Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aung, S. H.
    et al.
    Zhao, L.
    Nonomura, K.
    Oo, T. Z.
    Zakeeruddin, S. M.
    Vlachopoulos, N.
    Sloboda, Tamara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Svanström, S.
    Cappel, Ute B.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Hagfeldt, A.
    Grätzel, M.
    Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells2019In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 7, no 17, p. 10729-10738Article in journal (Refereed)
    Abstract [en]

    The anodic electrodeposition method is investigated as an alternative technique for the preparation of a titanium oxide (TiO 2 ) blocking underlayer (UL) for perovskite solar cells (PSCs). Extremely thin Ti IV -based films are grown from aqueous acidic titanium(iii) chloride in an electrochemical cell at room temperature. This precursor layer is converted to the UL (ED-UL), in a suitable state for PSC applications, by undertaking a sintering step at 450 °C for half an hour. PSCs with the composition of the light-absorbing material FA 0.85 MA 0.10 Cs 0.05 Pb(I 0.87 Br 0.13 ) 3 (FA and MA denote the formamidinium and methylammonium cations, respectively) based on the ED-UL are compared with PSCs with the UL of a standard type prepared by the spray-pyrolysis method at 450 °C from titanium diisopropoxide bis(acetylacetonate) (SP-UL). We obtain power conversion efficiencies (PCEs) of over 20% for mesoscopic perovskite devices employing both ED-ULs and SP-ULs. Slightly higher fill factor values are observed for ED-UL-based devices. In addition, ED-ULs prepared by the same method have also been applied in planar PSCs, resulting in a PCE exceeding 17%, which is comparable to that for similar PSCs with an SP-UL. The preparation of ED-ULs with a lower sintering temperature, 150 °C, has also been examined. The efficiency of a planar PSC incorporating this underlayer was 14%. These results point out to the possibility of applying ED-ULs in flexible planar PSCs in the future.

  • 2.
    Cappel, Ute B.
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Liu, Peng
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Johansson, Fredrik O. L.
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Philippe, Bertrand
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Giangrisostomi, Erika
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Ovsyannikov, Ruslan
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Lindblad, Andreas
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Rensmo, Hakan
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Electronic Structure Characterization of Cross-Linked Sulfur Polymers2018In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 19, no 9, p. 1041-1047Article in journal (Refereed)
    Abstract [en]

    Cross-linked polymers of elemental sulfur are of potential interest for electronic applications as they enable facile thin-film processing of an abundant and inexpensive starting material. Here, we characterize the electronic structure of a cross-linked sulfur/diisopropenyl benzene (DIB) polymer by a combination of soft and hard X-ray photoelectron spectroscopy (SOXPES and HAXPES). Two different approaches for enhancing the conductivity of the polymer are compared: the addition of selenium in the polymer synthesis and the addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) during film preparation. For the former, we observe the incorporation of Se into the polymer structure resulting in a changed valence-band structure. For the latter, a Fermi level shift in agreement with p-type doping of the polymer is observed and also the formation of a surface layer consisting mostly of TFSI anions.

  • 3. D'Amario, Luca
    et al.
    Jiang, Roger
    Cappel, Ute B.
    Gibson, Elizabeth A.
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Rensmo, Hakan
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Hammarstrom, Leif
    Tian, Haining
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Chemical and Physical Reduction of High Valence Ni States in Mesoporous NiO Film for Solar Cell Application2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 39, p. 33470-33477Article in journal (Refereed)
    Abstract [en]

    The most common material for dye-sensitized photocathodes is mesoporous NiO. We transformed the usual brownish NiO to be more transparent by reducing high valence Ni impurities. Two pretreatment methods have been used: chemical reduction by NaBH4 and thermal reduction by heating. The power conversion efficiency of the cell was increased by 33% through chemical treatment, and an increase in open-circuit voltage from 105 to 225 mV was obtained upon heat treatment. By optical spectroelectrochemistry, we could identify two species with characteristically different spectra assigned to Ni3+ and Ni4+. We suggest that the reduction of surface Ni3+ and Ni (4+) to Ni (2+) decreases the recombination reaction between holes on the NiO surface with the electrolyte. It also keeps the dye firmly on the surface, building a barrier for electrolyte recombination. This causes an increase in open-circuit photovoltage for the treated film.

  • 4.
    Jacobsson, T. Jesper
    et al.
    Uppsala Univ, Dept Chem, Box 538, S-75121 Uppsala, Sweden..
    Svanström, Sebastian
    Uppsala Univ, Dept Phys & Astron, Box 5516, S-75120 Uppsala, Sweden..
    Andrei, Virgil
    Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England..
    Rivett, Jasmine P. H.
    Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England..
    Kornienko, Nikolay
    Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England..
    Philippe, Bertrand
    Uppsala Univ, Dept Phys & Astron, Box 5516, S-75120 Uppsala, Sweden..
    Cappel, Ute B.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Rensmo, Håkan
    Uppsala Univ, Dept Phys & Astron, Box 5516, S-75120 Uppsala, Sweden..
    Deschler, Felix
    Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England..
    Boschloo, Gerrit
    Uppsala Univ, Dept Chem, Box 538, S-75121 Uppsala, Sweden..
    Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping2018In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, no 25, p. 13548-13557Article in journal (Refereed)
    Abstract [en]

    A trend in high performing lead halide perovskite solar cell devices has been increasing compositional complexity by successively introducing more elements, dopants, and additives into the structure; and some of the latest top efficiencies have been achieved with a quadruple cation mixed halide perovskite Cs(x)FA(y)MA(z)Rb(1-x-y-z)PbBr(q)I(3-9). This paper continues this trend by exploring doping of mixed lead halide perovskites, FA(0.83)MA(0.17)PbBr(0.51)I(2.49), with an extended set of alkali cations, i.e., Cs+, Rb+, K+, and Na+, as well as combinations of them. The doped perovskites were investigated with X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, hard X-ray photoelectron spectroscopy, UV-vis, steady state fluorescence, and ultrafast transient absorption spectroscopy. Solar cell devices were made as well. Cs+ can replace the organic cations in the perovskite structure, but Rb+, K+, and Na+ do not appear to do that. Despite this, samples doped with K and Na have substantially longer fluorescence lifetimes, which potentially could be beneficial for device performance.

  • 5.
    Johansson, F. O. L.
    et al.
    Uppsala Univ, Dept Phys & Astron, Mol & Condensed Matter Phys, Box 516, SE-75120 Uppsala, Sweden..
    Ivanovic, M.
    Univ Tubingen, Inst Phys & Theoret Chem, Morgenstelle 18, D-72076 Tubingen, Germany..
    Svanstrom, S.
    Uppsala Univ, Dept Phys & Astron, Mol & Condensed Matter Phys, Box 516, SE-75120 Uppsala, Sweden..
    Cappel, Ute B.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. Uppsala Univ, Dept Phys & Astron, Mol & Condensed Matter Phys, Box 516, SE-75120 Uppsala, Sweden.
    Peisert, H.
    Univ Tubingen, Inst Phys & Theoret Chem, Morgenstelle 18, D-72076 Tubingen, Germany..
    Chasse, T.
    Univ Tubingen, Inst Phys & Theoret Chem, Morgenstelle 18, D-72076 Tubingen, Germany..
    Lindblad, A.
    Uppsala Univ, Dept Phys & Astron, Mol & Condensed Matter Phys, Box 516, SE-75120 Uppsala, Sweden..
    Femtosecond and Attosecond Electron-Transfer Dynamics in PCPDTBT:PCBM Bulk Heterojunctions2018In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, no 24, p. 12605-12614Article in journal (Refereed)
    Abstract [en]

    Charge separation efficiency is a crucial parameter for photovoltaic devices-polymers consisting of alternating electron-rich and electron-deficient parts can achieve high such efficiencies, for instance, together with a fullerene electron acceptor. This offers a viable path toward solar cells with organic bulk heterojunctions. Here, we measured the charge-transfer times in the femtosecond and attosecond regimes via the decay of sulfur is X-ray core excited states (with the core-hole clock method) in blends of a low-band gap polymer {PCPDTBT [poly[2,6-(4,4-bis (2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-1/1 dithiophene)-alt-4,7- (2,1,3-benzothiadiazole)]]} consisting of a cyclopentadithiophene electron-rich part and a benzothiadiazole electron-deficient part. The constituting parts of the bulk heterojunction were varied by adding the fullerene derivative PCBM ([6,6]-phenyl-C-61-butyric acid methyl ester) (weight ratio of polymer/PCBM as 1:0, 1:1, 1:2, and 1:3). For low-energy excitations, the charge-transfer time varies to the largest extent for the thiophene donor part. The charge-transfer time in the 1:2 blend is reduced by 86% compared to that of pristine PCPDTBT. At higher energy excitations, the charge-transfer time does not vary with the chemical environment, as this regime is dominated by intramolecular conduction that yields ultrafast charge-transfer times for all blends, approaching 170 as. We thus demonstrate that the core-hole clock method applied to a series with changing composition can give information about local electron dynamics (with chemical specificity) at interfaces between the constituting parts the crucial part of a bulk heterojunction where the initial charge separation occurs.

  • 6.
    Saki, Zahra
    et al.
    Sharif Univ Technol, Phys Dept, Tehran 14588, Iran.;Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, Box 523, S-75120 Uppsala, Sweden..
    Aitola, Kerttu
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, Box 523, S-75120 Uppsala, Sweden.;Aalto Univ Sch Sci, New Energy Technol Grp, Dept Appl Phys, POB 15100, Aalto 00076, Finland..
    Sveinbjornsson, Kari
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, Box 523, S-75120 Uppsala, Sweden..
    Yang, Wenxing
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, Box 523, S-75120 Uppsala, Sweden..
    Svanstrom, Sebastian
    Uppsala Univ, Dept Phys & Astron Mol & Condensed Matter Phys, Box 516, S-75120 Uppsala, Sweden..
    Cappel, Ute B.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. Uppsala Univ, Dept Phys & Astron Mol & Condensed Matter Phys, Box 516, S-75120 Uppsala, Sweden..
    Rensmo, Hakan
    Uppsala Univ, Dept Phys & Astron Mol & Condensed Matter Phys, Box 516, S-75120 Uppsala, Sweden..
    Johansson, Erik M. J.
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, Box 523, S-75120 Uppsala, Sweden..
    Taghavinia, Nima
    Sharif Univ Technol, Phys Dept, Tehran 14588, Iran.;Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran 14588, Iran..
    Boschloo, Gerrit
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, Box 523, S-75120 Uppsala, Sweden..
    The synergistic effect of dimethyl sulfoxide vapor treatment and C-60 electron transporting layer towards enhancing current collection in mixed-ion inverted perovskite solar cells2018In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 405, p. 70-79Article in journal (Refereed)
    Abstract [en]

    Inverted perovskite solar cells (PSCs) have been introduced as better candidate for roll-to-roll printing and scaleup than their conventional configuration counterparts, while their fabrication is technically more demanding. The common light absorbing layer in inverted PSCs is the single cation methylammonium lead iodide (MAPbI(3)) perovskite, whereas mixed-ion perovskites are chemically more stable. In mixed-ion perovskites, where FA (formamidinium) is the main replacement for MA, the electron affinity is larger than in MAPbI3 perovskites, leading to possible barriers against photoelectron collection by the electron transporting layer (ETL). In this paper we report on a mixed-ion (FAPbI(3))(0.83)(MAPbBr(3))(0.17) inverted PSC with improved photocurrent through using a dimethyl sulfoxide vapor treatment of perovskite layer and replacing the conventional [6,6]-phenyl-C-71 butyric acid methyl ester (PC70BM) with C-60/bathocuproine (BCP) as more effective ETL. The treatment of perovskite layer results in reduction of impurity phases of 8-FAPbI(3) and Pbl(2). Photoluminescence and open circuit voltage decay data demonstrate better charge carrier collection by the C-60/BCP compared to the PC70BM ETL, and an electron barrier for the back flow of electrons from ETL to perovskite. Our improvements in perovskite crystalization and electron transfer layer simultaneously lead to increasing the current density from 10 to 21 mA cm(-2).

  • 7.
    Schaefer, A.
    et al.
    Lund Univ, Dept Synchrotron Radiat Res, POB 118, SE-22100 Lund, Sweden.;Chalmers Univ Technol, Competence Ctr Catalysis, S-41296 Gothenburg, Sweden..
    Lanzilotto, V.
    Uppsala Univ, Dept Phys & Astron, POB 516, SE-75120 Uppsala, Sweden..
    Cappel, Ute B.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. Uppsala Univ, Dept Phys & Astron, POB 516, SE-75120 Uppsala, Sweden.
    Uvdal, P.
    Lund Univ, Dept Chem, Chem Phys, POB 124, SE-22100 Lund, Sweden..
    Borg, A.
    NTNU Norwegian Univ Sci & Technol, Dept Phys, NO-07491 Trondheim, Norway..
    Sandell, A.
    Uppsala Univ, Dept Phys & Astron, POB 516, SE-75120 Uppsala, Sweden..
    First layer water phases on anatase TiO2(101)2018In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 674, p. 25-31Article in journal (Refereed)
    Abstract [en]

    The anatase TiO2(101) surface and its interaction with water is an important topic in oxide surface chemistry. Firstly, it benchmarks the properties of the majority facet of TiO2 nanoparticles and, secondly, there is a controversy as to whether the water molecule adsorbs intact or deprotonates. We have addressed the adsorption of water on anatase TiO2(101) by synchrotron radiation photoelectron spectroscopy. Three two-dimensional water structures are found during growth at different temperatures: at 100 K, a metastable structure forms with no hydrogen bonding between the water molecules. In accord with prior literature, we assign this phase to chains of disordered molecules. Growth 160 K results in a metastable structure with expressed hydrogen bonding between the water molecules. At 190 K, the water molecules become disordered as the thermal energy is too high and hence the hydrogen bonds break. The result is a structure with isolated monomers. Partial dissociation is observed for all three growths, with the molecular state only slightly favored in energy (20-40 meV) over the dissociated state. Heating of a thick film leads to more dissociation compared to a bilayer, when formed at 100 K. Thus, extending the water network facilitates proton transport and hence dissociation. The results reconcile apparent conflicting experimental results previously obtained by scanning tunneling microscopy (STM) and core level photoelectron spectroscopy.

  • 8.
    Svanstrom, Sebastian
    et al.
    Uppsala Univ, Dept Phys & Astron, SE-75121 Uppsala, Sweden..
    Jacobsson, T. Jesper
    Uppsala Univ, Dept Chem, S-75121 Uppsala, Sweden..
    Boschloo, Gerrit
    Uppsala Univ, Dept Chem, S-75121 Uppsala, Sweden..
    Johansson, Erik M. J.
    Uppsala Univ, Dept Chem, S-75121 Uppsala, Sweden..
    Rensmo, Hakan
    Uppsala Univ, Dept Phys & Astron, SE-75121 Uppsala, Sweden..
    Cappel, Ute B.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Degradation Mechanism of Silver Metal Deposited on Lead Halide Perovskites2020In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 12, no 6, p. 7212-7221Article in journal (Refereed)
    Abstract [en]

    Lead halide perovskite solar cells have significantly increased in both efficiency and stability over the last decade. An important aspect of their longterm stability is the reaction between the perovskite and other materials in the solar cell. This includes the contact materials and their degradation if they can potentially come into contact through, e.g., pinholes or material diffusion and migration. Here, we explore the interactions of silver contacts with lead halide perovskites of different compositions by using a model system where thermally evaporated silver was deposited directly on the surface of the perovskites. Using X-ray photoelectron spectroscopy with support from scanning electron microscopy, X-ray diffraction, and UV-visible absorption spectroscopy, we studied the film formation and degradation of silver on perovskites with different compositions. The deposited silver does not form a continuous silver film but instead tends to form particles on a bare perovskite surface. These particles are initially metallic in character but degrade into AgI and AgBr over time. The degradation and migration appear unaffected by the replacement of methylammonium with cesium but are significantly slowed down by the complete replacement of iodide with bromide. The direct contact between silver and the perovskite also significantly accelerates the degradation of the perovskite, with a significant loss of organic cations and the possible formation of PbO, and, at the same time, changed the surface morphology of the iodide-rich perovskite interface. Our results further indicate that an important degradation pathway occurred through gas-phase perovskite degradation products. This highlights the importance of control over the interface materials and the use of completely hermetical barrier layers for the long-term stability and therefore the commercial viability of silver electrodes.

  • 9.
    Svanström, Sebastian
    et al.
    Uppsala Univ, Dept Phys & Astron, Div Mol & Condensed Matter Phys, Box 516, SE-75120 Uppsala, Sweden..
    Jacobsson, T. Jesper
    Uppsala Univ, Dept Chem, Angstrom Lab, Box 538, S-75121 Uppsala, Sweden..
    Sloboda, Tamara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Giangrisostomi, Erika
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Ovsyannikov, Ruslan
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Rensmo, Hakan
    Uppsala Univ, Dept Phys & Astron, Div Mol & Condensed Matter Phys, Box 516, SE-75120 Uppsala, Sweden..
    Cappel, Ute B.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Effect of halide ratio and Cs+ addition on the photochemical stability of lead halide perovskites2018In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 44, p. 22134-22144Article in journal (Refereed)
    Abstract [en]

    Lead halide perovskite solar cells with multi-cation/mixed halide materials now give power conversion efficiencies of more than 20%. The stability of these mixed materials has been significantly improved through the addition of Cs+ compared to the original methylammonium lead iodide. However, it remains one of the most significant challenges for commercialisation. In this study, we use photoelectron spectroscopy (PES) in combination with visible laser illumination to study the photo-stability of perovskite films with different compositions. These include Br : I ratios of 50 : 50 and 17 : 83 and compositions with and without Cs+. For the samples without Cs and the 50 : 50 samples, we found that the surface was enriched in Br and depleted in I during illumination and that some of the perovskite decomposed into Pb-0, organic halide salts, and iodine. After illumination, both of these reactions were partially reversible. Furthermore, the surfaces of the films were enriched in organic halide salts indicating that the cations were not degraded into volatile products. With the addition of Cs+ to the samples, photo-induced changes were significantly suppressed for a 50 : 50 bromide to iodide ratio and completely suppressed for perovskites with a 17 : 83 ratio at light intensities exceeding 1 sun equivalent.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf