail Freight Corridors (RFC). As well as liner trains, future rail freight services should be offering end-point trains, with semi/ fully automated loading/unloading equipment in hub-terminals, as well as terminals at sidings to improve the availability of intermodal operation. Conclusion To offer a competitive price and reliable service, a reduction in operating costs will be vital by implementing a number of measures, including operation of heavier and longer trains, wider loading gauge, higher average speed, and better utilisation of wagon space and all assets. This will bring increased capacity, as well as better timetable planning, signalling systems and infrastructure improvements.

  • 18.
    Kordnejad, Behzad
    et al.
    KTH, School of Architecture and the Built Environment (ABE).
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE).
    Hinder och möjligheter för överföring av godstransporter från väg till järnväg2020Report (Other academic)
    Download full text (pdf)
    fulltext
  • 19.
    Köhler, Joakim
    et al.
    WSP.
    Fröidh, Oskar
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Bilinnehavsmodell: Utveckling av bilinnehavsmodell med beroende av tillgänglighet till trafiksystemet2005Report (Other academic)
    Abstract [sv]

    I den nuvarande bilinnehavsmodell som finns i det nationella prognossystemet Sampers sker beräkningen som en kohortmodell där ett befintligt bilinnehav räknas upp med årliga in- och utsteg av bilar. Bilinnehavets regionala skillnader återspeglas av konstanter för varje kommun. Dessa konstanter är väsentligen dummy-konstanter som representerar skillnader mellan kommuner i tillgänglighet. Utöver det speglas kostnader och inkomstökningar av modellen. För att återskapa ett dagsläge och för att beräkna förändringar i bilinnehavet på grund av ekonomiska förändringar (inkomstförändringar, driv­medels­kostnads­för­änd­rin­gar etc.) är detta fullt tillräckligt. Dessvärre går det dock inte att beräkna förändringar i tillgänglighet med den nuvarande modellen. Trots det utgör skillnader i tillgänglighet en ytterst viktig faktor för att bestämma om hushåll väljer att ha bil.

     Det här projektet syftar till att konstruera alternativa modeller som klarar av att återspegla tillgänglighetsförändringars inverkan på bilinnehavet.

     Tre sorters bilmodeller har estimerats. Alla tre bygger på logit-teorierna om diskreta val. Modellerna utgår från att varje hushåll står inför valet att inte ha bil, att ha en bil eller att ha två eller fler bilar. Detta val beror på socioekonomiska faktorer, hushållens sammansättning, inkomst samt deras tillgänglighet. Två av modellerna arbetar med att beskriva tillgängligheten mha en manuell klassning av orter efter hur väl de servas av järnvägen eller hur stora tätorter de är. Den tredje modellen arbetar med de logsummor som automatiskt genereras vid samperskörningar. Logsumman är det teoretiskt bästa måttet på tillgängligheten[1].

     Fördelen med klassningsmodellerna är att de är lättförståeliga, nackdelen är att samma problem som med den tidigare modellen återkommer. Nämligen, hur spegla en tillgänglighetsförändring. Att manuellt ändra klassningen är i princip samma åtgärd som att för hand ändra in- och utstegskoefficienter i den gamla modellen.

    Fördelen med logsummemodellen är att tillgängligheten kommer endogent från samma beräkningar som hanterar övriga förutsättningar i en prognos. Det betyder att tillgänglighetsmåttet är konsistent med t.ex. beräknandet av resande och förändringar i markanvändningsdata. Den nackdel som finns är att logsummor är relativt svåra att kommunicera.

    De tre modellerna har implementerats i sampers och testats mot data från den nationella resvaneundersökningen RES[2].

     En ytterligare implementering av de båda klassningsmodellerna har gjorts och testats i Excel. Främst kan Excelimplementationen ses som ett verktyg för att närmare undersöka de utvecklade modellernas reaktivitet på förändringar i de ingående variablerna (hushållstyp, förvärvssitation, inkomst, villainnehav samt de olika tillgänglighetsklassningarna).

     Projektet har varit ett utvecklingsprojekt och tonvikt har lagts vid hur modellerna fungerar, inte att utveckla färdiga, fullt användarvänliga modeller inkorporerade i Sampers. 

    Eftersom modellerna fungerar väl föreslår Transek att de i ett fortsatt projekt utvecklas vidare till färdiga delar i Sampers. 

     

     [1] Se t.ex. ”Att mäta tillgänglighet med Logsummor” av Jonas Eliasson, Transek AB

    [2] Eller mer exakt mot genomsnittliga bilinnehavsdata för hela perioden 1994 till 2001 i den nationella resvaneundersökningen

    Download full text (pdf)
    fulltext
  • 20.
    Lindahl, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Kapacitet för person- och godstrafik på enkelspår: Simulering av olika trafikupplägg på Ådals- och Botniabananmellan Sundsvall och Umeå2005Report (Other academic)
    Abstract [sv]

    Syftet med projektet ”Infrastruktur för flexibel tågföring” är att med hjälp av simulerings-modellen Railsys analysera sambanden mellan infrastruktur, fordon och trafik. Detta projekt behandlar kapacitet för person- och godstrafik på enkelspår på Ådals- och Botniabanan mellan Sundsvall och Umeå som kommer att öppnas år 2010. 

    Syftet har varit att analysera hur nuvarande och framtida person- och godståg genom olika trafikupplägg med varierande turtäthet, hastighet och mötesmönster kan påverka gångtider, kapacitet och förseningar. Simuleringar har därför genomförts i tre steg på ett systematiskt sätt för ett antal fall med enbart persontrafik, enbart godstrafik och kombinerad person- och godstrafik. Syftet är att studera långsiktiga kapacitetsfrågor och inte den nu byggda banan. 

    Resultaten visar att det går att skapa en stabil persontrafik med snabbtåg och regionaltåg för 200 km/h med ett tåg i timmen i styv trafik om tågen har samma uppehållsmönster och huvudsakligen gör uppehåll för tågmöten på stationer med resandeutbyte. Högre turtäthet än ett tåg per timme ger fler möten på mötesplatser utan resandeutbyte vilket ger längre restider och större känslighet för förseningar. Tåg med högre hastighet än 200 km/h innebär kortare gångtider men ger också fler möten på mötesstationer utan resandeutbyte. Om snabbtågen har färre uppehåll än regionaltågen blir gångtiderna kortare för dessa men det blir små marginaler mellan tågen vid möten och förbigångar vilket ger större risk för förseningar.

    För godstrafiken visar resultaten att det är möjligt med en regelbunden trafik med ett tåg i timmen i båda riktningarna utan problem. Vid tätare trafik ökar antalet tågmöten vilket ger fler och längre mötestillägg och därigenom längre gångtider på sträckan. Dessa tillägg fångar dock in uppkomna förseningar relativt bra.

    Med utgångspunkt från en normal tågvikt för godstågen på i genomsnitt 1 000-1 200 ton så ökar gångtiden med 10-15 minuter för varje 200 tons ytterligare tågvikt. För tåg dragna av Rc4-lok visar simuleringarna att de under normala förhållanden orkar dra upp till 1 600 ton tunga tåg dock med en kraftig hastighetsreduktion i de största lutningarna. Ett sätt att öka kapaciteten för godstransporterna är att använda starkare lok t.ex. det tyska loket BR185 som kan dra upp till 2 000 ton tunga tåg längs banan vid normal adhesion. Även trafik med två lok och 3 000 tons maxvikt har simulerats och fungerar under vissa speciella förutsättningar.

    Simulering av kombinerad person- och godstrafik visar att det kan fungera bra om persontrafiken får prioritet dagtid och godstågen nattetid vid tidtabellskonstruktionen. Ett sätt att öka kapaciteten för godstrafiken är att huvudsakligen köra de sydgående godstågen på Botnia- och Ådalsbanan och de nordgående på Norra stambanan. Simuleringarna visar att detta kan ge korta gångtider genom få tågmöten. Dubbelriktad trafik måste planeras noga och antalet möten och därmed gångtiden ökar snabbt med antalet tåg i motriktningen.

    Resultaten visar också att RailSys som simuleringsverktyg fungerar bra för att analysera infrastruktur, fordon och trafik även på enkelspår. Jämförelser har gjorts med verklig trafik, t.ex. på Norra stambanan och resultaten stämmer väl med verkligheten. Fördelen med simulering som metod är att det går att pröva en mängd olika trafikupplägg vilket i sin tur ger ett bättre underlag för planeringen av en robust infrastruktur som kan möta olika efterfrågan. 

    Genom simulering kan man på ett tidigt stadium identifiera var och när kapacitetsbrister och svaga länkar uppstår. Detta ger i sin tur underlag för en bättre planering där det redan från början går att planera för fler mötesstationer eller dubbelspår på vissa sträckor men initialt bygga enkelspår. Eftersom planeringsprocessen är lång och banorna har en livslängd på minst 100 år kan simulering och bra planering medverka till ett långsiktigt hållbart trafiksystem.

    Download full text (pdf)
    fulltext
  • 21.
    Lindström, Gustaf Martin
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    CCT – Utveckling av terminalteknik för kombitransporter: Delprojekt höj- och sänkbara containertappar och avställningsutrustning för container vid terminal – utvärdering av demonstrationsprojekt2012Report (Other academic)
    Abstract [sv]

    Denna rapport är en utvärdering av ett demonstrationsprojekt av CCT-systemet (CarCon Train) som är en ny form av terminalteknik för överföring av containers och växelflak mellan järnväg och lastbil. I detta projekt har en del av systemet konstruerats, byggts och provats nämligen höj- och sänkbara containertappar på en trailer och ett ställage för att kunna ställa av en container vid en terminal i jämnhöjd med en lastkaj.

    Download full text (pdf)
    fulltext
  • 22.
    Lundberg, Anna-Ida
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Konkurrens och samverkan mellan tåg och flyg: Del: 1 Internationell jämförelse2011Report (Other academic)
    Abstract [en]

    There is a strong correlation between the train’s journey time and the train’s share of the rail-air market. When journey time by train is four hours, rail and air have the same market share, when the journey time is three hours the train dominates, and for a journey time of two hours the train can often replace air travel. This is because an air journey between two city centres takes about three hours including transfers and time in the terminal. If the train takes three hours from city centre to city centre, more people choose the train because it means an unbroken journey where it is not necessary to change and it is also often cheaper. In the case of two hours’ journey time, they can also replace connecting flights if the airport has a railway station. This fact is the reason for the introduction of many express train and high-speed train services.

    The correlation between journey time by train and the train’s market share of the rail-air market can be described by a curve. Such curves have been presented in many international studies and have very similar shapes. KTH Railway Group presented a curve based on international data in 2000. Transek (WSP) presented a statistical correlation in the form of an exponential curve for Sweden for 2000 based on data colected in a consistent manner and which thgerefore is of high quality. In other respects it has proved difficult to obtain sufficient data of high quality and thus also conduct statistical analyses.

    The aim of this project was partly to try to obtain current cross-sectional data for more routes with fast train services in an international perspective, and partly to find statistical correlations and compare these with previous analyses. A literature review was also made concerning both competition and interaction between rail and air. Another report described a time series analysis for Sweden for the years 1982 to 2009. A great deal of effort was put into obtaining data from different sources. Generally speaking, it is difficult to fins comparable data because passenger numbers are often not made public.

    A selection of 105 rail-air routes were identified in Europe and Japan that have a maximum speed of at least 200 km/h. Of these, 30 could be identified with market shares from which a statistically significant regression curve was produced. An exponential curve was the most appropriate type of curve. Compared to the curve that Transek presented in 2002 for Sweden, the curve in the present report is flatter and has a higher market share for trains since the journey time by train is long.

    This analysis confirms that there is a very strong correlation between the train’s absolute journey time and its market share. The relative journey time between rail and air, the journey time ratio from city centre to city centre, was also analysed and showed a clear correlation. A three-dimensional analysis also showed that there was also a correlation between relative journey time, distance and the train’s market share. The correlation between the train’s frequency of service and price was also studied but proved to be weak. This is also supported by other reports, e.g. Transek’s report and Urbanet Analyse’s Markedet for høyhastighetstog i Norge (The market for high-speed trains in Norway), The conclusion is that journey time from city centre to city centre is by far the most important factor when choosing between train and plane.

    Rail and air can interact if there is a station at the airport. If the train can replace the plane over short distances, travellers can be offered more destinations, capacity can be freed up and emissions reduced. One problem is that through-tickets and luggage check-in for a rail-air journey have not been solved other than in exceptional cases. One example of where such interaction exists today is at Frankfurt Airport for journeys to and from Stuttgart and Cologne.

    Download full text (pdf)
    fulltext
  • 23.
    Lundberg, Anna-Ida
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Konkurrens och samverkan mellan tåg och flyg, Del 2: Tidsserieanalys i Sverige2011Report (Other academic)
    Abstract [en]

    The correlation between journey time by train and the train’s share of the rail-air market has been presented in several reports in the form of a curve, in particular when it comes to elucidating the effect of high-speed trains in Europe. The correlation has been proved to be stable in comparisons between different studies. When journey time by train is four hours, rail and air have the same market share, when the journey time is three hours the train dominates, and for a journey time of two hours the train can often replace air travel.

    The development of this correlation over time, however, is not as well known. The aim of this study was therefore to analyse changes in the train’s journey time and market share over time and also investigate whether the curve has changed. A further aim was to study the development from Stockholm to different county groups at varying distances and with different supplies. The period from 1982 to 2009 has been studied, with data from SJ (Swedish Rail) and LFV (Swedish Air Navigation Services) and KTH’s database of supplies and prices as the foundation. 

    Journey time and market share from Stockholm to all regions in the whole of Sweden are shown in the figure at the top of the next page. The result is that the train’s market share fell from 67% to 46% between 1982 and 1990. It then gradually increased to 58% in 2006. It then increased rapidly, reaching 67% in 2009, while air travel fell to 33%. The market shares were thus the same is 2009 as in 1982 but much had happened in the years in-between.

    The average journey time by train was almost constant throughout the 1980s but fell substantially between 1990 and 1998 when high-speed trains were introduced and subsequently remained constant until 2005. Journey times fell somewhat between 2005 and 2009. The market share follows journey time relatively well during the 1990s. Between 2005 and 2009 rail’s market share showed a strong increase without any appreciable shortening of journey times. Development during this period is probably due to lower prices for train journeys and the increasing importance of the environment when choosing a mode of transport as a result of the climate crisis.

    As regards changes to the curve, development can be divided into three phases: 1982-1992 when air travel expanded, 1992-2005 when the high-speed train was introduced and 2005-2009 when rail increased rapidly, Between 1982 and 1992 the curve was pressed vertically straight down by 15-20 percentage points, i.e. journey time by train was almost constant but market share declined, probably as a result of greater frequency of service and lower prices for air travel. The converse applies during the 2005-2009 period, with many points on the curve moving straight up by 10-15 percentage points, i.e. the train’s market share increased but journey times were roughly constant, this time probably due to lower prices for train journeys and the environment’s growing importance.

    The curve and the shifting of the points during the 1992-2005 period are shown in the figure at the bottom of the next page. Here, the development follows the classic pattern: the train’s journey times become shorter through the establishment of the X 2000 high-speed train and rail’s market share increases at the expense of air travel. The development was also influenced by the opening of Bromma Airport for competing air traffic in 1994, the incidents of 11 September 2001 and the establishment of low-cost air travel in Swedish domestic traffic in 2003.

    All in all, over the whole of the 1982-2009 period, the curve shifted so that the train’s market share is lower for long-distance journeys where air travel dominates today, has been relatively constant on medium-distance journeys where a strong competitive situation continues to prevail and where the train’s journey times have become shorter, and air travel’s market share has fallen for short-distance journeys where the train is in a dominating position today.

    Download full text (pdf)
    fulltext
  • 24.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport Planning, Economics and Engineering.
    Analys av prognoser för nya stambanor och jämförelse med internationella erfarenheter av höghastighetståg2019Report (Other (popular science, discussion, etc.))
    Abstract [sv]

    De samhällsekonomiska kalkylerna tillmäts stor vikt särskilt av nationalekonomer medan politikerna inte alltid fattar beslut i enlighet med resultaten av dessa. En avgörande input till de samhällsekonomiska kalkylerna är trafikprognoserna. I denna rapport görs därför en genomgång av Trafikverkets prognoser för höghastighetsbanor och jämförelser med internationella erfarenheter av snabba tågförbindelser.

    Det är uppenbart att Trafikverkets prognoser underskattar resandet som följd av höghastighetståg. Prognosen utan höghastighetsbanor ger en mycket hög marknadsandel för tåg och skillnaden med höghastighetsbanor blir därför liten. I Trafikverkets prognoser kommer en mindre del från bil och flyg medan större delen större är nya resor. Någon modell för utrikesresor används inte och kombinerade resor med flyg och tåg kan inte prognosticeras. Det är inte säkert att Sampers ger korrekta resultat för dessa analyser. Det är inte heller säkert att modellen ger tillräckligt bra underlag för att analysera var tågen ska stanna, lokalisering av stationer m.m.

    Prognosen i sig har också stor betydelse för planeringen av höghastighetsbanorna, för dimensioneringen av utbudet, för bedömning av möjligheterna till medfinansiering från operatörer och intressenter och för planering av framtida utbyggnader av annan infrastruktur som flygplatser och vägar för att nämna några exempel.

    Download full text (pdf)
    fulltext
  • 25.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning. Bolle Rail Research, Stockholm, Sweden.
    Automatic Container Train – ACT: Ett nytt logistiksystem för intermodala transporter2021Report (Other (popular science, discussion, etc.))
    Abstract [en]

    Rail traffic in Sweden has been developed in a very positive way since 1988 when infrastructure was separated from operation and a socioeconomic view was applied on investments in infrastructure. Passenger demand has doubled but freight demand has been more or less constant and the market share for rail freight has decreased. Both in EC and in the national transport policy there are targets that a greater part of freight will go by rail or sea instead of road among others to overcome the climate change, but the development has gone in the other way.

    The Swedish government has established several investigations to analyse what is needed to change the development. I.e. the Swedish Transport Administration (Trafikverket) got an order to:

    • Identify and spread information about innovative solutions and new technique that can contribute to more intermodal rail transports including automated reloading
    • Identify possible hinders for reloading to rail and analyse and suggest how increased intermodal transports can be stimulated, i.e. with new technical solutions.

    The government has also decided about a national freight transport strategy that stipulated that an effort will be done on intermodal transports by rail. There is an ongoing process to make it possible to operate longer and heavier trains to increase the capacity in the rail network and to decrease the cost per wagon. For intermodal and wagonload long distance train haul typically represent 30-50 % of the total cost – the rest is terminal handling and feeder transports. Therefore the cost for terminal handling and feeder transports must be radically reduced.

    The transport cost is crucial for the customer modal choice as well as for the profitability for the operators. The transport costs for trucking has decreased substantially both with low cost drivers and with heavier and longer trucks that has been introduced. Rail freight has not been developed in the same way because of low profitability and innovation force. There are plans to increase the length of trucks in Sweden so that they can accommodate two 45-feet containers. There is a risk that this will eliminate the intermodal traffic in Sweden.

    To make use of the full potential of rail it must be radically developed. In this report some new ideas are presented on how to minimize marshalling, terminal handling and feeder transports to lower the transport costs as much as possible. The transport system consists of linear trains with short stops at automatic terminals from which the loading units will be transported on road to the customers. Then the long trucks can be used for feeder transports instead of long distance transports and by doing this contribute to develop intermodal transports.

    ACT ”Automatic Container Train” will be operated continuously as an elevator and trucks will pick up and deliver the loading units at the automatic terminals. The terminals are located along the line, at bigger customers, in industrial areas and at ports. The loading units can be containers, swap-bodies with different length and height. Even bigger containers adopted to different customers' needs can be transported on rail and handled with terminal tractors at industrial areas and ports.

    The train can change loading units with each other at the terminals. By this there is no need for shunting or marshalling wagons. The same technique can be used to transfer loads between wagons with different gauge as in Haparanda or at the Spanish border. At industrial areas terminal tractors can be used instead of shunting with locos which is much more efficient. There is no need for yards and industrial sidings with ATC.

     

    The freight train consists of a long platform with 100 m modules of short coupled wagons with a capacity of seven 45 feet loading units. It may have a flexible length from 630 m to 1500 m (2x750=1500 m). The train will operate continuously on weekdays day and night and can by this produce 45.000 km per year compared with 15.000 km today. This will make it possible to make investments in new wagons with modern techniques and digital information systems but existing locos are capable of using.

    Today the freight train operates at 100 km/h. With a speed of 140 km/h the capacity for freight trains on existing main lines in Sweden can be doubled and the transport time can be reduced by 35 %. New wagons should be built for 160 km/h so they also can be used for express trains. For this modern wagons have to be introduced with electro pneumatic disc brakes, automatic couples (DAC), track friendly bogies and supervised by wireless information systems. This technique is available today but must be implemented in the right context.

    It is also possible to develop wider containers which are approx. 3.0x3.0 m in cross-section possible to be transported on rail in Europe. This can also be possible to transport with truck on shorter distances in Sweden if the rules can be changed. By this it is possible to load more pallets than in an ordinary container. There is a proposal to allow 34.5 m long trucks in Sweden accommodating two 45 feet containers. One option is to use these long trucks for feeder transports to rail and by that benefit inter modal transports.

    With the ACT-system the transport cost for a 45 feet container will decrease by 30 % compared with a low cost truck with trailer. Compared with a conventional container train the cost will decrease by 22 % and compared with a trailer train with 36 % from origin to destination. That will make profitability for the ACT-system already from 250 km compared with 400 km for conventional inter modal and by 600 km for a trailer train. With a wide body container with 3.05x3.05 m cross section the cost per m3 will decrease further by 20 %. With voluminous cargo in the ACT-system and a wide body container the cost can be reduced by 45 %.

    For reloading of containers there is a need to develop automatic container terminals. It has been found that it is very difficult to finance such development because Trafikverket is not allowed to sponsor this kind of project. Also that there must be 50 % private capital to develop new solutions makes it difficult because the rail freight industry has low profitability. Therefore it is necessary to include development of terminals and fully financing in Trafikverkets responsibility.

    A great part of the goods between Sweden and Europe are transported in non liftable trailers and thereby not possible to be handled in conventional inter modal terminals. They are not even possible to be handled in automatic terminals with horizontal transfer. Railway wagons for trailers are more complicated and expensive than wagons for containers. Because of this the proposal is that trailers will be replaced by 45 feet containers which are as long as a trailer. By this it can be transported on a skeleton trailer and fulfil the same transport needs as a trailer.

    The transport flows by truck is so great that there is a significant potential to transfer goods to rail and the trucks can get a greater part of the feeder transports to rail. It is necessary to start and change the development so more freight will be transferred to rail and sea instead of trucks in accordance with national and European targets. There is a need to do this to reach the environmental targets and the industry will get sustainable transports in the long term.

    Download full text (pdf)
    fulltext
  • 26.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics.
    Breda tåg, fordonskoncept för olika marknader – en studie av utformning, kapacitet och ekonomi1998Report (Other academic)
  • 27.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    CCT – An intermodal terminal handling system for horizontal transfer: Effects on costs, logistics, energy consumption and greenhouse gases2014Report (Other academic)
    Abstract [en]

    Conventional intermodal traffic with trailers, heavy containers, and swap-bodies, requires large terminals, which are very costly to build and operate. This means that a small number of large terminals are needed and feeder distances should be relatively long. Efficient train operation requires relatively large trains that run directly between two terminals. This limits the market to just a number of rather distant destinations, see the figure below.

    In the case of intermodal traffic, a paradigm shift is needed if its full potential is to be realised. What is needed is a system for transferring unit loads horizontally so that they can be reloaded under the overhead contact wire on a siding. The trains can then operate in linear traffic and load and unload during a short stop without the wagons needing to be switched or parked. This increases productivity and the trains can operate more services per day, which also increases flexibility. The terminals also become very compact. 

    A long-term terminal strategy is needed for maximum intermodality. With linear traffic it is possible to have more terminals along the way, shortening feeder distances Intermodal traffic will be possible on more routes and over shorter distances. In addition, there is a need a small number of large intermodal terminals where the ports can be used as far as possible for optimal interaction between truck, train and ship.

    Download full text (pdf)
    fulltext
  • 28.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Competition and co-operation between railways and trucking in long distance freight transport - an economic analysis2000Conference paper (Other academic)
    Download full text (pdf)
    fulltext
  • 29.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Carillo Zanuy, Armando (Contributor)
    Capodilupo, Luigi (Contributor)
    DICEA.
    Islam, Devan (Contributor)
    UNEW.
    Furió, Salvador (Contributor)
    VPF.
    Conceptual terminals’ design methodology for different markets: Capacity4Rail, Working report in WP 2.3.1. EC Contract No FP7- 605650.2017Report (Other academic)
    Abstract [en]

    The present document is a compilation of 4 different reports that are part of Task 2.3.1: Conceptual terminals’ design methodology for different markets.

    Part 1 (KTH): Description of intermodal transport systems for different markets, terminals and units.

    The first section of this report provides an overview of the evolution of rail transport in Europe, how wagonload and intermodal transportation have developed, pointing out the important evolution of intermodal traffic and specifically the expansion of semi-trailer transport traffic.

    The second section describes the structure of the intermodal markets, providing useful data on train weights, container loads, technologies, units’ utilization and typical train compositions, the kind of traffic present at the terminals to be described. 

    The concluding remarks in this section show the relevance of the decay of wagonload traffic in Europe and the important expansion of intermodal transport. It proposes some ideas for improving rail transport, mentioning the following aspects:

    ·         Advanced wagonload booking system and path allocation

    ·         Automation of terminals

    ·         Automatic coupler 

    ·         Loading gauge extension for intermodal and semitrailer transport 

    ·         Megahubs for intermodal transport 

    ·         Longer Trains and multiple traction

    ·         High-capacity wagons

    In the third section, a picture is given of the different kinds of intermodal terminals to be found in the European networks. Their most important parts and their performance, are described as well as the typical loading units used.

    The fourth section is dedicated to describing the wagonload terminals and their performance, taking in account the severe decline in the utilization of these kinds of terminals and the important decrease in loading places and industrial sidings.

    Part 2 (DICEA):  Development of the assessment methods of innovative measures and technologies based on analytical and simulation tools

    This report illustrates some of the assessment methods of innovative measures and technologies based on analytical and simulation tools for future freight terminals. The aim is to propose adaptable generalised methods for different types of freight terminals such as rail-road, rail-rail, rail-waterways, and small (e.g. liner terminals), medium or large terminals (e.g. hub terminals). This sub-task is divided into two sections: in section 1 a generalized approach based on an analytic method is described and section 2 illustrates the simulation tool. Both sections include concrete examples.

    Analytical methods

    ·         Deterministic methods: every event, including human cognition and behaviour decision and action is causally determined by an unbroken chain of prior occurrences;

    ·         Stochastic methods: a state’s next state is determined both by the process's predictable actions and by a random element.

    Simulation methods

    ·         Simulation tools: each process has a bounded time between its execution steps. The process’s local clocks may drift either from each other or from global physical time only by a bounded time.

    Part 3 (UNEW): Development of the stepwise approach for designing and evaluating the rail freight terminal of the future.

    This subtask has tow inter-related components: a) Develop a stepwise approach for designing the rail freight terminal of the future and b) stepwise approach for evaluating the rail freight terminal of the future.   

    The following terminal typologies are used in this report. 

    ·         Intermodal terminals

    o   Rail-road

    o   Rail-rail

    o   Rail-waterways

     

    ·         Wagonload terminals

    o   Rail-industry

    o   Rail-truck

    o   Rail-ship

     

    ·         Trainload terminals

    o   Timber

    o   Coal 

    o   Oil

    o   ...

    ·         Internal rail system

    o   Marshalling yards

    o   Shunting areas

    o   Stations

    o   Sidings

    The report ends with a definition of key performance indicators of the terminals and the interdependence between them.

    Part 4  (VPF): Methodology for the conceptual design of innovative sea-rail interfaces.

    This paper presents a conceptual methodology for designing the future rail-sea interfaces. It is divided into 3 parts.

    ·         Identifying the requirements and challenges of the terminals in terms of types of cargo, vehicles and operations taking place there.

    ·         Review of the state-of-the-art on this type of terminal and gap identification

    ·         Research on design possibilities following an innovative approach

    ·         Utilization of specific tools for design, which provide help in understanding the dimensioning of rail-sea interfaces

     

    Download full text (pdf)
    fulltext
  • 30.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Karl, Jürgen (Contributor)
    DB.
    Furio, Salvador (Contributor)
    VPF.
    Thunborg, Michael (Contributor)
    Trafikverket.
    Economic evaluation of intermodal terminals and marshalling yards: Capacity4Rail WP2.3.5 EC, Contract No FP7- 6056502016Report (Other academic)
    Abstract [en]

    This report deals with the costs for investments, maintenance and operations for different terminal typologies with different capacity. The normal price for lifting containers and trailers in an intermodal terminal is often a market price, mostly taken operational costs into account. The total costs including capital costs for the investments in the track infrastructure is often not known because the basic investments has been made by the state long time ago.

    The aim of this project has been to make economic models for investments and operation of terminals and marshalling yards and to estimate the actual costs for different terminal typologies. By these models it is also possible to estimate costs for building new terminals and develop terminal types with different automation levels.

    Business economic calculations for conventional terminals, with reach-stackers and gantry cranes, show that the cost is in the range of 20-30 €/TEU, also a common market price for terminal handling. This includes both the operating costs and the capital costs for the technical equipment, which often the terminal operator is responsible for. The total cost including basic investments is in the range of 30-50 €/TEU, which is the long-term cost for building new terminals. 

    Linear traffic makes it possible to have more terminals to cover a larger market. Horizontal transfer of loading units makes it possible to have terminals on an electrified siding so the train can make short stops on intermediate stations. This means that there will be no need for shunting with diesel and parking of wagons and full automation of transfer of loading units will be possible. The total cost for a small-scale automatic linear terminal on an existing siding has been calculated to 14 €/TEU. The low cost for the linear terminal is mainly due to the absence of shunting engine and personnel meaning that it has a very high benefit/cost ratio.

    The operating cost for handling wagons at a marshalling yard in Sweden is about 15 € per wagon, but adding the maintenance cost for the infrastructure manager increases this to 50 € per wagon. The whole cost, including building the yard, for this example would be 100 € per wagon.

    Automation of terminals and terminal functions seems to be the most efficient way to reduce costs and increase benefits in future terminals. There are many ideas how to implement this, but not many of the systems are ready for market use today.

    Download full text (pdf)
    fulltext
  • 31.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Effektiva matartransporter till järnväg: Utvecklingen av vagnslasttrafiken och möjligheter att vidareutveckla matartransporterna2014Report (Other academic)
    Abstract [sv]

    Vagnslasttrafiken har successivt minskat i omfattning men har fortfarande stor betydelse för näringslivets transporter i Sverige, medan den mer eller mindre lagts ned i vissa länder. En kritisk del i vagnslasttrafiken är matartransporterna. Syftet med denna rapport är att beskriva matartransporternas funktion i vagnslasttrafiken och dess utveckling i Sverige samt att diskutera olika möjligheter att effektivisera och vidmakthålla ett vittförgrenat nät med matartransporter i framtiden.

    Vagnslastrafiken i Sverige svarar fortfarande för 27 % av transportarbetet på järnväg och tillsammans med systemtågen för över hälften av godstransporterna på järnväg. Vagnslasttrafiken har successivt rationaliserats genom att matartrafiken har koncentrerats. Sedan 1988 har antalet bangårdar minskat från 30 till 3, antalet terminallok från 500 till 50 och antalet industrispår från 1 200 till 400. Bakom detta ligger koncentration och omstrukturering av industrin, att lastbilstrafiken blivit effektivare och att industrispår lagts ned för att marken ska användas till annat.

    Denna utveckling är inte unik för Sverige som liksom Tyskland fortfarande har en relativt omfattande vagnslastrafik. I t.ex. Norge och Danmark har vagnslasttrafiken lagts ned. Schweiz och Österrike, som har den högsta marknadsandelen för järnväg i Europa, har både satsat på att stimulera vagnslasttrafik och på lastbilsavgifter.

    Kombitrafiken har utvecklats positivt i Sverige och mer än fördubblats sedan 1988. För den största ökningen svarar trafiken till/från Göteborgs hamn. Stora delar av den inrikes kombitrafiken har dock lagts ned de senaste åren på grund av problem med lönsamhet och kvaliteten efter de svåra vintrarna. Kombitrafiken kan inte ersätta vagnslasttrafiken främst för att det inte ryms lika mycket gods i en container som i en järnvägsvagn. Härtill kommer att om godset ändå måste köras på lastbil till en terminal för att omlastas är det ofta billigast att köra lastbil hela vägen.

    Den vagnslasttrafik som lagts ned är framför allt trafik med enstaka vagnar till mindre orter medan trafik med vagngrupper till större orter finns kvar. Gränsen mellan vagnslaster och systemtåg har blivit flytande. Green Cargo kör ibland vagnslaster och systemtåg och även kombitrafik i samma tåg. Faktum kvarstår dock att vagnslasttrafiken har blivit alltmer begränsad till färre orter och att ingen annan än Green Cargo kan erbjuda vagnslasttrafik i ett nätverk. Nu måste Green Cargo för att nå lönsamhet rationalisera sin vagnslasttrafik ytterligare och det återstår att se vad som i slutändan bli kvar av vagnslastnätet.

    Den fråga man måste ställa sig är om vi vill ha ett heltäckande vagnslastnät i Sverige och om det finns något sätt att åstadkomma det. Green Cargo har att konkurrera på en avreglerad marknad och måste vara lönsamt. Järnvägen och svenska åkerier har dessutom hård konkurrens från lågprisåkerier som bedriver sin verksamhet på helt andra villkor. Dessutom ska banavgifterna höjas kraftigt vilket inte förbättrar situationen. Risk finns att alltmer gods flyttas från järnväg till lastbil, vilket är tvärtemot vad som är önskvärt med hänsyn till klimatkrisen.

    De medel som finns för att utveckla vagnslasttrafiken är dels generella såsom att öka kapaciteten i vagnar och tåg dels speciella för att skapa förutsättningar för industrispår och matartrafik. Dessutom kan man använda sig av ekonomiska styrmedel som lastbils- och banavgifter.

    Högre axellast, metervikt och större lastprofil innebär att man kan lasta mer i varje vagn och öka effektiviteten i matartransporterna. Tyngre och längre tåg påverkar effektiviteten i fjärrtransporterna och därmed i vagnslasttrafiken. På kort sikt finns det störst potential i att utnyttja lastprofilen bättre och att höja axellasten på utvalda sträckor.

    Nya produktionsmetoder har utvecklats genom radiostyrda lok och med detta också slopandet av särskilda växellok. Ytterligare ett steg är att använda Duolok, ett kombinerat el- och diesellok som nu finns på marknaden i kombination med linjetåg. Då kan man använda linjeloket för växling på oelektrifierade sidospår, varför bangårdar på lång sikt inte skulle behöva elektrifieras. Det kräver dock investeringar i nya lok och just nu finns det ett överskott på lok i Sverige.

    Ett sätt att utveckla i stället för att avveckla industrispår vore att införa vägtrafikmodellen för industrispår. Det innebär att samma principer skulle tillämpas på industrispår som för kommunala och enskilda vägar, där man kan få bidrag till investeringar och underhåll. Det är också nödvändigt att minska byråkratin för att bygga och förvalta industrispår.

    En möjlighet är att göra rangering tillgänglig för fler operatörer genom att den handlas upp och ställs till marknadens förfogande. Detta har gjorts i Hallsberg men slog inte väl ut, eftersom nästan ingen annan än Green Cargo utnyttjade denna tjänst som dessutom blev ca 30 % dyrare på tre år pga. krav på öppettider.

    En annan möjlighet är att ställa matartrafik till marknadens förfogande. Matartrafik är en mer kritisk komponent i vagnslasttrafiken än rangering, eftersom man inte kommer fram till kunden om man inte kan köra sista biten. Syftet skulle vara att upprätthålla en tillfredställande transportförsörjning med vagnslasttrafik i fler regioner och att underlätta näringslivets transporter. Det skulle således inte ses som ett stöd till operatörerna utan snarare som ett näringspolitiskt eller regionalpolitiskt medel. Ett fungerande sådant system finns i Österrike och kan vara värt att pröva i Sverige.

    Slutligen finns olika former av ekonomiska styrmedel som ban- och lastbilsavgifter som ska sättas så att de täcker de samhällsekonomiska marginalkostnaderna inklusive externa effekter. Godstrafiken på järnväg är utsatt för en mycket hård konkurrens och har låg lönsamhet. Med alltför höga banavgifter finns det enligt beräkningar en risk att gods överflyttas till landsväg med i slutändan högre total miljöbelastning och olycksrisk som följd. Att införa lastbilsavgifter kan vara ett sätt att stimulera mer miljövänliga transporter. Banavgifterna kan således inte ses isolerade inom järnvägssektorn utan måste sättas in i sitt trafikpolitiska sammanhang.

    Download full text (pdf)
    fulltext
  • 32.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport and Economics, Traffic and Logistics.
    Effektiva tågsystem för godstransporter2005Other (Other academic)
  • 33.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Effektiva tågsystem för godstransporter: en systemstudie2005Report (Other academic)
    Abstract [sv]

    Järnvägen i Europa har förlorat marknadsandelar på en expanderande marknad – nästan all ökning har tagits om hand av lastbilen. Det gäller såväl högvärdigt gods som lågvärdigt gods. Järnvägens ställning är särkilt svag på internationella transporter trots långa avstånd och stora volymer. Det beror på byråkrati och höga banavgifter som gör det svårt att kontrollera hela transportkedjan och garantera kunderna en tillräckligt bra kvalitet till ett konkurrenskraftigt pris.

    EU har förslagit ett antal åtgärder för att avreglera järnvägsmarknaden men dessa har hittills bara genomförts i begränsad utsträckning. De viktigaste är åtskillnad mellan infrastruktur och drift, banavgifter som sätts på samhällsekonomisk grund och att alla operatörer skall kunna konkurrera på lika villkor i alla länder utan byråkratiska hinder. Det viktigaste på kort sikt är att avregleringen verkligen genomförs. Det är i första hand frågan om politik och organisation och inte om teknik.

    När detta är genomfört måste även järnvägen utveckla produkter, trafiksystem och teknik som medger högre kvalitet och lägre transportkostnader och därmed högre marknadsandel. Syftet med detta projekt har varit att ta fram utvecklingsmöjligheter i ett långsiktigt perspektiv. Utgångspunkten har varit kundkraven på olika delmarknader å ena sidan och utvecklingsmöjligheterna av utbudet för järnvägen själv och i kombination med andra transportmedel å andra sidan.

    Stommen i järnvägens godstransportsystem i dag är vagnslasttrafiken det vill säga hela vagnar som kunderna lastar och lossar själva på industrispår och terminaler. Det beror på transportekonomin - man får in mycket mer gods i en järnvägsvagn eller lastbil än i motsvarande antal containrar, se figur. Det finns en stor potential genom att minska näringslivets transportkostnader genom att utveckla vagnslasttrafiken.

    Med högre axellast, från i dag 22,5 ton till 25-30 ton, kan lastförmågan per vagn öka från 30 till 34-38 ton vilket innebär att transportkostnaden kan sänkas med 10-20%. En större lastprofil är också viktig för volymgods och kan innebära ännu större kostnadsminskningar. Det kräver uppgradering av infrastrukturen. Vagnar med bättre fjädring kan innebära att investeringarna i banan kan begränsas och också minska godskadorna. Det är viktigt att det finns tillgång till industrispår så att kunderna slipper dyra omlastningar.

    Trafiksystemet kan utvecklas genom att köra linjetrafik i stället för knutpunktrafik. Tågen får plocka upp och sätta av vagnar under vägen och byte av vagnar mellan tåg sker på ett fåtal rangerbangårdar i Europa. Med ett kombinerat el- och diesellok, ett duolok, kan samma lok användas både för växling på dagen och fjärrtåg på natten. Tågen behöver då inte byta lok för att gå in på en terminal. Principen är att hellre ha flera lok som kan användas flexibelt både till matartåg och fjärrtåg och där flera lok och tåg kan kopplas ihop om man vill köra långa och tunga tåg (train coupling and train sharing).

    Det finns en stor utvecklingspotential i informationsteknik och automatisering. Det intelligenta vagnen formar det intelligenta tåget som kan övervaka vagn och last kontinuerligt. Med ett fjärrstyrt automatkoppel kan lokföraren själv kan växla vagnar på stationerna och vagnarnas hastighet kan kontrolleras från ett rangertorn. På sikt måste ett prioriterat järnvägsnät anpassat för godstrafik etableras i Europa med hög kapacitet och kvalitet och som är försett med det gemensamma europeiska signalsystemet ERTMS.

    Dagens kombitrafik med både trailrar, tunga containrar och växelflak kräver stora terminaler som är dyra. Det innebär få terminaler med relativt hög omlastningskostnad och långa matartransportavstånd och marknaden blir begränsad till relativt långa avstånd mellan ändpunkterna. Storskaliga system är välutvecklade i USA med långa tåg och double-stack-containers (två våningar containrar). De fungerar ungefär som ett containerfartyg på land och är effektiva för långa avstånd och stora volymer. Kombitrafikens problem i Europa är framförallt att den har svårt att konkurrera på kortare avstånd där de stora volymerna finns.

    Med linjetrafik som innebär att tåget går längs en linje och stannar på flera ställen under vägen kan en större marknad täckas in. Med enkla terminaler som ligger på ett sidospår med genomfart kan tåget köra in och lossa och lasta under ett kort uppehåll. I lättkombi används containrar och växelflak med en vikt på högst 24 ton och en längd på maximalt 11 m och då kan vanliga gaffeltruckar användas. Lättkombi kan vara konkurrenskraftig på avstånd om 20-40 mil och den konventionella kombitrafiken, tungkombi, kan koncentreras till de stora terminalerna och logistikcentra. Ett helautomatiskt system för att lasta och lossa kan utvecklas – prototyper finns redan (CCT-systemet).

    Snabbgodståg för post, paket och expressgods använder sig av persontågsnätet och kan både samverka och konkurrera med flyget. I dag går en stor del av flygfrakten på lastbil inom Europa. Många flygplatser får järnvägsanslutning för persontrafik men det är vikigt att de även planeras för godstrafik. Motorvagnståg för godstrafik kan utvecklas som är lika snabba som höghastighetstågen och tåget kan bli ”snabbare än lastbilen – billigare än flyget”.

    Det är viktigt att få till stånd långsiktiga utvecklingsprojekt. Operatörerna kan inte förväntas själva ha råd att driva sådana utan här krävs gemensamma insatser inom EU. På kort sikt behövs ett stopp för nedläggning av industrispår. Antalet industrispår minskar snabbt i många länder samtidigt som många nya operatörer efterfrågar industrispår. Ett prioriterat godsnät måste etableras först organisatoriskt genom fritt tillträde och rimliga banavgifter och sedan teknisk genom hög kapacitet och interoperabilitet. Demonstrationsprojekt behöver komma till stånd för att utveckla nya produkter.

    På lång sikt måste ny teknik och nya trafiksystem utvecklas, där följande komponenter ingår:

    ·         Duolok, teknisk vidareutveckling och byggande av prototyp

    ·         Automatisk terminalteknik för horisontell överföring, utveckling av prototyp

    ·         Intelligent informationsteknik för styrning och planering av godståg

    ·         Elektroniskt styrd broms och robust teknik för det intelligenta godståg

    ·         Införande av automatkoppel, utvärdering av kostnads- och marknadseffekter i                Europa

    ·         Fjärrstyrt automatkoppel, demonstrationsprojekt 

    ·         Utveckling av lätta material för att minska buller och vibrationer och öka                        nyttolasten

    ·         Kostnadseffektivare infrastruktur alltifrån broar till industrispår.

    Prognoser för järnvägstrafiken i Sverige visar att om inget sker, så kommer järnvägens marknadsandel fortsätta att minska från 24% 2002 till 22% 2020. Med utrikestrafiken avreglerad fullt ut och med regionala operatörer som kan erbjuda bra service till kunderna, och 30 tons axellast ökar järnvägens marknadsandel till 31%. Med utveckling av nya effektiva tågsystem enligt ovan ökar järnvägens marknadsandel till 35% år 2020. 

    En ökning till 35% kan tyckas vara mycket men det förutsätter också ett systemskifte. Jämför man med lastbilstrafiken så har dess marknadsandel ökat från 25% år 1985 till 35% år 1996. Om järnvägens marknadsandel ökar till 35% minskar den långväga lastbilstrafiken med 23% jämfört med om ingenting görs. Samtidigt som näringslivets transportkostnader minskar genom den ökade effektiviteten i järnvägens transportsystem förbättras miljön och bättre förutsättningar skapas för en långsiktigt hållbar utveckling.

    Download full text (pdf)
    fulltext
  • 34.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Effektsamband tåg-flyg och flyg-bil beroende på restid2015Report (Other academic)
    Abstract [sv]

    Trafikverket har behov av effektsamband för bedömning av åtgärder i infrastruktur och trafikering av järnvägsnätet och som underlag till samhällsekonomiska kalkyler. I detta PM redovisas effektsamband mellan restid med tåg och marknadsandel mellan tåg och flyg. Syftet är att ta fram ett samband som kan bilda underlag för överslagsberäkningar av effekter av förändringar i järnvägsnätet.

    Den metod som används är en genomgång av forskningsrapporter och litteratur inom området konkurrens och samverkan mellan tåg och flyg i Sverige och internationellt. Det finns ett relativt stort antal rapporter som redovisar samband mellan restid med tåg och marknadsandel mellan tåg och flyg i form av en kurva som också utryckas i en matematisk formel. Vid KTH har detta samband tidigare belysts i två rapporter på uppdrag av Banverket, både med litteraturundersökning, data från internationella relationer och från Sverige.

    I huvudtexten redovisas en sammanfattning av resultaten och ett förslag till effektsamband som kan användas för översiktliga kalkyler. I bilaga redovisas sammanfattningar av några rapporter och forskningsresultat. I referenslistan redovisas en litteraturförteckning.

    Download full text (pdf)
    Marknadsandel tåg-flyg
  • 35.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Efficient train systems for freight transport: Summary2005Report (Other academic)
    Download full text (pdf)
    fulltext
  • 36.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics.
    Evaluation of intermodal transport chains2008Conference paper (Refereed)
    Abstract [en]

    Intermodal transport chains include several transport modes and several instances of handling at terminals. This means a specific cost structure, time consumption and a risk that goods will be damaged. The aim is to find the weakest link in intermodal transport chains, which can be critical when increasing combined transportation.

    The method is to map and analyse a number of intermodal transport chains and investigate each link in the chains with regard to time, cost, risk of damage, and administrative process.

    Different transport chains will be chosen with different modes, terminal handling methods and distances. Shock and vibration will be measured in loading units during handling and transportation. A terminal cost model will be developed and interviews held to determine customer experience.

  • 37.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport and Economics, Traffic and Logistics.
    G: Industrispår - förutsättningar för utveckling2005Report (Other academic)
  • 38.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics.
    Godstransporter på järnväg – framtida utvecklingsmöjligheter1992Report (Other academic)
  • 39.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Höghastighetsbanor: En investering för hållbart resande och godstrafik2019Report (Other academic)
    Abstract [sv]

    Syftet med att bygga nya stambanor är att öka den totala kapaciteten för gods- och persontrafik på järnväg, öka punktligheten och öka tillgängligheten genom korta restider. Det ger också förutsättningar för större regionala arbetsmarknader för ökat bostadsbyggande. Dessutom körs tågen helt elektriskt med möjlighet till att vara helt koldioxidneutrala.

    Trafiken med höghastighetståg är eldriven och fossilfri i Sverige från början. Bil och flyg drar flera gånger mer energi per resenär och km. Även om vägtrafiken elektrifieras kan den inte bli lika energieffektiv som spårtrafik eftersom den har högre rullmotstånd. Självkörande bilar kan inte korta restiderna och inte heller nämnvärt minska energianvändning, miljöbelastning och trängsel. Ännu mera gäller detta om elflyg skulle komma till stånd, vilket dock är inte troligt för stora flygplan på längre sträckor. Utsläppen från tågtrafik är en bråkdel av de från bil och flyg. Därför blir det en miljövinst när fler väljer tåg i stället för bil och flyg.Bygget av nya banor ger upphov till utsläpp som kompenseras när banan trafikeras genom minskade utsläpp från andra färdmedel.

    Trafikverket har gjort kalkyler av ”break-even” som sträcker sig från 27 år ner till 5 år. Fossilfri bil- och flygtrafik kan minska miljöeffekten bara under förutsättning att el, batterier eller biobränslen kan produceras i tillräcklig mängd och med små koldioxidutsläpp. Detta är osannolikt under överskådlig framtid. Om man inte bygger höghastighetsbanorna kommer resandet med bil och flyg öka. Då måste vägarna och flygplatserna byggas ut med ökade utsläpp som följd.

    Som vi pekat på tidigare så fungerar inte Trafikverkets prognosmodell i dag för att utvärdera stora banprojekt. Det är ett stort problem då stora investeringar diskuteras samtidigt som utmaningen med att minska trafikens klimatpåverkan blir alltmer akut. Det är inte bara de samhällsekonomiska kalkylerna som är viktiga. Prognosen i sig har också stor betydelse för planeringen av höghastighets-banorna och utbudet, för bedömning av möjligheterna till medfinansiering och för analys av behovet av utbyggda flygplatser och vägar.

    Download full text (pdf)
    fulltext
  • 40.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics.
    Höghastighetsbanor i Sverige – Götalandsbanan och Europabanan2008Report (Other academic)
  • 41.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Höghastighetståg i korridoren Oslo-Göteborg-Köpenhamn – Marknad och prognoser: The Scandinavian 8 Million City, COINCO North II2014Report (Other academic)
    Abstract [en]

    COINCO 8MC has presented a completely new traffic system for high-speed trains that would decisively improve accessibility in the Oslo-Gothenburg-Malmö/Copenhagen corridor. The idea is to construct an entirely new railway for high-speed trains parallel to the existing line, which would give journey times of 1h 30 min. between Oslo and Gothenburg and Gothenburg and Malmö and thereby 2h 30 min. between Oslo and Malmö/Copenhagen. Connecting this railway with the Götaland Line, which gives a journey time of 2h between Stockholm and Gothenburg, would also enable journey times as short as 3h 15 min between both Stockholm and Oslo and Stockholm and Malmö with direct trains via Gothenburg.

    KTH was commissioned to make analyses, on the basis of earlier studies, of the supply of and demand for passenger and freight transportation in the Stockholm-Gothenburg/Oslo/Malmö-Copenhagen corridor. The commission also included conducting a review of the forecasts made by Atkins of future flows in the corridor and a general analysis of the potential for passenger and freight transportation in the COINCO corridor.

    There are a number of different strategies for future high-speed lines in Scandinavia:

    The 8 Million City vision in the COINCO project.The Swedish high-speed train studyThe Norwegian high-speed train study and Norsk Bane’s vision.Denmark’s plans regarding connections to the Fehmarn BeltGermany’s plans regarding connections to the Fehmarn BeltAtkins have developed a forecasting model that was used in the Norwegian high-speed train study and that has been further developed to estimate the demand for a Scandinavian high-speed network between Oslo, Gothenburg and Copenhagen, Stockholm, Gothenburg and Oslo, and Stockholm, Gothenburg and Copenhagen. Atkins’ forecasts have been examined against a background of the databases and models to which KTH has access and international experience of high-speed trains. KTH has come to the following conclusions:

    The total demand expressed in passenger kilometres is at a reasonable level but is possibly slightly underestimated for the Götaland LineThe number of journeys is too high because regional journeys are overestimatedThe large number of regional journeys over short distances also gives an uneven utilizationA problem with the forecasts is that demand cannot be summarized on the different routesToo low a proportion of journeys are made by car and too high a proportion by airAs regards the prerequisites for the forecasts, we would like to make the following comments:

    The price level with air prices is too high but the lower price level is realistic.Alternative express train services should have been consideredIt would be possible to optimize supply with a combination of stopping and non-stopping trainsJourneys to Oslo and Malmö via Gothenburg involve a detour that may entail higher faresThe strength of COINCO’s system is the proposal for a high-speed line between Oslo, Gothenburg and Malmö for which no plans have existed previouslyTo resolve these problems, a complete forecast needs to be made using a forecasting system that contains both domestic and international travel, e.g. a further developed Samvips.

    The traffic base in Scandinavia is not as large as in continental Europe. To analyze the potential for high-speed trains, the following criteria can be set:

    There must be a large end-point market where the train can replace air travelThere must be a large intermediate market where the train can replace the car and create larger regions by increasing accessibilityThere must be a significant demand for freight transportation in the corridor and a need to separate freight and passenger trafficOne conclusion from these analyses is that high-speed trains are an alternative in the Stockholm-Gothenburg and Stockholm-Malmö/Copenhagen corridors due to large flows of passengers and freight, substantial end-point travel and large intermediate markets. The Oslo-Gothenburg-Malmö/Copenhagen route also has large flows and intermediate markets but relatively little air travel. The east coast has air services and intermediate markets but flows are not as large in total. Cross-border travel Oslo-Gothenburg and Copenhagen-Hamburg seems to be depressed, which can partly be overcome by means of high-speed trains. Cross-border freight transportation by rail is depressed, which can partly be overcome with increased capacity.

    With existing decisions and plans, there will be approximately 900 km of double-track line for 200-250 km/h around 2030 while 100 kilometres, or 10%, i.e. the section between Halden and Öxnered, will still be single-track. Weighing together the need for capacity to increase passenger and freight traffic, this will be the weakest link and neither Sweden nor Norway has any concrete plans to convert the section to double-track. Halden-Öxnered is a missing link between Oslo and Gothenburg and is an obstacle as regards development of both freight traffic and passenger traffic and stronger cooperation between the regions in Sweden and Norway.

    In 2012, the government proposed that the East Link between Stockholm and Linköping and Gothenburg and Landvetter be built as the first stage of “New main lines for Sweden” and in 2013 commissioned a top priority study of how the entire Götaland Line and Europa Line can be implemented. This means that there is no longer as much interest in travelling to Malmö/Copenhagen via Gothenburg. As short a journey time between Stockholm and Oslo can be accomplished with a short-cut line between Lilleström and Arvika and the present line.

    The strongest part of COINCO’s traffic system is the section between Oslo and Gothenburg that should be able to be built on its own merits. Ensuring as high a standard as possible on this section is important in order to shorten journey times both between Oslo and Gothenburg and through the whole Oslo-Malmö/Copenhagen corridor. Bringing about a completely new double-track line between Halden and Öxnered built for 350 km/h should be the first stage. A short-cut line between Ski and Sarpsborg should then be prioritizd. With these measures, the journey time between Oslo and Gothenburg on the existing Öxnered-Gothenburg line could be cut to 1h 15 min provided that capacity can be made available.

    Such a short journey time will generate a great deal of travel, which is in fact the very purpose. KTH’s analysis of freight transportation in the corridor shows that the railway only has a market share of 7% of the cross-border freight transportation at Svinesund/Kornsjö – the remaining 93% goes by truck. With an efficient railway, rail’s market share would be able to increase radically, which is also desirable from the point of view of climate and the environment. It would increase the need for capacity even more. In a long-term perspective, capacity will probably need to be increased along the entire West Coast Line. COINCO’s vision will then have paved the way for a new West Coast Line.

    Download full text (pdf)
    fulltext
  • 42.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Järnvägssektorn efter järnvägsreformen 1988 – förändringar i omvärlden, trafikpolitiken och järnvägsbranschen och i järnvägens marknad 1990-20002001Report (Other academic)
    Abstract [en]

    In many respects, developments in the 1990s represented a reversal of previous trends. A new national transport policy was adopted in 1988, including a socio-economic approach to railway infrastructure investment, and the separation infrastructure responsibility from train operations (by Swedish State Railways, SJ). This has brought about an entirely new set of conditions. The decade witnessed extensive investment in new railway lines, and the modernisation of SJ also got under way. In addition, conditions were created for increased competition between traffic operators were created.

    One of the aims of the new transport policy was to stop the negative trend in railway development and enable rail to assume a more important role in the general transport market. Technology was now available to run passenger trains at considerably higher speeds than before and conditions were suitable for the operation of more efficient freight transport systems. Behind all this were to be found the energy crises of the 1970s and the environmental issues that assumed a prominent position in the 1980s. It should be remembered that the railway is one of the most environmentally sound modes of transport. This paper therefore aims to describe how the new transport policy affected Swedish railway development during the last decade of the 20th century.

    Download full text (pdf)
    fulltext
  • 43.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Traffic and Logistics.
    Kapacitetsanalys av järnvägsnätet i Sverige: Delrapport 3, Förslag till åtgärder för att öka kapaciteten på kort sikt2009Report (Other academic)
    Abstract [en]

    Järnvägsgruppen vid Kungliga Tekniska Högskolan (KTH) i Stockholm bedriver tvärvetenskaplig forskning och utbildning inom järnvägsteknik och tågtrafikplanering. Syftet med forskningen är att utveckla metoder och bidra med kunskap som kan utveckla järnvägen som transportmedel och göra tåget mer attraktivt för transportkunderna och mer lönsamt för järnvägsföretagen. Järnvägsgruppen finansieras bland annat av Trafikverket, Bombardier och Branschföreningen Tågoperatörerna.

    Detta projekt ”Kapacitetsanalys av det svenska järnvägsnätet” har finansierats av Banverket och redovisas i tre delrapporter:

    1. Hur många tåg kan man köra? En analys av teoretisk och praktisk kapacitet

    2. Bearbetning och analys av databas över infrastruktur, trafik, tidtabell och förseningar

    3. Förslag till åtgärder för att öka kapaciteten på kort sikt.

    Andra intressanta rapporter från Järnvägsgruppen vid trafik och logistik finns på vår hemsida www.infra.kth.se/tol/jvg

    Download full text (pdf)
    fulltext
  • 44.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Line capacity and train capacity for future rail freight corridors: Capacity4Rail WP32.2 Appendix 1, EC Contract No FP7- 6056502017Report (Other academic)
    Abstract [en]

    The development of freight rail must have as its starting point optimised freight transportation on the basis of a system view of the railways: from the customer’s transportation needs that put demands on the wagons – the wagons are coupled together into trains where available tractive power is taken into account – the train utilises the infrastructure with a certain performance along a link and ultimately in a network from origin to destination. 

    In SP3 simulations and models to evaluate enhanced capacity has been investigated. The aim of this report is to analyse the possibilities to increase capacity for future freight trains 2030/2050. The capacity will be described in terms of

    •  Line capacity – the infrastructure described in

                   - The track system

                   - The signalling system

    • The train capacity – described in

                   - The locomotives and the tractive effort

                   - The wagon performance

    Capacity has then been evaluated for some scenarios and combinations of infrastructure and train performance and with examples of parameters from a rail freight corridor.

    The capacity of a single-track is highly dependent on the distance between the crossing stations and the trains’ speed. The shorter the distance between the crossing stations, the higher the capacity and faster trains means also higher capacity because they can reach the crossing stations faster.

    On a double-track line, the mix of trains operating at different speeds is of great importance as regards capacity. If slow trains, such as freight trains or regional trains, are mixed with express trains, capacity falls because the trains cannot overtake randomly. The trains can be slow because they stop at many stations (regional trains) or because they have a lower top speed (freight trains). 

    In practice, capacity for different track systems will be in the order of:

    • 2 trains/h single track with crossing stations every 20 km
    • 4 trains/h single track with crossing stations every 10 km
    • 10 trains/h double track with heterogeneous traffic
    • 15 trains/h High Speed Rail with stops and passing trains
    • 20 trains/h Double track with homogenous speed
    • 30 trains/h Metro or commuter trains with ideal operation
    • 40=20+20 trains/h four track or double track + high speed line

    Capacity can never be greater than the weakest link. Stations or nodes are often dimensioning factors when trains are to stop or brake to change tracks. The capacity will fall if there are many delays or disruptions in the operation.

    The signalling system is also important for capacity, especially on double track. The block lengths and the speed and acceleration and braking performance are important. In general, shorter block lengths will increase the capacity. Introduction of the European signalling system ERTMS level 2 can increase the capacity substantially only if the block lengths are shortened and optimized, se figure 2. The best solution is ERTMS level 3 with continuous blocks but this is not on the market yet.

    The capacity of the trains can be improved by:

    • Improved Locomotives

                   - Higher tractive effort

                   - Higher axle load and adhesive weight

    •  Improved wagons by

                   - Higher axle load and meter load

                   - Extended gauge

                   - Better length utilization

                   - Lighter wagons

                   - Higher speed

                   - Better braking systems

    • Longer trains and a combination of infrastructure and train performance

    Heavier trains can be operated if the fully potential of modern locomotives will be used with higher axle load and thereby adhesive weight. Many locomotives are optimized for fast passenger trains with low axle load. With track friendly bogies it will be possible to have the same axle load on the locomotives as for the wagons, 22.5 tonnes.

    Faster freight trains can increase capacity on day-time to get more slots between faster passenger trains and minimize overtaking. Even if faster trains are more costly the total cost can be lower with increased productivity when it is possible to get one more turn of a trainset or locomotive per day.

    Some calculations for different infrastructure and train scenarios for 2030/2050 for different train types are shown in figure 3. Train load has the biggest potential to increase capacity if infrastructure and trains can be adapted to the actual needs from the market. Wagon load also have a big potential but need implementation of an automatic couple if it shall develop instead of decrease. Inter modal trains have also a potential especially with longer trains but is restricted by the size of containers and trailers and also by the transferring costs at terminals.

    Longer trains are one of the most promising measures which can improve capacity rather much. In combination with improved locomotives, wagons and heavier trains the train capacity can be doubled. The line capacity will increase a little bit less because a longer train will block the line longer time, even with short block sections.

    Infrastructure investments as double track and new High Speed Lines are very costly and take long time to realize. Improvement of train performance as heavier and longer trains, maybe in combination with higher axle load and extended gauge, seems to have a big potential if we really will improve capacity for freight in a medium term perspective.

    Higher axle load in combination with extended gauge adapted to the actual needs on the market can improve capacity in the order of 10-20%, wagon improvements in the same order. Longer trains have the biggest potential a full step from 630 to 1050m will improve the line capacity with approximately 50%. ERTMS L-2 can improve capacity with approximately 40% with optimized block sections, more with continuous blocks as in ERTMS L-3. Because it is costly to shorten block lengths when introducing L-2 it is important to develop and introduce L-3 on the market.

    By combining these measures it is possible to double the freight transport capacity on given line or freight transport corridor if needed.

     

    Download full text (pdf)
    fulltext
  • 45.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Ricci, Stefano (Contributor)
    DICEA.
    Measurements for Intermodal Transport Chains: Capacity4Rail WP2.3.2, EC Contract No FP7- 6056502015Report (Other academic)
    Abstract [en]

    The general framework will be based on infrastructure systems able to affect the demand behavior towards the stepwise satisfaction of EU targets for 2050.

    General and specific WP2.3 objectives will be the conceptual design of transshipment technologies and interchanges of the future (rail yards, intermodal terminals, shunting facilities, rail-sea ports, etc.), according to their role in co-modal transshipment to influence freight demand distribution, both by operation improvements and logistic leverages.

    Download full text (pdf)
    fulltext
  • 46.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Möjligheter för tåget att konkurrera med och ersätta flyget2007Report (Other academic)
    Abstract [sv]

    Efter att X2000 introducerats på sträckan Stockholm-Göteborg ökade tågets markandsandel från 40 till 60 % av den totala tåg-flyg-marknaden. Den tidigare nedåtgående trenden bröts. Den viktigaste orsaken till detta är att restiden minskade från 4 till 3 timmar. Detta uppnåddes genom uppgradering av banan till 200 km/h för tåg som lutar i kurvorna och har spårvänliga boggier. En liknande utveckling har skett på andra linjer där restiden förkortats och snabbtågen introducerats: Från Stockholm till Småland och Skåne, längs Ostkusten och till Karlstad och Dalarna. 

    'Restiden har visat sig vara den avgörande faktorn i konkurrensen mellan tåg och flyg. Vid 3 timmar restid blir tåget lika snabbt som flyget vid resor city till city. Om man skall flyga så krävs det inklusive matarresor och terminaltid en total restid på ca 3 timmar från Stockholm till nästan vilken stad som helst i Sverige om man inte behöver byta plan på vägen. Det innebär också att man kan åka fram och tillbaka över dagen.

    Tåget får en marknadsandel på 50 % redan när restiden är 3,5 timmar. Det beror på att tåget är bekvämare och man får en ostörd resa jämfört med flyget där resan styckas upp i flera moment. Även pris, turtäthet mm kan påverka men restiden är den klart avgörande faktorn. 

    Sammanfattningsvis kan tåget ersätta flyget restidsmässigt i stora delar av södra Sverige och Mellansverige upp till Sundsvall. På kort sikt, till 2010, kan tågets konkurrenskraft förbättras genom fler direkttåg med kort restid. Det kräver noggrannare planering och prioritering från Banverkets sida. På medellång sikt, till 2015, kan restiderna minskas ytterligare genom nya tåg och en ökad hastighet till 250 km/h. Det kräver vissa investeringar och anpassningar av infrastrukturen. På lång sikt, till 2020, kan kapaciteten öka och restiderna minska radikalt genom att bygga särskilda höghastighetsbanor för 300-350 km/h. Det innebär stora investeringar men ger också stora vinster genom att tåget helt kan ersätta flyget och bli det bästa alternativet jämfört med bil och buss samtidigt som nya resmöjligheter skapas. 

    Download full text (pdf)
    fulltext
  • 47.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Transport and Economics, Traffic and Logistics. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Nya fordon 1981-2006: Särtryck ur Järnvägen 150 år2006Report (Other academic)
  • 48.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Parameters for capacity and costs of freight trains in Sweden including Business cases and validation of new freight wagons: Capacity4Rail WP2.3.1 APPENDIX to D5.4 2/3 Assessment of technologies, scenarios and impacts including MS23, EC Contract No FP7- 6056502017Report (Other academic)
    Abstract [en]

    This report define input to scenarios for future freight trains 2030/2050 which have been used as an input in SP5 for cost-benefit calculations (CBA) for the Scan-Med Corridor RFC3 made by IST (Instituto Superior Tecnico).

    The aim is to describe the RFC3 corridor itself in Sweden and possible future development on basis of forecasts, plans and visions as well how it will affect costs and capacity with longer and heavier trains as well as improved freight wagons. The freight wagons are the same as has been described in MS 15: Scenarios of Development of new rail freight vehicles. In this report is also included as a component in the cost calculations MS23: Business cases and validation for WP2.2: Novel rail freight vehicles.

    At first forecasts which has been used in evaluation of RFC3 in Sweden is described. The forecast has been made for Trafikverket (the Swedish infrastructure manager) by KTH. The baseline forecast up to 2030/2050 for all modes is presented but in this project forecasts for rail freight up to 2030 has been used. The increase for rail freight transport from 2010-2030 is 1.3 % per year and the market share is constant at 25 %. Wagon load is decreasing but train load and inter modal is increasing its share of rail freight in this forecast.

    The number of trains is also calculated on the rail network and detailed data for each link and products has been delivered to D5.4.2/3. Some specific data for delays and some data of the future performance of RFC3 are described i.e. train lengths. Today the normal train length is 630m in Sweden but Trafikverket plans for 750 m train lengths in 2030. As a long term scenario 1050 m train length has been assumed. A dedicated high speed network is planned in Sweden which will affect RFC3 between Stockholm and Malmö/Copenhagen. 

    Capacity analysis which has been done at KTH shows that when dedicated high sped lines will be built, most of the express trains can be removed from Stockholm-Malmö and Stockholm-Gothenburg lines. In addition to extremely short travelling times and greater capacity and punctuality in passenger traffic, capacity is also freed up on the old main lines for freight traffic and regional trains. Simulations show that it is possible to operate 2-3 times more freight trains during day time.

    KTH cost models has been used for evaluations of capacity and costs of freight trains and freight wagons. The cost model is a train cost model in which different production systems can be calculated. In another EU-project, the VEL-wagon, the model has been completed with a wagon costs-model in which different wagon types can be tested, both existing and hypothetical. Also transportation costs for transport chains can be calculated and compared with truck transports. Some examples of how break-even point between rail and direct truck transports will be affected of different measures are shown in chapter 6.

    Then the effects of longer and heavier trains are described. An example from the line between Germany and Denmark in the relation Maschen and Fredericia is described. The train length was increased from 650 to 835 meter, the train weight was increased from 1,600 up to 2,300 metric tons between 2010 and 2013. The increase of utilization of about 19 % led to a decrease of costs per unit by about 14 %. The strengthened competitiveness led to an increase of market share by more than 25 %.

    A train length of 1,050 m is an optimal train length because a modern 4-axle electric loco can haul 2,200-2,600 gross tonnes and intermodal train weights approximately 2 tons/meter. That means that 1,000 m wagon rake weight 1,000x2= 2,000 tons with a marginal for variations and heavier freight. That´s why a total train length of 1,050 m incl. locomotive are a good alternative for freight corridors which can be introduced on long term.

    Then the effects of longer trains in terms of capacity and transport costs per net tonnes kilometres are shown for 630, 750, 835 and 1050 m long trains. This are calculated for wagon load and inter modal trains for containers and trailers. From 630 to 1050 m the capacity per train increases in the order of 70 % and the cost decrease with 20-30 % per net tonne kilometre. 

    For train load with high density goods, the train length is mostly not a restriction but the train weight is more important. Modern locomotives have a tractive power of 5-6 MW capable of hauling 2,000-2,600 tonne. Not only the tractive power but also the locomotives’ axle load is critical for optimal traction. But most locomotives are originally constructed for passenger transports with relatively low axle load. To increase the axle load from normally around 20 tonnes to 22.5 or 25-30 tonnes for heavy haul is therefore an option. The calculations shows that one 6-axle locomotive with 25 tonnes axle load, which is permitted for the wagons on some lines used today, can haul approximately the same train weight as two 4-axle locomotives with 21 tonnes axle load.

    Finally the wagons evaluated in WP2.2. and MS15 have been evaluated. The 12-axle container wagon for 40 feet containers means 7 % improvement of capacity for a full train of 740 meter as well as 7 % less cost per tonnes kilometres compared with a 6-axle wagon. Wagons for non-liftable trailers as Modahlor and Megaswing give a higher cost than wagons for liftable trailers but widen the market for trailer transports and means that there is no need for lifting equipment on the terminals. The 6-axle car transport wagon developed in WP2.2. has 9 % higher capacity and 10 % lower cost than a 4-axle car transport-wagon. 

    For heavy load with steel transport wagons higher axle load from 20 tonnes up to 30 tonnes is evaluated. The importance of higher axle load is evident. To increase the axle load from 20 to 25 tonnes means 34 % higher capacity per wagon and 10 % decreased cost per net tonnes. A light weight wagon with 25 tonnes axle load can increase the capacity with 37 % and decrease the cost with 12 %.

    For high-cube wagon load wagons the importance of a wide gauge is showed. The advantage of a large gauge is shown by a 4-axle US box-car which has 73 % higher capacity and 40 % lower cost per m3 than an ordinary European wagon.

    Download full text (pdf)
    fulltext
  • 49.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Islam, Dewan (Contributor)
    UNEW.
    Ricci, Stefano (Contributor)
    DICEA.
    González, Ignacio (Contributor)
    FFE.
    Toubol, Armand (Contributor)
    NEWOPERA.
    Schmitt, Laurent
    UIC.
    Rydberg, Anders (Contributor)
    UU.
    Obrenovic, Miroslav (Contributor)
    DB Schenker.
    Thunborg, Micael (Commentator for written text)
    Trafikverket.
    Requirements toward the freight system of 2030/2050: Capacity4Rail Deliverable 21.2, EC Contract No FP7- 6056502017Report (Other academic)
    Abstract [en]

    The total demand for freight in Europe has increased rapidly in recent decades, but rail freight has lost market share and most of the increase has been handled by trucks. In the last decade, rail markets share has increased in some countries because of deregulation, investments in rail and truck fees, but is still very low in many countries. In the new member states the markets have decreased rapidly when rail monopoly has been taken away.

    Rail deregulation has not been implemented in practice in all countries while at the same time truck deregulation has been implemented fully and resulted in a low-cost truck market. Moreover, the cost of external effects has not yet been implemented. 

    Most forecasts show an increase of 60% in total freight demand by 2050 and an approximately constant market share with a business-as-usual scenario. To fulfil the targets in the EU white paper, it is necessary to roughly double rails’ market share from 18% in 2011 to at least 36% in 2050. This means that the tonne-kilometres will be 3.6 times as much as today and 2.4 times as much as in a business-as-usual scenario in 2050.

    To reach the white paper target, it is necessary to both increase quality and capacity and lower the cost of rail freight. The customers must be able to trust the delivery time to meet the requirements of their logistic chain and the cost must be competitive with road freight. A system approach is therefore needed and the critical development lines must be identified. From the customer’s transportation needs that put demands on the wagons – the wagons are coupled together into trains where available tractive power is taken into account – the train utilises the infrastructure with a certain performance along a link and ultimately in a network from origin to destination.

    Much of today’s freight train system and infrastructure is based on an old standard 3-4 MW locomotive that means trains of approximately 1,500 gross tonnes and a train length of 650-750 metres. But modern locomotives have a tractive power of 5-6 MW capable of hauling 2,000-2,500 tonne trains of up to 1,000m in length. In Europe, train lengths up to 850m already exist and experiments have been made with 2x750m=1,500m long trains with radio-controlled locomotives in the middle of the train. Not only the tractive power but also the locomotives’ axle load is critical for optimal traction. To increase the axle load from normally around 20 tonnes to 22.5 or for heavy haul, 25-30 tonnes is a possibility to operate heavier trains combined with track-friendly bogies.

    Concerning the wagons, one important question is whether development will be incremental, as it has been so far, or if it is possible to make a system change. An incremental change means successively higher axle loads, wider gauge, better length-utilization in a given train length, higher payload and less tare weight per wagon, more silent brake-blocks, end of train devices and some electronic sensors. A system change will include electro-pneumatic brakes, disc-brakes, full electronic control of the wagons and load and automatic central couplers. The automatic couplers is the most critical component but important not only because it will make shunting and marshalling safer and cheaper but also because it will make it possible to operate longer trains without problems and introduce electronic braking systems and control and to feed the train with electricity.

    Today, most rail operators use electric locos for long haul and diesel locos for feeder transport and terminal shunting. But the duo-loco has now been introduced into the markets, equipped with both normal electric traction and diesel traction, either for shunting or for line haul. This means that a duo-loco can shunt the wagons itself at a marshalling yard or stop at an un-electrified siding at an industry and change wagons directly. The operators thus need only one loco instead of two and it will also make it possible to introduce new operation principles and change wagons along the line. It will also decrease vulnerability in case of current interruptions. In the long term, it will also make it possible to avoid catenaries at marshalling yards and sidings, which will save money for the IM.

    Also for intermodal it is an advantage to introduce liner trains. If the terminals are located on an electrified side track where the train can drive straight in and out onto the line again, there is no need for a diesel loco to be switched in. This in turn requires a horizontal transfer technology that can function under the overhead contact wires. The train must be able to be loaded and unloaded during a stop of 15-30 minutes. This also obviates the need to park wagons. The terminals can also be made more compact and require less space. This will reduce the costs which is critical for intermodal.

    Most trailers today are not designed to be lifted onto a railway wagon. The trailer market is in practice therefore very limited even at conventional intermodal terminals that have lifting equipment. Solutions where trailers do not need to be lifted but can be rolled on and off along a ramp can thus widen the market considerably. They also mean that simple terminals only need to be dimensioned for the trucks’ axle load.

    To increase the capacity of the rail system, the following measures can be taken: (1) More efficient timetable planning: On double track: Bundling of trains with the same average speed in timetable channels to harmonize speeds. During the day faster freight trains are an option. (2) Use of trains and vehicles with higher capacity: For freight: Longer trains, higher and wider gauge, higher axle load and metre load. For passenger trains: Double-decker and wide-body trains. (3) Differentiation of track access charges to avoid peak hours and overloaded links. (4) Better signalling system, shorter block lengths and in the long term introduction of ERTMS level 3. (5) Adaptation of freight corridors for long and heavy freight trains. (6). Investment in HSR to increase capacity for freight trains and regional trains on the conventional network and in some cases dedicated freight railways.

    Two targets in the EU white paper at 2011 were that 30% of road freight over 300 km should shift to other modes such as rail or waterborne transport by 2030, and to triple the length of the existing high-speed rail network by 2030. For high speed rail the target seems to be achievable. The actual development of freight is not in line with the target and at present there are no indications that it will be fulfilled. The planned Rail Freight Corridors (RFC) are promising but there is no common plan to increase the standard in the RFC, which would be desirable. With the measures listed above, longer and heavier trains will make it possible to roughly double the capacity for freight trains without building new railways and in the long term with ERTMS level 3 even more.

    It is possible to reduce GHG emissions for all modes but rail will still be the most efficient mode by 2050. An estimation of the effects of a mode shift to rail transport applying the world’s ‘best practice’ shows that such a mode shift to rail can reduce EU transport GHG emissions over land by about 20 %, compared with a baseline scenario. In combination with low-carbon electricity production a reduction of about 30% may be achieved. A developed rail system can thus substantially contribute to the EU target of reducing GHG emissions in the transport sector by 60% compared to 1990 levels. To enable such a mode shift and to manage the demand for capacity, there is a need for investment. This will also maintain and increase mobility for passengers and freight.

    Download full text (pdf)
    fulltext
  • 50.
    Nelldal, Bo-Lennart
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Cassanova, Carlos (Contributor)
    KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Jönsson, Roger (Contributor)
    Kockums Industrier.
    Thunborg, Michael (Commentator for written text)
    Trafikverket.
    Scenarios of Development of new rail freight vehicles.: Capacity4Rail, WP2.2, MS 15. EC Contract No FP7- 6056502017Report (Other academic)
    Abstract [en]

    In this report the following parameters has been evaluated mainly from a capacity point of view:

    ·         Wagon concepts as longer wagons, lighter wagons and voluminous wagons

    ·         Wagon components as draw-bars, automatic couplers and new brake systems

    ·         Longer trains and combination of longer trains and wagon improvements

    One measure to make wagon longer and more efficient is to couple them permanently together with Jacobs-bogies. This has been done for container and trailer wagons in this project. For 45 feet containers a 12-axle wagon with Jacob-bogies has been developed. By this the capacity per train-meter increase with 3- 4 % compared with an ordinary 6-axle wagon with Jacob bogie. For 40 feet containers however a 4-axle 80 feet bogie wagon like VEL-wagon is more efficient.

    For liftable trailers two 6-axle wagons with Jacob-bogies has been coupled with a drawbar. This 12-axle wagon is 2 % more efficient than an ordinary 6-axle wagon. The problem with long wagons is that they are not so flexible to adapt to different demand and train lengths. Our analysis shows that in many situations shorter wagons are more efficient. This can in practice be solved if long wagons can be combined with shorter wagons to optimize the train lengths.

    For non-liftable trailers the problem is to find a solution which can handle trailers with in simple terminals, at best only a siding with a flat ground. It will often make the wagons more complex. Both Flexiwagon and Megaswing can load wagons on a siding by the truck-driver and no other equipment. Megaswing is as efficient as an ordinary 6-axle wagon for liftable trailers in length-utilization. The Flexiwagon is very long but is also constructed to load both the truck and the trailer. This will decrease the capacity utilization by approx. 40 % compared with wagons only for trailers. 

    Modalohr, which is a low-built platform wagon, is more efficient than an ordinary 6-axle wagon for non-liftable trailers however it need a rather complicated terminal to handle the trailers. Trailer train is the most efficient wagon which ramp non-liftable trailers. With a medium low flour it permits trailers on flat cars (TOFS) which increase the capacity by 15 % but the height of trailers is restricted.

    The 6 single-axle car transport-wagon developed by STVA is much more efficient than the ordinary 4- or 3-axle wagons. It will increase the wagon capacity by 9 % by better length utilization, se figure 1.

    For heavy steel transports the wagon and train length is not critical. Higher axle load is the most efficient measure but needs investment in the track. An increase from 22.5 to 25 tonnes axle load will increase the capacity by 13 %. By using high sustainable steel and make the wagon lighter and by that increase the payload with 2 tonnes the capacity increase with 3 % 

    For light and voluminous freight, high-cube wagons have been analysed. A 4-axle VEL-wagon box-car can increase the capacity with 9 % compared with a 6-axle low-built high-cube European wagon. As a comparison a US high-cube box car have 75 % higher capacity than the existing European. This show the importance of a high and wide loading gauge which is extreme in US.

    If two 2-axle wagons will be permanent coupled with draw bars instead of separated by buffers it can allow one more wagon in a 740 m long train, an increase of capacity by 2.3 % in average, se figure 2. Another advantage of introducing pair-coupled wagons in large scale is that it will be easier to introduce automatic couplers. The most important advantages with automatic couplers are that they:

    ·         allows higher tractive power and compressive forces in curves and less risk of derailment

    ·         permits heavier and longer trains and higher speed by that higher transportation capacity

    ·         coupling of electric/signalling line opens up for EP brakes and intelligent freight trains

    ·         decrease the need for staff in shunting and marshalling movements and by that the costs

    ·         decrease the risk for the staff to be injured during the shunting work

    ·         make it possible to introduce new traffic concepts i.e. liner trains with coupling and uncoupling wagons on intermediate stations and sidings and by that the revenues

    The problem to implement the automatic couplers in Europe is that all railway companies must agree and that it is hard to finance in a business with low profitability. Starting by fitting the equipment on captive fleet of wagons dedicated to regular flows of traffics on fixed routes could enable to demonstrate all direct and indirect benefits linked to automatic couplers and thus raise the interest of stakeholders to reach a common agreement across Europe.

    The problem with the conventional air brakes in rail is that the brake propagates from the locomotive and it takes some time to reach the last wagon. The End of train device (EOT) and Electro-pneumatic (EP) brakes are solutions to this problem. EOT brake the last wagon at the same time as the first. It is a portable unit which hung on the last wagon and is connected to the main brake line. The EOT unit has two-way radio communication with the locomotive. EP is a wire- or wirelessly-controlled braking device on the wagon which brake all wagons at simultaneously. The advantages of EOT and EP are:

    ·         Shorter braking distance which can increase the line capacity

    ·         Smoother braking which lower maintenance costs for wheels on wagons

    ·         Easier to operate longer trains and reduced forces between wagons

    EOT is required on most freight trains in US and EP is used on some very long unit trains in US. To implement EOT should be possible in Europe because it is a proven technology with no need to rebuild the wagons. To implement EP-brakes is more complex because the braking system on all wagons must be changed. To develop and test EP-brakes can therefore be an important contribution of the Shift2Rail project founded together by the EU and the industry.

    Brake tests have to be done when the train has been broken i.e. on marshalling yards. To fill up the wagons with air pressure take about 20-30 minutes and the staff cannot do any productive work during this time. To solve this, devices to fill up wagon-rakes can be installed on marshalling yards, locomotives compressors and wagons air containers can be optimized, disc-brakes can be introduced which need less air and radio-controlled systems for brake tests like EOT or EP-brakes can be used. All this measures can release capacity on marshalling yards and terminals.

    Longer trains are the most powerful measure to increase capacity. The maximum train length varies in Europe in a range from 550 m today up to 1050 m in the future. 740 m is a standard which has to be implemented in the TEN-T network until 2030. With freight wagons weighing around 2 tonnes per metre like inter modal, a train of 1050 m weight ≈2000 tonnes. This can be hauled by one modern high power 4-axle locomotive (or 6 axel in case of use on steeper slopes) and is thus optimal from an economic point of view. Increasing the train length from 550 to 740 m will increase the capacity with 36 % and to 1050 m by 94 %, se figure 3. Longer trains needs investments in the infrastructure however less costly than to build double or multiple tracks. By better time-table and operational planning it can be implemented faster.

    Download full text (pdf)
    fulltext
123 1 - 50 of 123
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf