We here report for the first time the synergistic implementation of structured illumination microscopy (SIM) and multifocus microscopy (MFM). This imaging modality is designed to alleviate the problem of insufficient volumetric acquisition speed in superresolution biological imaging. SIM is a wide-field super-resolution technique that allows imaging with visible light beyond the classical diffraction limit. Employing multifocus diffractive optics we obtain simultaneous wide-field 3D imaging capability in the SIM acquisition sequence, improving volumetric acquisition speed by an order of magnitude. Imaging performance is demonstrated on biological specimens.
During meiosis, cohesin complexes mediate sister chromatid cohesion (SCC), synaptonemal complex (SC) assembly and synapsis. Here, using super-resolution microscopy, we imaged sister chromatid axes in mouse meiocytes that have normal or reduced levels of cohesin complexes, assessing the relationship between localization of cohesin complexes, SCC and SC formation. We show that REC8 foci are separated from each other by a distance smaller than 15% of the total chromosome axis length in wild-type meiocytes. Reduced levels of cohesin complexes result in a local separation of sister chromatid axial elements (LSAEs), as well as illegitimate SC formation at these sites. REC8 but not RAD21 or RAD21L cohesin complexes flank sites of LSAEs, whereas RAD21 and RAD21L appear predominantly along the separated sister-chromatid axes. Based on these observations and a quantitative distribution analysis of REC8 along sister chromatid axes, we propose that the high density of randomly distributed REC8 cohesin complexes promotes SCC and prevents illegitimate SC formation.
Despite the importance of dopamine signaling, it remains unknown if the two major subclasses of dopamine receptors exist on the same or distinct populations of neurons. Here we used confocal microscopy to demonstrate that virtually all striatal neurons, both in vitro and in vivo, contained dopamine receptors of both classes. We also provide functional evidence for such colocalization: in essentially all neurons examined, fenoldopam, an agonist of the D-1 subclass of receptors, inhibited both the Na+/K+ pump and tetrodotoxin (TTX)-sensitive sodium channels, and quinpirole, an agonist of the Dr subclass of receptors, activated TTX-sensitive sodium channels. Thus D-1 and D-2 classes of ligands may functionally interact in virtually all dopamine-responsive neurons within the basal ganglia.
The plant-derived steroid, digoxin, a specific inhibitor of Na,K-ATPase, has been used for centuries in the treatment of heart disease. Recent studies demonstrate the presence of a digoxin analog, ouabain, in mammalian tissue, but its biological role has not been elucidated. Here, we show in renal epithelial cells that ouabain, in doses causing only partial Na,K-ATPase inhibition, acts as a biological inducer of regular, low-frequency intracellular calcium ([Ca2+](i)) oscillations that elicit activation of the transcription factor, NF-KB. Partial inhibition of Na,K-ATPase using low extracellular K+ and depolarization of cells did not have these effects. Incubation of cells in Ca2+-free media, inhibition of voltage-gated calcium channels, inositol triphosphate receptor antagonism, and redistribution of actin to a thick layer adjacent to the plasma membrane abolished [Ca2+](i) oscillations, indicating that they were caused by a concerted action of inositol triphosphate receptors and capacitative calcium entry via plasma membrane channels. Blockade of ouabain-induced [C-a2+](i) oscillations prevented activation of NF-kappaB. The results demonstrate a new mechanism for steroid signaling via plasma membrane receptors and underline a novel role for the steroid hormone, ouabain, as a physiological inducer of [Ca2+](i) oscillations involved in transcriptional regulation in mammalian cells.
This paper addresses the synthesis of octa-substituted benzylthio metallophthalocyanines (OBTMPcs) that contain the central metal ions of Zn2+, Al3+ and Sn4+. The ground state absorption of ZnPc(SR)(8) (OBTZnPc) along with the ZnPc derivatives, well documented in literature were used to study a new concept called the red shift index (RsI). The concept is based on the empirical values of RsI of the different complexes in solvent media. Unequivocally, parameters used in this paper show strong correlations that are consistent with the results obtained. For instance, 12,1 of the complexes tend to increase as the refractive index, n(D), and solvent donor, DN, of solvent increases. Photodegradation (photobleaching) quantum yield, phi(d) measurements of these compounds show that they are highly photostable, phi(d) (0.03-0.33 x 10(-5)). The triplet quantum yield, phi(T) (0.40-0.53) and the triplet lifetime, tau(T) (610-810 mu s) are within the typical range for metallophthalocyanines in DMSO. The photosensitisation efficiency. S-Delta, is relatively high for all the molecules (0.74-0.90). (C) 2010 Elsevier B.V. All rights reserved.
Solvent effects on the UV/vis spectra of metallopthalocyanines (MPcs) have been interpreted using the red-shift index concept (R (s) I). The concept connects empirically, direct, experimental, easily accessible optical spectral data, which are explained by considering the differential behavior of the solute-solvent interactions at the ground state and excited state using the spectral values of MPcs along with the derived concept, called the associated solvation energy (ASE). R (s) I is formulated from three fundamental parameters, which are: ground state electronic absorption spectrum, polarization red-shift and a scaling factor of MPc (N (dye)) in the respective solvents. The R (s) I is a reflection of the index value of the chromophore substituent of MPc in the solvent; thus, the concept can be used as a solvatochromic parameter to study a wide range of supramolecular and heterocyclic compounds that can be modified at their periphery or 'handles'. Particularly, in this study, the concept has been used to rank MPc candidates by using the statistical mean performance of the solvatochromic parameters, which are red shift index, polarizability efficiency and ASE. We hereby review the solvent effects on the UV/vis spectra of substituted and unsubstituted MPcs.
A classical dye, aluminium phthalocyanine (AlPc), is used to study the photochemical processes involved in the chromophore-assisted laser inactivation technique. Both cell-free and cell-based systems are investigated by novel methods and radical reaction chemistry. Findings on the photochemical pathways in two models representing cell-free and a cell-based systems are reported. In the cell-free system, the unsubstituted, free, fluorescence-active photosensitiser AlPc recovers its fluorescence signal by means of phosphorescence through a reversible photobleaching process. In the cell-based system, photoactivation of substituted AlPc conjugated to an antibody results in the loss of fluorescence signal at the area examined. Reinjection of the AlPc-conjugated antibodies restores the fluorescence signal.
Aim: This study was performed to examine the role of Na+,K+-ATPase activity for the adaptive response to cell swelling induced by hypoosmoticity, i.e. the regulatory volume decrease (RVD). Methods: The studies were performed on COS-7 cells transfected with rat Na+,K+-ATPase. To study changes in cell volume, cells were loaded with the fluorescent dye calcein and the intensity of the dye, following exposure to a hypoosmotic medium, was recorded with confocal microscopy. Results: Ouabain-mediated inhibition of Na+,K+-ATPase resulted in a dose dependent decrease in the rate of RVD. Total Rb-86(+) uptake as well as ouabain dependent Rb-86(+) uptake, used as an index of Na+,K+-ATPase dependent K+ uptake, was significantly increased during the first 2 min following exposure to hypoosmoticity. Since protein kinase C (PKC) plays an important role in the modulation of RVD, a study was carried out on COS-7 cells expressing rat Na+,K+-ATPase, where Ser23 in the catalytic alpha1 subunit of rat Na+,K+-ATPase had been mutated to Ala (S23A), abolishing a known PKC phosphorylation site. Cells expressing S23A rat Na+,K+-ATPase exhibited a significantly lower rate of RVD and showed no increase in Rb-86(+) uptake during RVD. Conclusion: Taken together, these results suggest that a PKC-mediated transient increase in Na+,K+-ATPase activity plays an important role in RVD.
Quantitative pH imaging using the carboxy semi-naphthofluorescein dyes SNAFL-1 and SNAFL-2 can be performed by measurement of intensity ratios or fluorescence lifetimes. However, there is a controversy as to whether the latter method has the practical advantage of a straightforward pH calibration in buffers compared to a cumbersome and time-consuming procedure in cells. In this study we have undertaken a systematic study of the potential factors influencing the fluorescence lifetime of the probes at different pH using confocal microscopy. In vitro results demonstrate that factors such as lipid and protein concentrations have a substantial influence on pH measurements based on fluorescence lifetime. The pH could be overestimated by more than 2 pH units. Studies in permeabilized COS-7 cells demonstrate the same trends as observed in the in vitro studies.
The Na(+), K(+)-ATPase (NKA) differs from most other ion transporters not only in its capacity to maintain a steep electrochemical gradient across the plasma membrane but also as a receptor for a family of cardiotonic steroids, to which ouabain belongs. Studies from many groups, performed during the last fifteen years, have demonstrated that ouabain, a member of the cardiotonic steroid family, can activate a network of signaling molecules and that NKA will also serve as a signal transducer that can provide a feed back loop between NKA and the mitochondria. This brief review summarizes the current knowledge and controversies with regard to the understanding of NKA signaling.
Particle manipulation represents an important and fundamental step prior to counting, sorting and detecting bio-particles. In this study, we report dean-coupled inertial focusing of particles in flows through a single curve microchannel at extremely high channel Reynold numbers (∼325). We found the lateral particle focusing position, xf to be fixed and largely independent of radius of curvature and whether particles are pre-focused (at equilibrium) entering the curvature or randomly distributed. Finally, using a single inlet, u-shaped, microchannel we demonstrate filtration of 10μm particles from 2 μm particles at throughputs several orders of magnitude higher than previously shown.
Most neurons co-express two catalytic isoforms of Na,K-ATPase, the ubiquitous alpha 1, and the more selectively expressed alpha 3. Although neurological syndromes are associated with alpha 3 mutations, the specific role of this isoform is not completely understood. Here, we used electrophysiological and Na+ imaging techniques to study the role of alpha 3 in central nervous system neurons expressing both isoforms. Under basal conditions, selective inhibition of alpha 3 using a low concentration of the cardiac glycoside, ouabain, resulted in a modest increase in intracellular Na+ concentration ([Na+](i)) accompanied by membrane potential depolarization. When neurons were challenged with a large rapid increase in [Na+](i), similar to what could be expected following suprathreshold neuronal activity, selective inhibition of alpha 3 almost completely abolished the capacity to restore [Na+](i) in soma and dendrite. Recordings of Na, K-ATPase specific current supported the notion that when [Na+](i) is elevated in the neuron, alpha 3 is the predominant isoform responsible for rapid extrusion of Na+. Low concentrations of ouabain were also found to disrupt cortical network oscillations, providing further support for the importance of alpha 3 function in the central nervous system. The alpha isoforms express a well conserved protein kinase A consensus site, which is structurally associated with an Na+ binding site. Following activation of protein kinase A, both the alpha 3-dependent current and restoration of dendritic [Na+](i) were significantly attenuated, indicating that alpha 3 is a target for phosphorylation and may participate in short term regulation of neuronal function.
Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.
Transient transfection of fluorescent fusion proteins is a key enabling technology in fluorescent microscopy to spatio-temporally map cellular protein distributions. Transient transfection of proteins may however bypass normal regulation of expression, leading to overexpression artefacts like misallocations and excess amounts. In this study we investigate the use of STORM and PALM microscopy to quantitatively monitor endogenous and exogenous protein expression. Through incorporation of an N-terminal hemagglutinin epitope to a mMaple3 fused Na,K-ATPase (α1 isoform), we analyze the spatial and quantitative changes of plasma membrane Na,K-ATPase localization during competitive transient expression. Quantification of plasma membrane protein density revealed a time dependent increase of Na,K-ATPase, but no increase in size of protein clusters. Results show that after 41h transfection, the total plasma membrane density of Na,K-ATPase increased by 63% while the endogenous contribution was reduced by 16%. © 2018 Bernhem et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Transient transfection of fluorescent fusion proteins is a key enabling technology in fluorescent microscopy to spatio-temporally map cellular protein distributions. Transient transfection of proteins may however bypass normal regulation of expression, leading to overexpression artefacts like misallocations and excess amounts. In this study we investigate the ability to quantitatively monitor endogenous and exogenous protein expression competition on the single molecule level. Through incorporation of an N-terminal hemagglutinin (HA) epitope to amMaple3 fused Na,K-ATPase (α1 isoform), using PALM and STORM imaging we investigatethe increase in plasma membrane density at the cost of competitive expression. Quantification of plasma membrane protein density revealed a time dependent increase over time of totalprotein content. Results show that plasma membrane densities increased by more than 60%,comparing 17h and 41h transfection times, whilst endogenous levels were simultaneously reduced by 20 %.
Transient transfection of fluorescent fusion proteins is a key enabling technology in fluorescent microscopy to spatio-temporally map cellular protein distributions. Transient transfection of proteins may however bypass normal regulation of expression, leading to overexpression artefacts like misallocations and excess amounts. In this study we investigate the use of STORM and PALM microscopy to quantitatively monitor endogenous and exogenous protein expression. Through incorporation of an N-terminal hemagglutinin epitope to a mMaple3 fused Na,K-ATPase (α1 isoform), we analyze the spatial and quantitative changes of plasma membrane Na,K-ATPase localization during competitive transient expression. Quantification of plasma membrane protein density revealed a time dependent increase of Na,K-ATPase, but no increase in size of protein clusters. Results show that after 41h transfection, the total plasma membrane density of Na,K-ATPase increased by 63% while the endogenous contribution was reduced by 16%.
SMLocalizer combines the availability of ImageJ with the power of GPU processing for fast and accurate analysis of single molecule localization microscopy data. Analysis of 2D and 3D data in multiple channels is supported.
Background: Blockers of angiotensin II type 1 receptor (AT 1 R) and the voltage gated calcium channel 1.2 (Ca V 1.2) are commonly used for treatment of hypertension. Yet there is little information about the effect of physiological concentrations of angiotensin II (AngII) on AT 1 R signaling and whether there is a reciprocal regulation of AT 1 R signaling by Ca V 1.2.
Methods: To elucidate these questions, we have studied the Ca 2+ signaling response to physiological and pharmacological AngII doses in HEK293a cells, vascular smooth muscle cells and cardiomyocytes using a Ca 2+ sensitive dye as the principal sensor. Intra-cellular calcium recordings were performed in presence and absence of Ca V 1.2 blockers. Semi- quantitative imaging methods were used to assess the plasma membrane expression of AT 1 R and G-protein activation.
Results: Repeated exposure to pharmacological (100 nM) concentrations of AngII caused, as expected, a down-regulation of the Ca 2+ response. In contrast, repeated exposure to physiological (1 nM) AngII concentration resulted in an enhancement of the Ca 2+ response. The up-regulation of the Ca 2+ response to repeated 1 nM AngII doses and the down- egulation of the Ca 2+ response to repeated 100 nM Angll doses were not accompanied by a parallel change of the AT 1 R plasma membrane expression. The Ca 2+ response to 1 nM of AngII was amplified in the presence of therapeutic concentrations of the Ca V 1.2 blockers, nifedipine and verapamil, in vascular smooth muscle cells, cardiomyocytes and HEK293a cells. Amplification of the AT 1 R response was also observed following inhibition of the calcium permeable transient receptor potential cation channels, suggesting that the activity of AT 1 R is sensitive to calcium influx.
Conclusions: Our findings have implications for the understanding of hyperactivity of the angiotensin system and for use of Ca 2+ channel blockers as mono-therapy in hypertension.
The role of the Bcl-family proteins in the mitochondrial apoptotic process is well described with biochemical and molecular methods in studies of isolated mitochondria and transfected cell lines. There is however little knowledge about the mechanisms for Bcl protein interaction leading to apoptosis in intact cells. In particular, the time sequence and location for Bcl protein interaction has so far only been described in hypothetical models.Here we have used Stimulated Emission Depletion (STED) microscopy and Single Molecule Localization Microscopy (SMLM) to study the apoptotic process in immune-stained rat renal epithelia cells exposed to 20 mM glucose (HG) and to study its rescue by ouabain. To assess distance between Bcl-2 proteins, we used the nearest-neighbor algorithm. The anti-apoptotic protein Bcl-xLl was predominantly expressed on mitochondria in control cells, and remained so throughout the process, although its abundance decreased. After 2h HG the apoptosis-inducing protein BAD had translocated from the cytoplasm to the mitochondria where it clustered with Bcl-xL. This occurred before an increase in reactive oxygen species and was dependent on activation of the PI3K –AKT pathway. According to current concepts, Bcl-xL interacts with the apoptotic protein Bax on the mitochondria under control conditions to translocate Bax back to the cytosol1. We found that Bax started to accumulate on the mitochondria after 4h HG and, surprisingly, that the interaction between Bcl-xL and Bax became more pronounced during the course of the apoptotic process. After 6h HG Bax also interacted with the non-specific ion transporter VDAC; an interaction described to lead to penetration of the inner mitochondrial membrane and mark the point of no return.
Advancement in fluorescence imaging with the invention of several super-resolution microscopy modalities (e.g., PALM/STORM and STED) has opened up the possibility of deciphering molecular distributions on the nanoscale. In our quest to better elucidate postsynaptic protein distribution in dendritic spines, we have applied these nanoscopy methods, where generated results could help improve our understanding of neuronal functions. In particular, we have investigated the principal energy transformer in the brain, i.e., the Na+; K+-ATPase (or sodium pump), an essential protein responsible for maintaining resting membrane potential and a major controller of intracellular ion homeostasis. In these investigations, we have focused on estimates of protein amount, giving assessments of how variations may depend on labeling strategies, sample analysis, and choice of nanoscopic imaging method, concluding that all can be critical factors for quantification. We present a comparison of these results and discuss the influences this may have for homeostatic sodium regulation in neurons and energy consumption.
Optical imaging is crucial for addressing fundamental problems in all areas of life science. With the use of confocal and two-photon fluorescence microscopy, complex dynamic structures and functions in a plethora of tissue and cell types have been visualized. However, the resolution of classical' optical imaging methods is poor due to the diffraction limit and does not allow resolution of the cellular microcosmos. On the other hand, the novel stimulated emission depletion (STED) microscopy technique, because of its targeted on/off-switching of fluorescence, is not hampered by a diffraction-limited resolution barrier. STED microscopy can therefore provide much sharper images, permitting nanoscale visualization by sequential imaging of individual-labelled biomolecules, which should allow previous findings to be reinvestigated and provide novel information. The aim of this review is to highlight promising developments in and applications of STED microscopy and their impact on unresolved issues in biomedical science.
Background: The Na+,K+-ATPase plays an important role for ion homeostasis in virtually all mammalian cells, including neurons. Despite this, there is as yet little known about the isoform specific distribution in neurons. Results: With help of superresolving stimulated emission depletion microscopy the spatial distribution of Na+,K+-ATPase in dendritic spines of cultured striatum neurons have been dissected. The found compartmentalized distribution provides a strong evidence for the confinement of neuronal Na+,K+-ATPase (alpha 3 isoform) in the postsynaptic region of the spine. Conclusions: A compartmentalized distribution may have implications for the generation of local sodium gradients within the spine and for the structural and functional interaction between the sodium pump and other synaptic proteins. Superresolution microscopy has thus opened up a new perspective to elucidate the nature of the physiological function, regulation and signaling role of Na+,K+-ATPase from its topological distribution in dendritic spines.
The phosphoprotein DARPP-32 (dopamine and cyclic adenosine 3́, 5́-monophosphate-regulated phosphoprotein, 32 kDa) is an important component in the molecular regulation of postsynaptic signaling in neostriatum. Despite the importance of this phosphoprotein, there is as yet little known about the nanoscale distribution of DARPP-32. In this study we applied superresolution stimulated emission depletion microscopy (STED) to assess the expression and distribution of DARPP-32 in striatal neurons. Primary culture of striatal neurons were immunofluorescently labeled for DARPP-32 with Alexa-594 and for the dopamine D1 receptor (D1R) with atto-647N. Dual-color STED microscopy revealed discrete localizations of DARPP-32 and D1R in the spine structure, with clustered distributions in both head and neck. Dissected spine structures reveal that the DARPP-32 signal rarely overlapped with the D1R signal. The D1R receptor is positioned in an "aggregated" manner primarily in the spine head and to some extent in the neck, while DARPP-32 forms several neighboring small nanoclusters spanning the whole spine structure. The DARPP-32 clusters have a mean size of 52 +/- 6 nm, which is close to the resolution limit of the microscope and corresponds to the physical size of a few individual phosphoprotein immunocomplexes. Dissection of synaptic proteins using superresolution microscopy gives possibilities to reveal in better detail biologically relevant information, as compared to diffraction-limited microscopy. In this work, the dissected postsynaptic topology of the DARPP-32 phosphoprotein provides strong evidence for a compartmentalized and confined distribution in dendritic spines. The protein topology and the relatively low copy number of phosphoprotein provides a conception of DARPP-32's possibilities to fine-tune the regulation of synaptic signaling, which should have an impact on the performance of the neuronal circuits in which it is expressed.
Protein localization in dendritic spines is the focus of intense investigations within neuroscience. Applications of super-resolution microscopy to dissect nanoscale protein distributions, as shown in this work with dual-color STED, generate spatial correlation coefficients having quite small values. This means that colocalization analysis to some extent looses part of its correlative impact. In this study we thus introduced nearest neighbor analysis to quantify the spatial relations between two important proteins in neurons, the dopamine D1 receptor and Na+,K+-ATPase. The analysis gave new information on how dense the D1 receptor and Na+,K+-ATPase constituting nanoclusters are located both with respect to the homogenous (self to same) and the heterogeneous (same to other) topology. The STED dissected nanoscale topologies provide evidence for both a joint as well as a separated confinement of the D1 receptor and the Na+,K+-ATPase in the postsynaptic areas of dendritic spines. This confined topology may have implications for generation of local sodium gradients and for structural and functional interactions modulating slow synaptic transmission processes. Microsc. Res. Tech., 2011.
The renal effects of dopamine are mainly mediated via the dopamine-1 receptor (D1 receptor). This receptor is recruited from intracellular compartments to the plasma membrane by dopamine and atrial natriuretic peptide (ANP), via adenylyl cyclase activation. We have studied whether isoproterenol, a beta -adrenoceptor (beta -AR) agonist that may interact with dopamine in the regulation of rat renal Na+, K+ -adenosine triphosphatase (ATPase) activity, can recruit D1 receptors to the plasma membrane. The spatial regulation of D1 receptors was examined using confocal microscopy techniques in LLCPK cells and the functional interaction between dopamine and isoproterenol was examined by studying their effects on Na+, K+ -ATPase activity in microdissected single proximal tubular segments from rat. Isoproterenol was found to translocate the D1 receptors from the interior of the cell towards the plasma membrane. The recruitment of dopamine 1 receptors was found to be cyclic adenosine phosphate (cAMP) dependent, while protein kinase C (PKC) activation was not involved. The functional studies on Na+, K+ -ATPase activity showed that the effect of isoproterenol was abolished by a D1-like receptor antagonist (SCH 23390), and mediated via protein kinase A (PKA) and PKC dependent pathways. The results provide an explanation for the interaction between G protein-coupled receptors. The effects of isoproterenol on Na+, K+ -ATPase activity can be explained by a heterologous recruitment of D1 receptors to the plasma membrane.
The classical view of neuronal protein synthesis is that proteins are made in the cell body and then transported to their functional sites in the dendrites and the dendritic spines. Indirect evidence, however, suggests that protein synthesis can directly occur in the distal dendrites, far from the cell body. We are developing protocols for dual labeling of RNA and proteins using (15)N-uridine and (18)O- or (13)C-leucine pulse chase in cultured neurons to identify and localize both protein synthesis and fate of newly synthesized proteins. Pilot experiments show discrete localization of both RNA and newly synthesized proteins in dendrites, close to dendritic spines. We have for the first time directly imaged and measured the production of proteins at the subcellular level in the neuronal dendrites, close to the functional sites, the dendritic spines. This will open a powerful way to study neural growth and synapse plasticity in health and disease.
Maintenance of a normal blood pressure requires a precise and fine-tuned regulation of salt metabolism. This is accomplished by a bidirectional regulation of renal tubular sodium transporters by natriuretic and antinatriuretic hormones. Dopamine, produced in the renal proximal tubular cells, plays an important role in this interactive system. Dopamine inhibits the activity of Na+,K(+)ATPase as well as of many important sodium influx pathways in the nephron. These effects of dopamine are particularly pronounced in situation of sodium loading. There is an abundance of evidence suggesting that the natriuretic effects of ANP are to a large extent mediated via renal dopamine 1 like receptors. The renal tubular dopamine 1 like receptors are, under basal conditions, mainly located intracellularly. ANP and its second messenger, cGMP, cause a rapid translocation of the dopamine 1 like receptors to the plasma membrane. This phenomenon may explain how ANP and dopamine act in concert to regulate sodium metabolism Regulation of sodium metabolism and blood pressure is critically dependent on a normal function of the renal dopamine system. Hence, abnormalities in the interaction between dopamine and ANP may predispose to hypertension.
Desensitization of G-protein-coupled receptors (GPCR) includes receptor endocytosis. This phenomenon is suggested, at least for some receptors, to be associated with receptor resensitization. Here, we examined the role of receptor endocytosis for two different GPCR, the dopamine-1 (D1) receptor and the beta 1-adrenoceptor (beta(1)-AR) in renal tissue. The functional role of receptor endocytosis was examined on Na+, K+-ATPase activity in microdissected proximal tubules from rat kidney. The spatial regulation of endogenous D1 receptors and beta(1)-AR was examined by confocal microscopy techniques in LLCPK cells. Phenylarsine oxide (PAO) an endocytosis inhibitor, attenuated isoproterenol-induced decrease in Na+, K+-ATPase activity but had no such effect on dopamine-induced decrease in Na+, K+-ATPase activity. We have previously shown that isoproterenol sensitizes the renal dopamine system, by recruiting silent D1 receptors from the interior of the cell towards the plasma membrane. This effect was attenuated by PAO as well as by cytochalasin D while these substances had no effect on dopamine-induced D1 receptor recruitment. The beta(1)-AR was localized to the plasma membrane in control cells. Isoproterenol induced a rapid internalization of the beta(1)-AR; which was prevented by PAO. The results suggest that endocytosis of beta(1)-AR in renal proximal tubular cells is an important step in signal generation, while endocytosis of proximal tubular D1 receptor is not.
We report on the spectra and fluorescence lifetimes of four commonly used fluorophores: lissamine rhodamine (LRSC); tetramethyl rhodamine isothiocyanate (TRITC); Texas Red; and cyanine 3.18 (Cy-3). Fluorescence lifetime recordings revealed that these spectrally overlapping fluorophores can be individually detected by their lifetimes, indicating that at least four fluorophores can be individually identified in discrete tissue domains by confocal microscopy. A further advantage of lifetime recordings is that fluorophores that emit light within the same wavelength band can be used and chromatic aberrations are therefore circumvented, thereby improving the spatial accuracy in imaging of multiple fluorophores. Low and high pH, respectively, tended to influence fluorophore emission spectra and fluorescence lifetime. IgG conjugation of the fluorophores tended to shift the spectra towards longer wavelengths and to change the fluorescence lifetimes. The IgG-conjugated form of the fluorophores may, when applied to tissue specimens, change the emission spectrum and lifetime. In addition, different tissue embedding procedures may influence fluorescence lifetime. These observations emphasize the importance of spectral and lifetime characterization of fluorescent probes within the chemical context in which they will be used experimentally. Changes in spectra and fluorescence lifetimes may be a useful tool to gain information about the chemical environment of the fluorophores.
In order to resolve multiple fluorophores by their lifetimes in discrete tissue domains, the labeling intensity must be sufficiently strong and the intensity-difference between the labels must not be too large, the rate of fading should be similar for all fluorophores, and the lifetimes of the fluorophores should be sufficiently discrete. We could readily distinguish Cyanine-3.18 (Cy-3), Lissamine Rhodamine (LRSC), and Texas Red when they were not colocalized in tissue profiles. Colocalization of Cy-3 and LRSC, as well as Cy3 and Texas Red, could also be distinguished, while the combination of LRSC and Texas Red was more difficult. We have used fluorescence lifetime recordings in confocal microscopy to detect different neuropeptides in neurons. We demonstrate that somatostatin and galanin are colocalized in axon profiles of the spinal cord dorsal horn.
In multiple sclerosis, the central nervous system is lesioned through invasion of plaque-forming inflammatory cells, primarily contributing to immune attack of myelin and oligodendrocytes. In this report we address the possible activation and differentiation of central nervous system stem cells following such immunological insults in a well-characterized rat model of multiple sclerosis characterised by spinal cord pathology. Dye-labeled central nervous system stem cells, residing within the ependymal layer of the central canal responded to the multiple sclerosis-like conditions by proliferation, while some of the migrating stem cell-derived cells expressed markers typical for oligodendrocytes (04) and astrocytes (glial fibrillary acidic protein, GFAP) in the demyelinated area. Our results indicate that regenerative stem cell activation following immunoactivity is different from that after trauma, exemplified by the slower time course of stem cell proliferation and migration of progeny, in addition to the ability of the stem cell-derived cells to express oligodendrocyte markers. Finally,, deleterious effects of macrophages on the stem cell population were evident and may contribute to the, depletion of the stem cell population in neuroinflammatory disorders.
Hemolytic uremic syndrome, a life-threatening disease often accompanied by acute renal failure, usually occurs after gastrointestinal infection with Shiga toxin 2 (Stx2)-producing Escherichia coli. Stx2 binds to the glycosphingolipid globotriaosylceramide receptor, expressed by renal epithelial cells, and triggers apoptosis by activating the apoptotic factor Bax. Signaling via the ouabain/Na,K-ATPase/IP3R/NF-B pathway increases expression of Bcl-xL, an inhibitor of Bax, suggesting that ouabain might protect renal cells from Stx2-triggered apoptosis. Here, exposing rat proximal tubular cells to Stx2 in vitro resulted in massive apoptosis, upregulation of the apoptotic factor Bax, increased cleaved caspase-3, and downregulation of the survival factor Bcl-xL; co-incubation with ouabain prevented all of these effects. Ouabain activated the NF-B antiapoptotic subunit p65, and the inhibition of p65 DNA binding abolished the antiapoptotic effect of ouabain in Stx2-exposed tubular cells. Furthermore, in vivo, administration of ouabain reversed the imbalance between Bax and Bcl-xL in Stx2-treated mice. Taken together, these results suggest that ouabain can protect the kidney from the apoptotic effects of Stx2.
There is a great need for treatment that arrests progression of chronic kidney disease. Increased albumin in urine leads to apoptosis and fibrosis of podocytes and tubular cells and is a major cause of functional deterioration. There have been many attempts to target fibrosis, but because of the lack of appropriate agents, few have targeted apoptosis. Our group has described an ouabain-activated Na,K-ATPase/IP3R signalosome, which protects from apoptosis. Here we show that albumin uptake in primary rat renal epithelial cells is accompanied by a time-and dose-dependent mitochondrial accumulation of the apoptotic factor Bax, down-regulation of the antiapoptotic factor Bcl-xL and mitochondrial membrane depolarization. Ouabain opposes these effects and protects from apoptosis in albumin-exposed proximal tubule cells and podocytes. The efficacy of ouabain as an antiapoptotic and kidney-protective therapeutic tool was then tested in rats with passive Heymann nephritis, a model of proteinuric chronic kidney disease. Chronic ouabain treatment preserved renal function, protected from renal cortical apoptosis, up-regulated Bax, down-regulated Bcl-xL, and rescued from glomerular tubular disconnection and podocyte loss. Thus we have identified a novel clinically feasible therapeutic tool, which has the potential to protect from apoptosis and rescue from loss of functional tissue in chronic proteinuric kidney disease.
Over the past decade, it has become clear that neural stem cells in the adult mammalian brain continuously generate new neurons, predominantly in the hippocampus and olfactory bulb [1]. However, the central issue of whether these new neurons participate in functional synaptic circuitry has yet to be resolved. Here, we use virus-based transsynaptic neuronal tracing and c-Fos mapping of odor-induced neuronal activity to demonstrate that neurons generated in the adult functionally integrate into the synaptic circuitry of the brain.
We investigate the performance of confocal pH imaging when using phase fluorometry and fluorophores with pH-dependent lifetimes. In these experiments, the specimen is illuminated by a laser beam, whose intensity is sinusoidally modulated. The lifetime-dependent phase shift in the fluorescent signal is detected by a lock-in amplifier, and converted into a pH value through a calibration procedure. A theoretical investigation is made of how the different system parameters will influence the results concerning sensitivity and noise. Experiments carried out with the fluorophore SNAFL-2 support these theoretical predictions. It is found that, under realistic experimental conditions, we can expect a pH change of 0.1 units to be easily detected in an 8-bit digital image. However, the pixel-to-pixel root mean square noise is often of the order of one pH unit. This comparatively high level of noise has its origin in photon quantum noise. pH measurements on living cells show a systematic deviation from expected values. This discrepancy appears to be the result of fluorophore interaction with various cell constituents, and is the subject of further investigation.
Cellulose capsules with average outer and inner radii of approximately 44 mu m and 29 mm respectively were prepared from cellulose dissolved in a mixture of lithium chloride and dimethylacetamide using a microfluidic flow focusing device (MFFD). The MFFD had three inlets where octane oil in a cellulose solution in silicone oil was used to produce a double emulsion containing a cellulose capsule. This technique enables the formation of capsules with a narrow size distribution which can be beneficial for drug delivery or controlled release capsules. In this respect, cellulose is a highly interesting material since it is known to cause no autoimmune reactions when used in contact with human tissue. Furthermore, by controlling the chemical properties of the cellulose, it is possible to trigger a swelling of the capsules and consequentially the release of an encapsulated substance, e. g. a model drug, when the capsule becomes exposed to an external stimulus. To demonstrate this, capsules were functionalized by carboxymethylation to be pH- responsive and to expand approximately 10% when subjected to a change in pH from 3 to 10. The diffusion constant of a model drug, a 4 kDa fluorescently labelled dextran, through the native capsule wall was estimated to be 6.5 X 10(-14) m(2) s(-1) by fitting fluorescence intensity data to Fick's second law.
Inflammation-induced activation of endothelium constitutes one of the earliest changes during atherogenesis. New imaging techniques that allow detecting activated endothelial cells can improve the identification of persons at high cardiovascular risk in early stages. Quantum dots (QDs) have attractive optical properties such as bright fluorescence and high photostability, and have been increasingly studied and developed for bio-imaging and bio-targeting applications. We report here the development of vascular cell adhesion molecule-1 binding peptide (VCAM-1 binding peptide) functionalized QDs (VQDs) from amino QDs. It was found that the QD fluorescence signal in tumor necrosis factor alpha (TNF-alpha) treated endothelial cells in vitro was significantly higher when these cells were labeled with VQDs than amino QDs. The VQD labeling of TNF-alpha-treated endothelial cells was VCAM-1 specific since pre-incubation with recombinant VCAM-1 blocked cells' uptake of VQDs. Our ex vivo and in vivo experiments showed that in the inflamed endothelium, QD fluorescence signal from VQDs was also much stronger than that of amino QDs. Moreover, we observed that the QD fluorescence peak was significantly blue-shifted after VQDs interacted with aortic endothelial cells in vivo and in vitro. A similar blue-shift was observed after VQDs were incubated with recombinant VCAM-1 in tube. We anticipate that the specific interaction between VQDs and VCAM-1 and the blue-shift of the QD fluorescence peak can be very useful for VCAM-1 detection in vivo.
Rolling circle amplification (RCA) for generation of distinct fluorescent signals in situ relies upon the self-collapsing properties of single-stranded DNA in commonly used RCA-based methods. By introducing a cross-hybridizing DNA oligonucleotide during rolling circle amplification, we demonstrate that the fluorophore-labeled RCA products (RCPs) become smaller. The reduced size of RCPs increases the local concentration of fluorophores and as a result, the signal intensity increases together with the signal-to-noise ratio. Furthermore, we have found that RCPs sometimes tend to disintegrate and may be recorded as several RCPs, a trait that is prevented with our cross-hybridizing DNA oligonucleotide. These effects generated by compaction of RCPs improve accuracy of visual as well as automated in situ analysis for RCA based methods, such as proximity ligation assays (PLA) and padlock probes.
The recently introduced OSTE polymer technology has shown very useful features for microfluidics for lab-on-a-chip applications. However, no data has yet been published on cell viability on OSTE. In this work, we study the biocompatibility of three OSTE formulations by cell growth experiments. Moreover, we investigate the effect of varying thiol excess on cell viability on OSTE surfaces. The results show poor cell viability on one OSTE formulation, and viability comparable with polystyrene on a second formulation with thiol excess below 60%. In the third formulation, we observe cell proliferation. These results are promising for cell-based assays in OSTE microfluidic devices.
Na+, K+-ATPase (NKA) is well known for its function as an ion pump. Studies during the last decade have revealed an additional role for NKA as a signal transducer. In this brief review, we describe how cardiotonic steroids, which are highly specific NKA ligands, trigger slow Ca2+ oscillations by promoting the interaction between NKA and the inositol trisphosphate receptor, and how this Ca2+ signal activates the NF-B subunit p65 and increases the expression of the antiapoptotic factor Bcl-xL. The potential tissue-protective effects of this signal are discussed.