kth.sePublications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hallesius, Hanns
    et al.
    Tructric AB.
    Kordnejad, Behzad
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Nordmark, Ingrid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    A pre-study for a new efficient transshipment technology for combined transports2023Report (Other (popular science, discussion, etc.))
    Abstract [en]

    The project addresses the need for green end-to-end long-distance transportation over land and the need to shift more cargo from road to rail. The overarching target is to shift a considerable part of present long-distance road transports to combined transportation, by providing seamless transshipment between road and rail, with the aim to accelerate the shift from energy-consuming fossil transportation to a combination of energy-efficient and fossil-free long-distance transportation on rail and flexible and fossil-free short-distance trucking.

    Combined transport (CT) of semi-trailers combines the sustainability (electrification & energy efficiency) of rail with the flexibility of road, enabling green transport chains. The availability and competitiveness of CT is however limited by inefficiencies related to the transshipment, as most trailers cannot be managed by present methods, as CT terminals are capital intensive and therefore typically few and far apart, and as large part of transport costs and time are related to the transshipment.

    The proposed solution “Assisted RoRo Transshipment” is an innovative & competitive way for loading trailers onto railway wagons at terminals, through horizontal loading of trailers onto flat railway wagons by the use of assisted precision driving (Ro-Ro). The trailer can be pushed onto the railway wagon directly by the tractor bringing it to the terminal, or alternatively by a terminal tractor.

    One objective of the pre-study project has been to achieve a deeper understanding of the fit within the transport system in Sweden, including relevant market, and the needs of all relevant stakeholders. Another objective has been to review the feasibility of the technology in different implementations. A further objective has been to identify relevant use cases, and propose an actionable project plan for a full scale demo project.

    The following general research questions were addressed:

    • How well does the concept fit in the present system and market? 
    • How feasible is the concept in relation to risks and regulations? 
    • How should a suitable full scale demo project (FSDP) be designed and planned and what should be considered regarding technology?

    To review the fit of the new concept in present systems and market, a review has been made from the perspectives system, behaviour and application. A thorough review on the market mechanics has been made and the different components of the intermodal transport system have been addressed. Simulations of effects by the introduction of the Assisted RoRo Transshipment concept in various environments was carried out.

    As a summary, the conclusion is that Assisted RoRo Transshipments have the potential of bringing relevant improvements to the marked in various situations. The costs for transshipment are estimated to be considerably lower than present alternatives and new opportunities are created for the establishment of intermediate terminals along the railway line. Faster transshipments together with the possibility to use also non-liftable trailers in CT provides opportunities or growing the CT market. Based upon these conclusions, further development and demonstrations are suggested, as well as further research.

    In the study regarding the feasibility of the concept, various risks related to CT and an implementation of Assisted RoRo Transshipments were reviewed and analysed. Applicable legislation and requirements related to intermodal railway transports were also reviewed and analysed in view of various levels of implementation. The main conclusions from the feasibility study are that the Assisted RoRo Transshipment concept appears to be feasible for implementation in an FSDP as well as in large scale and that the risks involved in transshipments and transportation call for focus on safety and reliability in all implementations. 

    Various alternatives for an FSDP were simulated and analysed. The technology concept has been tested from different perspectives. The conclusions were that there is a number of variations as to how a demonstration and pilot project can be set up in various stages of the development of the concept. The suggestion is however to set up a limited FSDP, with one or a few wagons in commercial pilot traffic between two terminals as part of an existing intermodal shuttle. The railway wagon should be adapted for Assisted RoRo Transshipments. Temporary platforms for Assisted RoRo Transshipments should be arranged on or close to the terminals. The project also proposes a project plan for such FSDP.

    Download full text (pdf)
    2023-00040_A pre-study for a new efficient transshipment technology for combined transports
  • 2.
    Kordnejad, Behzad
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Aronsson, Martin ()
    RISE.
    Bergstrand, Jan
    Trafikverket.
    Kjellin, Martin
    RISE.
    Lengu, Roald
    Hitachi Rail.
    Nordmark, Ingrid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Rius García, Guillermo
    Indra.
    Salvitti, Giorgio
    Hitachi Rail.
    Vilabella, Santiago
    Indra.
    Wohlrath, Rico
    DB Cargo AG.
    Deliverable 3.3 Demonstration and Evaluation including Best Usage of the Data Capture2022Report (Other academic)
    Abstract [en]

    The concept of Intelligent Video Gate (IVG) consists of a gate system installed at relevant railway nodes equipped with cameras and RFID readers for automatic identification of wagons and intermodal loading units (ILU; for example, containers, swap bodies, and semi-trailers) as well as damages, through image recognition and detection of wagon numbers, loading unit codes, placards and RFID units. The IVG is to be located at, or nearby, railway facilities where it can lead to significant improvements for processes within the supply chain, related to time, planning, work safety, maintenance and claims.

    The aim of this deliverable is to describe a demonstrator of the IVG, a technique to enhance optimization of a fully operational terminal or yard, and with data management to enable fast and reliable detection of incoming and outgoing assets. Through automatic detection by an IVG of wagon numbers and intermodal loading units (ILU) handled, including recognition of dangerous goods, their sequence as well as visible damages, processes at terminals and yards can be optimized to achieve efficient dwell times and handling, as well as facilitate processes at other actors in the supply chain.

    The R&I highlighted in this report are related to three tasks; Task 3.3: AI for images processing, Task 3.4: Data sharing and exploitation and Task 3.5: Demonstration and Evaluation. Task 3.3 and Task 3.4 have partially been reported in (D3.2, 2021) and further elaborated in this deliverable, Chapters 3 and 4. Task 3.5 entails the use cases considered in the exploitation plan, described in Chapter 5 and evaluated in Chapter 6.

    Use cases evaluated in this deliverable are dependent on correct extraction of information from the images produced by the IVG, as well as on reliable storage and sharing of the resulting data. The current accuracy levels for the IVG of Trafikverket in Gothenburg, Sweden have been demonstrated in this deliverable. The evaluations that have been performed show that there is room for improvements of the information extraction, but also that the concept works well and that the extracted information has been successfully made available and makes several important use cases possible. The uses cases have also been demonstrated in the final event of FR8RAIL III on 2022/12/09.

    It can be concluded that the IVG concept shows potential of automation and digitalization regarding reduction of time and speed-up of the technical checks on departure and arrival, use of image processing combined with machine learning as well as sharing and exploitation of data along the supply chain. However there are potentials for further improvements of the image processing and data sharing, to achieve accuracy levels above 95% through e.g. ability to recognize more code types (mainly national), using colour cameras and exploring common format for data sharing and semantics.

  • 3.
    Kordnejad, Behzad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Kjellin, Martin
    RISE.
    Aronsson, Martin
    RISE.
    Rius Garcia, Guillermo
    Indra.
    Castro Vilabella, Santiago
    Indra.
    Wohlrath, Rico
    DB Cargo AG.
    Nordmark, Ingrid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Lengu, Roald
    Hitachi Rail.
    Åkerfeldt, Mats
    Trafikverket.
    Bergstrand, Jan
    Trafikverket.
    Intelligent Video Gate -Automated Detection of Wagons and Intermodal Loading Units for Image Processing and Sharing and Exploitation of Data2022In: 13th World Congresson Railway Research, Birminghem, UK, 6–10 June 2022, 2022Conference paper (Refereed)
    Abstract [en]

    Emerging technologies and their applications within intermodal and rail freight terminals enable improvements in efficiency and existing business processes, relieving them of manual activities and enabling higher degree of automation and digitalization. To initiate the next logical step to a higher level of automation at marshalling yards and intermodal terminals and to reduce the lead-time needed for the identification/verification process of freight trains, the concept “Intelligent Video Gates” (IVG) is introduced within the Shift2Rail programme and the project FR8RAIL III WP3. The methodology is based on implementation and evaluation of full-scale demonstration gates that have been installed in Sweden and Germany. The gates capture data through optical character recognition (OCR) and radio-frequency identification (RFID) from wagons and intermodal loading units (ILUs). Use cases such as recognition of damages and dangerous goods placards are investigated. This study deals with two aspects of the concept, namely image processing and the sharing and exploitation of data. Image processing requires two main components: a physical architecture composed of devices that can acquire the images and a software architecture that is able to analyse the information contained within the image and interpret its content. For the software component, one way to accomplish the understanding of the image is the use of Deep Learning methods that learn representations and features through a sequence of transformations to the input image. An architecture is presented for how to retrieve data from the image processing. The data should then preferably be shared with stakeholders in the transportation chain. Within the project, a data sharing system called Deplide is used. The system is based on experience from similar platforms in several large-scale projects within the maritime sector, which is adapted to intermodal and rail transportation requirements. 

  • 4.
    Kordnejad, Behzad
    et al.
    KTH, School of Architecture and the Built Environment (ABE).
    Mitrovic, Branko
    Aronsson, Martin
    Bergstrand, Jan
    Åkerfeldt, Mats
    Nordmark, Ingrid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Intelligent Video Gate – A Conceptual Application of Emerging Technologies in Rail Freight Transports2020In: Proceedings of 8th Transport Research Arena TRA 2020, April 27-30, 2020, Helsinki, Finland, 2020Conference paper (Refereed)
    Abstract [en]

    The emergence of new technologies and their corresponding applications within intermodal and rail freight terminals enable improvements in efficiency in existing business processes, relieving them of manual activities and enabling higher degree of automation and digitalization. To initiate the next logical step to a higher level of automation in terminals and to reduce the lead-time needed for the identification and verification processes of freight trains, the concept “Intelligent Video Gates” (IVG) is introduced within the framework of the H2020 Shift2Rail initiative and FR8HUB project. The project has been bi-sectional, first describing functional and technical requirements and the selection of components and secondly carrying out a technical proof of concept (PoC) and introducing a roll-out and implementation plan (RIP) within a Swedish and German context. This paper presents the main findings from the project, literature review, survey of similar studies and a case study simulating the expected effects of the concept.

    Download full text (pdf)
    fulltext
  • 5.
    Kordnejad, Behzad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Nordmark, Ingrid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Wolrath, Rico
    DB Cargo AG.
    Klein, Christopher
    DB Cargo AG.
    D25.3 Report on the basic functional and technical specifications regarding CMS as relevant input for FP32023Report (Other academic)
    Abstract [en]

    The present document constitutes the basic functional and technical specifications regarding CMS as relevant input for Flagship Project FP3 – IAM4RAIL. The term Condition monitoring systems (CMS) here refers to wayside monitoring systems and in particular the Intelligent Video Gate (IVG) concept developed within the Shift2Rail programme and the projects FR8HUB and FR8RAIL III. The concept is now further developed in a concept called “Standardised European Checkpoints” within Flagship Project FP5 – TRANS4M-R. As these checkpoints will also be developed within FP3 WP7, the main purpose of this deliverable is to provide FP3 basic functional and technical specifications developed previously for the concept within Shift2Rail as well as the vision for the further development of the concept within FP5. Moreover, as CMS also includes other wayside monitoring systems (WMS) than the IVG concept, previous work within Shift2Rail regarding these technologies will also be addressed in this deliverable. 

    The IVG concept was first described and showcased on a model train within Shift2Rail and the project FR8HUB and the full scale demonstrated within FR8RAIL III, including installation of gate in Gothenburg, Sweden for terminal purposes, while for yard purposes the gate in Nurnberg yard in Germany was used. The work will now continue within FP5 with extending the concept with further functionalities for terminals, yards and borders and to further European countries, both on a local/national and a European level. 

    Challenges experienced during the Shift2Rail projects regard first of all installation challenges; one should consider all the required steps i.e. finding a suitable location, contracting sub provider, obtaining all permissions for installation, purchasing components, transportation of equipment, construction, fine tuning while estimating costs and effort for each step. As for the technical challenges and the image processing, hit rates over 95% for character recognition (codes) are required i.e. ability to recognize more code types e.g. domestic ILU codes differs and are hard to recognize, as well as improved damage detection abilities. Regarding the technical challenges with data exchange, it is particularly worth considering that handling information of dangerous goods is strictly regulated. 

    Regarding Wayside monitoring systems based on other detection technologies, the industry is already providing sensors to monitor a large number of freight wagon conditions. However, there are still areas of freight wagons that are difficult or impossible to monitor with stationary or on-board sensors. However, it will not be possible to deploy a comprehensive condition detection solution at one time but step by step. The gradual integration of domestic and international data will also present economic, technical and legal challenges.

  • 6.
    Sánchez, Celestino
    et al.
    EURNEX e.V. - European Rail Research Network of Excellence .
    Nordmark, Ingrid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Transport planning.
    Knowledge hub: ESEP4Freight's contribution to rail freight information2024In: Global Railway Review, ISSN 2515-3021, Vol. 30, no 1, p. 38-39Article in journal (Other (popular science, discussion, etc.))
    Abstract [en]

    The 24-month project European Shift Enabler Portal for Freight (ESEP4Freight) is taking its first steps in its contribution to boost the modal shift to rail in the European rail sector. To do this, ESEP4Freight Will focus its efforts on providing high-quality and user-friendly static information to the actors of the supply chain in form of an openly accessible Web Platform (WP). In addition, the project Will also examine innovative solutions, such as the implementation of smart contracts, and Will analyse the contractual and legal framework of the European multimodal sector.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf