Change search
Refine search result
1 - 24 of 24
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Batool, Nazre
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Chowdhury, Manish
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Smedby, Örjan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Moreno, Rodrigo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Estimation of trabecular bone thickness in gray scale: a validation study2017In: International Journal of Computer Assisted Radiology and Surgery, Vol. 12, no Supplement 1Article in journal (Refereed)
  • 2.
    Brusini, Irene
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Jörgens, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Smedby, Örjan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Moreno, Rodrigo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Dependency of neural tracts'€™ curvature estimations on tractography methods2017Conference paper (Refereed)
  • 3.
    Brusini, Irene
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Jörgens, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Smedby, Örjan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Moreno, Rodrigo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Influence of Tractography Algorithms and Settings on Local Curvature Estimations2017Conference paper (Refereed)
  • 4.
    Brusini, Irene
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Jörgens, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Smedby, Örjan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Moreno, Rodrigo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Voxel-Wise Clustering of Tractography Data for Building Atlases of Local Fiber Geometry2019Conference paper (Refereed)
    Abstract [en]

    This paper aims at proposing a method to generate atlases of white matter fibers’ geometry that consider local orientation and curvature of fibers extracted from tractography data. Tractography was performed on diffusion magnetic resonance images from a set of healthy subjects and each tract was characterized voxel-wise by its curvature and Frenet–Serret frame, based on which similar tracts could be clustered separately for each voxel and each subject. Finally, the centroids of the clusters identified in all subjects were clustered to create the final atlas. The proposed clustering technique showed promising results in identifying voxel-wise distributions of curvature and orientation. Two tractography algorithms (one deterministic and one probabilistic) were tested for the present work, obtaining two different atlases. A high agreement between the two atlases was found in several brain regions. This suggests that more advanced tractography methods might only be required for some specific regions in the brain. In addition, the probabilistic approach resulted in the identification of a higher number of fiber orientations in various white matter areas, suggesting it to be more adequate for investigating complex fiber configurations in the proposed framework as compared to deterministic tractography.

  • 5.
    Chowdhury, Manish
    et al.
    KTH, School of Technology and Health (STH).
    Jörgens, Daniel
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Wang, Chunliang
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization. KTH, School of Technology and Health (STH), Medical Engineering, Medical Imaging.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Segmentation of Cortical Bone using Fast Level Sets2017In: MEDICAL IMAGING 2017: IMAGE PROCESSING / [ed] Styner, MA Angelini, ED, SPIE - International Society for Optical Engineering, 2017, article id UNSP 1013327Conference paper (Refereed)
    Abstract [en]

    Cortical bone plays a big role in the mechanical competence of bone. The analysis of cortical bone requires accurate segmentation methods. Level set methods are usually in the state-of-the-art for segmenting medical images. However, traditional implementations of this method are computationally expensive. This drawback was recently tackled through the so-called coherent propagation extension of the classical algorithm which has decreased computation times dramatically. In this study, we assess the potential of this technique for segmenting cortical bone in interactive time in 3D images acquired through High Resolution peripheral Quantitative Computed Tomography (HR-pQCT). The obtained segmentations are used to estimate cortical thickness and cortical porosity of the investigated images. Cortical thickness and Cortical porosity is computed using sphere fitting and mathematical morphological operations respectively. Qualitative comparison between the segmentations of our proposed algorithm and a previously published approach on six images volumes reveals superior smoothness properties of the level set approach. While the proposed method yields similar results to previous approaches in regions where the boundary between trabecular and cortical bone is well defined, it yields more stable segmentations in challenging regions. This results in more stable estimation of parameters of cortical bone. The proposed technique takes few seconds to compute, which makes it suitable for clinical settings.

  • 6.
    Chowdhury, Manish
    et al.
    KTH, School of Technology and Health (STH).
    Klintström, Benjamin
    KTH, School of Technology and Health (STH). Linköping University, Sweden.
    Klintström, E.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization. Linköping University, Sweden.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Granulometry-based trabecular bone segmentation2017In: 20th Scandinavian Conference on Image Analysis, SCIA 2017, Springer, 2017, Vol. 10270, p. 100-108Conference paper (Refereed)
    Abstract [en]

    The accuracy of the analyses for studying the three dimensional trabecular bone microstructure rely on the quality of the segmentation between trabecular bone and bone marrow. Such segmentation is challenging for images from computed tomography modalities that can be used in vivo due to their low contrast and resolution. For this purpose, we propose in this paper a granulometry-based segmentation method. In a first step, the trabecular thickness is estimated by using the granulometry in gray scale, which is generated by applying the opening morphological operation with ball-shaped structuring elements of different diameters. This process mimics the traditional sphere-fitting method used for estimating trabecular thickness in segmented images. The residual obtained after computing the granulometry is compared to the original gray scale value in order to obtain a measurement of how likely a voxel belongs to trabecular bone. A threshold is applied to obtain the final segmentation. Six histomorphometric parameters were computed on 14 segmented bone specimens imaged with cone-beam computed tomography (CBCT), considering micro-computed tomography (micro-CT) as the ground truth. Otsu’s thresholding and Automated Region Growing (ARG) segmentation methods were used for comparison. For three parameters (Tb.N, Tb.Th and BV/TV), the proposed segmentation algorithm yielded the highest correlations with micro-CT, while for the remaining three (Tb.Nd, Tb.Tm and Tb.Sp), its performance was comparable to ARG. The method also yielded the strongest average correlation (0.89). When Tb.Th was computed directly from the gray scale images, the correlation was superior to the binary-based methods. The results suggest that the proposed algorithm can be used for studying trabecular bone in vivo through CBCT.

  • 7.
    Chowdhury, Manish
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Rota Bulò, S.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Kundu, M.K.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    An Efficient Radiographic Image Retrieval System Using Convolutional Neural Network2016In: 2016 23rd International Conference on Pattern Recognition (ICPR), Institute of Electrical and Electronics Engineers (IEEE), 2016, p. 3134-3139, article id 7900116Conference paper (Refereed)
    Abstract [en]

    Content-Based Medical Image Retrieval (CBMIR) is an important research field in the context of medical data management. In this paper we propose a novel CBMIR system for the automatic retrieval of radiographic images. Our approach employs a Convolutional Neural Network (CNN) to obtain high- level image representations that enable a coarse retrieval of images that are in correspondence to a query image. The retrieved set of images is refined via a non-parametric estimation of putative classes for the query image, which are used to filter out potential outliers in favour of more relevant images belonging to those classes. The refined set of images is finally re-ranked using Edge Histogram Descriptor, i.e. a low-level edge-based image descriptor that allows to capture finer similarities between the retrieved set of images and the query image. To improve the computational efficiency of the system, we employ dimensionality reduction via Principal Component Analysis (PCA). Experiments were carried out to evaluate the effectiveness of the proposed system on medical data from the “Image Retrieval in Medical Applications” (IRMA) benchmark database. The obtained results show the effectiveness of the proposed CBMIR system in the field of medical image retrieval.

  • 8.
    Jörgens, Daniel
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Tensor Voting: Current State, Challenges and New Trends in the Context of Medical Image Analysis2015In: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data / [ed] Ingrid Hotz and Thomas Schultz, Springer Science+Business Media B.V., 2015, p. 163-187Chapter in book (Refereed)
    Abstract [en]

    Perceptual organisation techniques aim at mimicking the human visual system for extracting salient information from noisy images. Tensor voting has been one of the most versatile of those methods, with many different applications both in computer vision and medical image analysis. Its strategy consists in propagating local information encoded through tensors by means of perception-inspired rules. Although it has been used for more than a decade, there are still many unsolved theoretical issues that have made it challenging to apply it to more problems, especially in analysis of medical images.

    The main aim of this chapter is to review the current state of the research in tensor voting, to summarise its present challenges, and to describe the new trends that we foresee will drive the research in this field in the next few years. Also, we discuss extensions of tensor voting that could lead to potential performance improvements and that could make it suitable for further medical applications.

  • 9.
    Jörgens, Daniel
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Poulin, Philippe
    Moreno, Rodrigo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Jodoin, Pierre-Marc
    Descoteaux, Maxime
    Towards a deep learning model for diffusion-aware tractogram filtering2019Conference paper (Refereed)
  • 10.
    Jörgens, Daniel
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Clustering of tensor votes for inference of fibre orientations in DTI data2016Conference paper (Other academic)
    Abstract [en]

    mong the various diffusion MRI techniques, diffusion ten-sor imaging (DTI) is still most commonly used in clinicalpractice in order to investigate connectivity and fibre anatomyin the human brain. Besides its apparent advantages of a shortacquisition time and noise robustness compared to other tech-niques, it suffers from its major weakness of assuming a sin-gle fibre model in each voxel. This constitutes a problem forDTI fibre tracking algorithms in regions with crossing fibres.Methods approaching this problem in a postprocessing stepemploy diffusion-like techniques to correct the directional in-formation. We propose an extension of tensor voting in whichinformation from voxels with a single fibre is used to inferorientation distributions in multi fibre voxels. The method isable to resolve multiple fibre orientations by clustering tensorvotes instead of adding them up. Moreover, a new vote cast-ing procedure is proposed which is appropriate even for smallneighbourhoods. To account for the locality of DTI data, weuse a small neighbourhood for distributing information at atime, but apply the algorithm iteratively to close larger gaps.The method shows promising results in both synthetic casesand for processing DTI-data of the human brain.

  • 11.
    Jörgens, Daniel
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Smedby, Örjan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Moreno, Rodrigo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Learning a single step of streamline tractography based on neural networks2018In: Computational Diffusion MRI, Springer, Cham , 2018, p. 103-116Chapter in book (Other academic)
  • 12.
    Jörgens, Daniel
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Steering second-order tensor voting by vote clustering2016Conference paper (Refereed)
    Abstract [en]

    Among the various diffusion MRI techniques, diffusion tensor imaging (DTI) is still most commonly used in clinical practice in order to investigate connectivity and fibre anatomy in the human brain. Besides its apparent advantages of a short acquisition time and noise robustness compared to other techniques, it suffers from its major weakness of assuming a single fibre model in each voxel. This constitutes a problem for DTI fibre tracking algorithms in regions with crossing fibres. Methods approaching this problem in a postprocessing step employ diffusion-like techniques to correct the directional information. We propose an extension of tensor voting in which information from voxels with a single fibre is used to infer orientation distributions in multi fibre voxels. The method is able to resolve multiple fibre orientations by clustering tensor votes instead of adding them up. Moreover, a new vote casting procedure is proposed which is appropriate even for small neighbourhoods. To account for the locality of DTI data, we use a small neighbourhood for distributing information at a time, but apply the algorithm iteratively to close larger gaps. The method shows promising results in both synthetic cases and for processing DTI-data of the human brain.

  • 13.
    Klintström, Benjamin
    et al.
    KTH, School of Technology and Health (STH).
    Klintström, E.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Feature space clustering for trabecular bone segmentation2017In: 20th Scandinavian Conference on Image Analysis, SCIA 2017, Springer, 2017, Vol. 10270, p. 65-75Conference paper (Refereed)
    Abstract [en]

    Trabecular bone structure has been shown to impact bone strength and fracture risk. In vitro, this structure can be measured by micro-computed tomography (micro-CT). For clinical use, it would be valuable if multi-slice computed tomography (MSCT) could be used to analyse trabecular bone structure. One important step in the analysis is image volume segmentation. Previous segmentation techniques have either been computer resource intensive or produced sub-optimal results when used on MSCT data. This paper proposes a new segmentation method that tries to balance good results against computational complexity. Material. Fourteen human radius specimens where scanned with MSCT and segmented using the proposed method as well as two segmentation methods previously used to segment trabecular bone (Otsu and Automated Region Growing (ARG)). The proposed method (named FCH) uses a combination of feature space clustering, edge detection and hysteresis thresholding. For evaluation, we computed correlations with the reference method micro-CT for 7 structure parameters and measured segmentation time. Results. Correlations with micro-CT were highest for FCH in 3 cases, highest for ARG in 3 cases, and in general lower for Otsu. Both FCH and ARG had correlations higher than 0.80 for all parameters, except for trabecular thickness and trabecular termini. FCH was 60 times slower than Otsu, but 5 times faster than ARG. Discussion. The high correlations with micro-CT suggest that with a suitable segmentation method it might be possible to analyse trabecular bone structure using MSCT-machines. The proposed segmentation method may represent a useful balance between speed and accuracy.

  • 14. Klintström, Eva
    et al.
    Klintström, Benjamin
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH).
    Brismar, Torkel B.
    Pahr, Dieter H.
    Smedby, Örjan
    KTH, School of Technology and Health (STH).
    Predicting Trabecular Bone Stiffness from Clinical Cone-Beam CT and HR-pQCT Data; an In Vitro Study Using Finite Element Analysis2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 8, article id e0161101Article in journal (Refereed)
    Abstract [en]

    Stiffness and shear moduli of human trabecular bone may be analyzed in vivo by finite element (FE) analysis from image data obtained by clinical imaging equipment such as high resolution peripheral quantitative computed tomography (HR-pQCT). In clinical practice today, this is done in the peripheral skeleton like the wrist and heel. In this cadaveric bone study, fourteen bone specimens from the wrist were imaged by two dental cone beam computed tomography (CBCT) devices and one HR-pQCT device as well as by dual energy X-ray absorptiometry (DXA). Histomorphometric measurements from micro-CT data were used as gold standard. The image processing was done with an in-house developed code based on the automated region growing (ARG) algorithm. Evaluation of how well stiffness (Young's modulus E3) and minimum shear modulus from the 12, 13, or 23 could be predicted from the CBCT and HR-pQCT imaging data was studied and compared to FE analysis from the micro-CT imaging data. Strong correlations were found between the clinical machines and micro-CT regarding trabecular bone structure parameters, such as bone volume over total volume, trabecular thickness, trabecular number and trabecular nodes (varying from 0.79 to 0.96). The two CBCT devices as well as the HR-pQCT showed the ability to predict stiffness and shear, with adjusted R-2-values between 0.78 and 0.92, based on data derived through our in-house developed code based on the ARG algorithm. These findings indicate that clinically used CBCT may be a feasible method for clinical studies of bone structure and mechanical properties in future osteoporosis research.

  • 15.
    Klintström, Eva
    et al.
    Linköping Univ, Dept Med & Hlth Sci, Campus US, S-58185 Linköping, Sweden.;Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Campus US, S-58185 Linkoping, Sweden..
    Klintström, Benjamin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Pahr, Dieter
    Vienna Univ Technol, Inst Lightweight Design & Struct Biomech, Vienna, Austria..
    Brismar, Torkel B.
    Karolinska Univ Hosp, Karolinska Inst, Dept Clin Sci Intervent & Technol, Stockholm, Sweden.;Karolinska Univ Hosp, Dept Radiol, Stockholm, Sweden..
    Smedby, Örjan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging. Linköping Univ, Dept Med & Hlth Sci, Linköping, Sweden..
    Moreno, Rodrigo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Direct estimation of human trabecular bone stiffness using cone beam computed tomography2018In: Oral surgery, oral medicine, oral pathology and oral radiology, ISSN 2212-4403, E-ISSN 2212-4411, Vol. 126, no 1, p. 72-82Article in journal (Refereed)
    Abstract [en]

    Objectives. The aim of this study was to evaluate the possibility of estimating the biomechanical properties of trabecular bone through finite element simulations by using dental cone beam computed tomography data. Study Design. Fourteen human radius specimens were scanned in 3 cone beam computed tomography devices: 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan), NewTom 5 G (QR Verona, Verona, Italy), and Verity (Planmed, Helsinki, Finland). The imaging data were segmented by using 2 different methods. Stiffness (Young modulus), shear moduli, and the size and shape of the stiffness tensor were studied. Corresponding evaluations by using micro-CT were regarded as the reference standard. Results. The 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan) showed good performance in estimating stiffness and shear moduli but was sensitive to the choice of segmentation method. Newtom 5 G (QR Verona, Verona, Italy) and Verity (Planmed, Helsinki, Finland) yielded good correlations, but they were not as strong as Accuitomo 80 U. Morita MFG., Kyoto, Japan). The cone beam computed tomography devices overestimated both stiffness and shear compared with the micro-CT estimations. Conclusions. Finite element-based calculations of biomechanics from cone beam computed tomography data are feasible, with strong correlations for the Accuitomo 80 scanner a. Morita MFG., Kyoto, Japan) combined with an appropriate segmentation method. Such measurements might be useful for predicting implant survival by in vivo estimations of bone properties.

  • 16. Koppal, S.
    et al.
    Warntjes, M.
    Swann, J.
    Dyverfeldt, P.
    Kihlberg, J.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Magee, D.
    Roberts, N.
    Zachrisson, H.
    Forssell, C.
    Länne, T.
    Treanor, D.
    de Muinck, E. D.
    Quantitative fat and R2* mapping in vivo to measure lipid-rich necrotic core and intraplaque hemorrhage in carotid atherosclerosis2017In: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 78, no 1, p. 285-296Article in journal (Refereed)
    Abstract [en]

    Purpose: The aim of this work was to quantify the extent of lipid-rich necrotic core (LRNC) and intraplaque hemorrhage (IPH) in atherosclerotic plaques. Methods: Patients scheduled for carotid endarterectomy underwent four-point Dixon and T1-weighted magnetic resonance imaging (MRI) at 3 Tesla. Fat and R2* maps were generated from the Dixon sequence at the acquired spatial resolution of 0.60×0.60×0.70mm voxel size. MRI and three-dimensional (3D) histology volumes of plaques were registered. The registration matrix was applied to segmentations denoting LRNC and IPH in 3D histology to split plaque volumes in regions with and without LRNC and IPH. Results: Five patients were included. Regarding volumes of LRNC identified by 3D histology, the average fat fraction by MRI was significantly higher inside LRNC than outside: 12.64±0.2737% versus 9.294±0.1762% (mean±standard error of the mean [SEM]; P<0.001). The same was true for IPH identified by 3D histology, R2* inside versus outside IPH was: 71.81±1.276 s-1 versus 56.94±0.9095 s-1 (mean±SEM; P<0.001). There was a strong correlation between the cumulative fat and the volume of LRNC from 3D histology (R2=0.92) as well as between cumulative R2* and IPH (R2=0.94). Conclusion: Quantitative mapping of fat and R2* from Dixon MRI reliably quantifies the extent of LRNC and IPH.

  • 17.
    Moreno, Rodrigo
    et al.
    Linköping University.
    Borga, Magnus
    Klintström, Eva
    Brismar, Torkel
    Smedby, Örjan
    Linköping University.
    Anisotropy Estimation of Trabecular Bone in Gray-Scale: Comparison Between Cone Beam and Micro Computed Tomography Data2015In: Developments in Medical Image Processing and Computational Vision / [ed] Tavares, Joao Manuel R. S.; Natal Jorge, Renato, Springer, 2015, Vol. 19, p. 207-220Chapter in book (Refereed)
    Abstract [en]

    Measurement of anisotropy of trabecular bone has clinical relevance in osteoporosis. In this study, anisotropy measurements of 15 trabecular bone biopsies from the radius estimated by different fabric tensors on images acquired through cone beam computed tomography (CBCT) and micro computed tomography (micro-CT) were compared. The results show that the generalized mean intercept length (MIL) tensor performs better than the global gray-scale structure tensor, especially when the von Mises-Fisher kernel is applied.  Also, the generalized MIL tensor yields consistent results between the two scanners. These results suggest that this tensor is appropriate for estimating anisotropy in images acquired in vivo through CBCT.

  • 18.
    Moreno, Rodrigo
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Segers, P.
    Debbaut, C.
    Estimation of the permeability tensor of the microvasculature of the liver through fabric tensors2017In: Computational Biomechanics for Medicine: From Algorithms to Models and Applications, Springer, 2017, p. 71-79Chapter in book (Refereed)
  • 19.
    Moreno, Rodrigo
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization. Linköping University.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization. Linköping University.
    Gradient-Based Enhancement of Tubular Structures in Medical Images2015In: Medical Image Analysis, ISSN 1361-8415, E-ISSN 1361-8423, Vol. 26, no 1, p. 19-29Article in journal (Refereed)
    Abstract [en]

    Vesselness filters aim at enhancing tubular structures in medical images. The most popular vesselness filters are based on eigenanalyses of the Hessian matrix computed at different scales. However, Hessian-based methods have well-known limitations, most of them related to the use of second order derivatives. In this paper, we propose an alternative strategy in which ring-like patterns are sought in the local orientation distribution of the gradient. The method takes advantage of symmetry properties of ring-like patterns in the spherical harmonics domain. For bright vessels, gradients not pointing towards the center are filtered out from every local neighborhood in a first step. The opposite criterion is used for dark vessels. Afterwards, structuredness, evenness and uniformness measurements are computed from the power spectrum in spherical harmonics of both the original and the half-zeroed orientation distribution of the gradient. Finally, the features are combined into a single vesselness measurement. Alternatively, a structure tensor that is suitable for vesselness can be estimated before the analysis in spherical harmonics. The two proposed methods are called Ring Pattern Detector (RPD) and Filtered Structure Tensor (FST) respectively. Experimental results with computed tomography angiography data show that the proposed filters perform better compared to the state-of-the-art.

  • 20.
    Moreno, Rodrigo
    et al.
    KTH, School of Technology and Health (STH).
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Vesselness Estimation through Higher-Order Orientation Tensors2016In: International Symposium on Biomedical Imaging (ISBI), IEEE Computer Society, 2016, p. 1139-1142Conference paper (Refereed)
    Abstract [en]

    We recently proposed a method for estimating vesselness based on detection of ring patterns in the local distribution ofthe gradient. This method has a better performance than other state-of-the-art algorithms. However, the original implementation of the method makes use of the spherical harmonics transform locally, which is time consuming. In this paper we propose an equivalent formulation of the method based on higher-order tensors. A linear mapping between the spherical harmonics transform and higher-order orientation tensors is used in order to reduce the complexity of the method. With the new implementation, the analysis of computed tomography angiography data can be performed 2.6 times faster compared with the original implementation.

  • 21.
    Moreno, Rodrigo
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Pahr, Dieter
    Prediction of Apparent Trabecular Bone Stiffness through Fourth-Order Fabric Tensors2015In: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940Article in journal (Refereed)
    Abstract [en]

    The apparent stiffness tensor is an important mechanical parameter for characterizing trabecular bone. Previous studies have modeled this parameter as a function of mechanical properties of the tissue, bone density and a second-order fabric tensor, which encodes both anisotropy and orientation of trabecular bone. Although these models yield strong correlations between observed and predicted stiffness tensors, there is still space for reducing accuracy errors.In this paper we propose a model that uses fourth-order instead of second-order fabric tensors. First, the totally symmetric part of the stiffness tensor is assumed proportional to the fourth-order fabric tensor in the logarithmic scale. Second, the asymmetric part of the stiffness tensor is derived from relationships among components of the harmonic tensor decomposition of the stiffness tensor. The mean intercept length (MIL), generalized MIL (GMIL) and global structure tensor fourth-order were computed from images acquired through micro computed tomography of 264 specimens of the femur. The predicted tensors were compared to the stiffness tensors computed by using the micro finite element method (micro-FE), which was considered as the gold standard, yielding strong correlations (R^2 above 0.962). The GMIL tensor yielded the best results among the tested fabric tensors. The Frobenius error, geodesic error and the error of the norm were reduced by applying the proposed model by 3.75%, 0.07% and 3.16%, respectively compared to the model by Zysset and Curnier (1995) with the second-order MIL tensor. From the results, fourth-order fabric tensors are a good alternative to the more expensive micro-FE stiffness predictions.

  • 22.
    Moreno, Rodrigo
    et al.
    Linköping University.
    Wang, Chunliang
    Linköping University.
    Smedby, Örjan
    Linköping University.
    Vessel wall segmentation using implicit models and total curvature penalizers2013Conference paper (Refereed)
    Abstract [en]

    This paper proposes an automatic segmentation method of vessel walls that combines an implicit 3D model of the vessels and a total curvature penalizer in a level set evolution scheme. First, the lumen is segmented by alternating a model-guided level set evolution and a recalculation of the model itself. Second, the level set of the lumen is evolved with a term that aims at penalizing the total curvature and with a prior that forces the outer layer of the vessel towards the outside of the lumen. The model term is deactivated during this step. Finally, in a third step, the model term is reactivated in order to impose a smooth change of the radius along the vessel. Once the two segmentations have been computed, stenoses are detected and quantified at the thickest locations of the segmented vessel wall. Preliminary results show that the proposed method compares favorably with respect to the state-of-the-art both for synthetic and real CTA datasets.

  • 23.
    Platten, Michael
    et al.
    KTH.
    Chowdhury, Manish
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Imaging.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Imaging.
    Estimation of trabecular thickness in grayscale: an in vivo study2017In: ESSR 2017 / P-0196, 2017Conference paper (Refereed)
  • 24.
    Sinzinger, Fabian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Pahr, Dieter
    Moreno, Rodrigo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.
    Predicting The Trabecular Bone Stiffness Tensor with Spherical Convolutional Neural Networks2019In: Book of Abstracts of the 25th Congress of the European Society of Biomechanics, 2019Conference paper (Refereed)
1 - 24 of 24
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf