An Einstein manifold is called scalar curvature rigid if there are no compactly supported volume-preserving deformations of the metric which increase the scalar curvature. We give various characterizations of scalar curvature rigidity for open Einstein manifolds as well as for closed Einstein manifolds. As an application, we construct mass-decreasing deformations of the Riemannian Schwarzschild metric and the Taub–Bolt metric.
We consider a Ricci de Turck flow of spaces with isolated conical singularities, which preserves the conical structure along the flow. We establish that a given initial regularity of Ricci curvature is preserved along the flow. Moreover under additional assumptions, positivity of scalar curvature is preserved under such a flow, mirroring the standard property of Ricci flow on compact manifolds. The analytic difficulty is the a priori low regularity of scalar curvature at the conical tip along the flow, so that the maximum principle does not apply. We view this work as a first step toward studying positivity of the curvature operator along the singular Ricci flow.
We compute the indicial roots of the Lichnerowicz Laplacian on Ricci-flat cones and give a detailed description of the corresponding radially homogeneous tensor fields in its kernel. For a Ricci-flat conifold (M, g) which may have asymptotically conical as well as conically singular ends, we compute at each end a lower bound for the order with which the metric converges to the tangent cone. As a special subcase of our result, we show that any Ricci-flat ALE manifold (Mn,g) is of order n and thereby close a small gap in a paper by Cheeger and Tia.