Change search
Refine search result
12 1 - 50 of 95
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Amoignon, Olivier
    et al.
    Pralits, Jan O.
    Hanifi, Ardeshir
    Swedish Defence Research Agency.
    Berggren, M.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Shape optimization for delay of laminar-turbulent transition2006In: AIAA Journal, ISSN 0001-1452, E-ISSN 1533-385X, Vol. 44, no 5, p. 1009-1024Article in journal (Refereed)
    Abstract [en]

    A method using gradient-based optimization is introduced for the design of wing profiles with the aim of natural laminar How, as well as minimum wave drag. The Euler equations of gasdynamics, the laminar boundary-layer equations for compressible flows on infinite swept wings, and the linear parabolized stability equations (PSE) are solved to analyze the evolution of convectively unstable disturbances. Laminar-turbulent transition is assumed to be delayed by minimizing a measure of the disturbance kinetic energy of a chosen disturbance, which is computed using the PSE. The shape gradients of the disturbance kinetic energy are computed based on the solutions of the adjoints of the state equations just named. Numerical tests are carried out to optimize the RAE 2822 airfoil with the aim to delay simultaneously the transition, reduce the pressure drag coefficient, and maintain the coefficients of lift and pitch moments. Constraints are also applied on the geometry. Results show a reduction of the total amplification of a large number of disturbances, which is assumed to represent a delay of the transition in the boundary layer. Because delay of the transition implies reduction of the viscous drag, the present method enables shape optimization to perform viscous drag reduction.

  • 2.
    Arnal, Daniel
    et al.
    ONERA.
    Tran, Dac
    Dassault Aviation.
    Hein, Stefan
    DLR.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Engelbrecht, T.
    SUPERsonic TRAnsition Control Contract N° AST4-CT-2005-516100: Final Technical Report2008Report (Other academic)
  • 3.
    Bagheri, Shervin
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    The stabilizing effect of streaks on Tollmien-Schlichting and oblique waves: A parametric study2007In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 19, no 7, p. 078103-1-078103-4Article in journal (Refereed)
    Abstract [en]

    The stabilizing effect of finite amplitude streaks on the linear growth of unstable perturbations [Tollmien-Schlichting (TS) and oblique waves] is numerically investigated by means of the nonlinear parabolized stability equations. We have found that for stabilization of a TS-wave, there exists an optimal spanwise spacing of the streaks. These streaks reach their maximum amplitudes close to the first neutral point of the TS-wave and induce the largest distortion of the mean flow in the unstable region of the TS-wave. For such a distribution, the required streak amplitude for complete stabilization of a given TS-wave is considerably lower than for beta=0.45, which is the optimal for streak growth and used in previous studies. We have also observed a damping effect of streaks on the growth rate of oblique waves in Blasius boundary layer and for TS-waves in Falkner-Skan boundary layers.

  • 4. Borodulin, V. I.
    et al.
    Ivanov, A. V.
    Kachanov, Y. S.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Swedish Defense Research Agency, FOI.
    Laminar-turbulent transition delay on a swept wing2016In: AIP Conference Proceedings, American Institute of Physics (AIP), 2016Conference paper (Refereed)
    Abstract [en]

    The paper describes the results of experiments on robustness of laminar-turbulent transition control on a swept-wing using distributed micro-sized roughness (DMSR) elements. These elements introduce controlled stationary vortices which are able to significantly modify the base flow and its stability characteristics. We have performed parametric study first varying height and period of the DMSR elements in order to find the most stabilizing effect on boundary later flow in compare to uncontrolled reference case without DMSR. Significant downstream shift of laminar-turbulent transition position due to application of DMSR is found and well documented with help of thermography. The robustness of this flow control method was studied by variation of the wind-tunnel flow quality introducing significant sound background or introducing enhanced turbulence level (applying turbulizing grids). The wind-tunnel tests performed with turbulence-generating grids (at enhanced turbulence levels) have shown that laminar-turbulent transition moves upstream in this case, while DMSR-elements loose their effectiveness for transition control (no matter in quiet sound conditions or at elevated sound background). The experiments on acoustic influence have shown that without DMSR acoustic does not effect transition location. However, in case then laminar-turbulent transition is delayed by presence of DMSR, an additional transition delay was observed when harmonic acoustic waves of certain frequency were excited.

  • 5. Borodulin, V. I.
    et al.
    Ivanov, A. V.
    Kachanov, Y. S.
    Örlü, Ramis
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Hein, S.
    Characteristics of 3D instability of a 35-degree swept wing to CF and TS modes. Experiment and theory2016In: AIP Conference Proceedings, American Institute of Physics (AIP), 2016Conference paper (Refereed)
    Abstract [en]

    An extensive experimental investigation of linear evolution of Cross-Flow (CF) and Tollmien-Schlichting (TS) modes of 3D boundary layer oscillations on a swept wing has been carried out. TS-instability characteristics have been studied experimentally for the first time. The characteristics of development of the two kinds of instability modes are compared with calculations and display a very good agreement. The whole dataset may be used for promotion of theoretical methods of investigation of laminar-turbulent transition in swept wing boundary layers.

  • 6.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Barman, Emelie
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    On the stability of a Blasius boundary layer subject to localized suction2017Report (Other academic)
    Abstract [en]

    In this work the problem of premature transition in boundary layers due to localized suction is revisited. A thorough study involving nonlinear direct numerical simulations, a three-dimensional linear stability analysis, a sensitivity study and a Koopman analysis is presented. The ensemble of these different techniques enables the origins of oversuction to be studied in great detail and provides new insight into the transition process of the flow. The configuration considered consists of an infinite row of widely separated suction pipes that are mounted to the plate at right angles. For the parameter range investigated, the flow inside the pipe is seen to bifurcate at a lower suction ratio than the boundary layer and thus act as an oscillator that forces the external flow over the plate. At low levels of suction, this forcing is not enough to cause transition in the boundary layer, but as the suction level is increased beyond criticality, modes originating from the pipe and extending into the boundary layer are seen to destabilize as well. These modes enable the perturbations forced in the pipe to also amplify in the boundary layer, which leads to a rapid breakdown to turbulence in the wake of the suction hole.

  • 7.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Mechanics of Industrial Processes. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Modal analysis of roughness-induced crossflow vortices in a Falkner-Skan-Cooke boundary layer2013In: International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2013, TSFP-8 , 2013Conference paper (Refereed)
    Abstract [en]

    A three-dimensional global stability analysis using high-order direct numerical simulations is performed to investigate the effect of surface roughness with Reynolds number (based on roughness height) Rek above and below the critical value for transition, on the eigenmodes of a Falkner-Skan-Cooke boundary layer. The surface roughness is introduced with the immersed boundary method and the eigenvalues and eigenfunctions are solved using an iterative time-stepper method. The study reveals a global instability for the case with higher Reynolds number that causes the flow in the non-linear simulations to break down to turbulence shortly downstream of the roughness. Examination of the unstable linear global modes show that these are the same modes that are observed in experiments immediately before breakdown due to secondary instability, which emphasizes the importance of these modes in transition.

  • 8.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Henningson, Dan Stefan
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Global Stability Analysis of a Roughness Wake in a Falkner-Skan-Cooke Boundary Layer2015In: Procedia IUTAM, Elsevier, 2015, p. 192-200Conference paper (Refereed)
    Abstract [en]

    A global stability analysis of a Falkner-Skan-Cooke boundary layer with distributed three-dimensional surface roughness is per- formed using high-order direct numerical simulations. Computations have been performed for different sizes of the roughness elements, and a time-stepping method has been used to find the instability modes. The study shows that a critical roughness height beyond which a global instability is excited does exist. Furthermore, the origins of this instability is examined by means of an energy analysis, which reveals the production and dissipation terms responsible for the instability, as well as the region in space where the instability originates.

  • 9.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Shahriari, Nima
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. Swedish Defence Research Agency, FOI.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Onset of global instability behind distributed surface roughness in a Falkner–Skan–Cooke boundary layer2015Report (Other academic)
    Abstract [en]

    A three-dimensional linear global stability analysis of a Falkner–Skan–Cooke boundary layer with distributed three-dimensional surface roughness is performed. The Falkner–Skan–Cooke boundary layer models the flow over swept airplane wings, and investigation of the critical roughness size for which a global instability emerges is thus of great importance within aeronautical applications. The study considers high-order direct numerical simulations and shows that such a critical roughness height exists for the Falkner–Skan–Cooke boundary layer. The roughness Reynolds number and roughness element aspect ratio for which this happens is comparable to the transition data reported in the literature for two-dimensional boundary layers. This demonstrates the importance of the local flow conditions in the vicinity of the roughness for triggering a global instability, although the resulting breakdown scenario is completely different from that of two-dimensional boundary layers. This breakdown scenario is studied in detail, and a global energy analysis is used to reveal the structures and mechanisms responsible for production and dissipation of perturbation energy.

  • 10.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.
    Shahriari, Nima
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.
    Stability and sensitivity of a cross-flow-dominated Falkner-Skan-Cooke boundary layer with discrete surface roughness2017In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 826, p. 830-850Article in journal (Refereed)
    Abstract [en]

    With the motivation of determining the critical roughness size, a global stability and sensitivity analysis of a three-dimensional Falkner-Skan-Cooke (FSC) boundary layer with a cylindrical surface roughness is performed. The roughness size is chosen such that breakdown to turbulence is initiated by a global version of traditional secondary instabilities of the cross-flow (CF) vortices instead of an immediate flow tripping at the roughness. The resulting global eigenvalue spectra of the systems are found to be very sensitive to numerical parameters and domain size. This sensitivity to numerical parameters is quantified using the epsilon-pseudospectrum, and the dependency on the domain is analysed through an impulse response, structural sensitivity analysis and an energy budget. It is shown that while the frequencies remain relatively unchanged, the growth rates increase with domain size, which originates from the inclusion of stronger CF vortices in the baseflow. This is reflected in a change in the rate of advective energy transport by the baseflow. It is concluded that the onset of global instability in a FSC boundary layer as the roughness height is increased does not correspond to an immediate flow tripping behind the roughness, but occurs for lower roughness heights if sufficiently long domains are considered. However, the great sensitivity results in an inability to accurately pinpoint the exact parameter values for the bifurcation, and the large spatial growth of the disturbances in the long domains eventually becomes larger than can be resolved using finite-precision arithmetic.

  • 11.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Shahriari, Nima
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. Swedish Defence Research Agency, Sweden.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Stability and sensitivity of a crossflow-dominated Falkner–Skan–Cooke boundary layer with discrete surface roughness2016In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645Article in journal (Refereed)
    Abstract [en]

    With the motivation of determining the critical roughness size, a global stability and sensitivity analysis of a three-dimensional Falkner–Skan–Cooke (FSC) boundary layer with a cylindrical surface roughness is performed. The roughness size is chosen such that breakdown to turbulence is initiated by a global version of traditional secondary instabilities of the crossflow (CF) vortices, instead of an immediate flow tripping at the roughness. The resulting global eigenvalue spectra of the systems are found to be very sensitive to numerical parameters and domain size. This sensitivity to numerical parameters is quantified using the "-pseudospectrum, and the dependency on the domain is analysed through an impulse response and an energy budget. It is shown that the growth rates increase with domain size, which originates from the inclusion of stronger CF vortices in the baseflow. This is reflected in a change in the rate of advective energy transport by the baseflow. It is concluded that the onset of global instability in a FSC boundary layer as the roughness height is increased does not correspond to an immediate flow tripping behind the roughness, but occurs for lower roughness heights if su ciently long domains are considered. However, the great sensitivity results in an inability to accurately pinpoint the exact parameter values for the bifurcation, and the large spatial growth of the disturbances in the long domains eventually becomes larger than what can be resolved using finite precision arithmetics. 

  • 12. Byström, Martin G.
    et al.
    Hanifi, Ardeshir
    Henningson, Dan S.
    Optimal disturbances in the Falkner-Skan-Cooke boundary laters2007Report (Other academic)
  • 13.
    Byström, Martin G.
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Pralits, Jan O.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Heninngson, Dan S.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Luchini, Paolo
    University of Salerno.
    Optimal Disturbances in Three-dimensional Boundary-Layer Flows2007Conference paper (Refereed)
    Abstract [en]

    In the present paper,  two di!erent approaches tocompute the optimal disturbances in the quasi three-dimensional flows are presented. One of the approachesis based on the Multiple Scales method and the otherone utilises the Parabolised Stability Equations.

  • 14.
    Chevalier, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI).
    Hein, Stefan
    DLR.
    Sousa, Joao M.M.
    Technical University of Lisbon.
    Additional computationsfor the RWG results Final analysis2008Report (Other academic)
  • 15.
    Dadfar, Reza
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Control of instabilities in an unswept wing boundary layer2018In: AIAA Journal, ISSN 0001-1452, E-ISSN 1533-385X, Vol. 56, no 5, p. 1750-1759Article in journal (Refereed)
    Abstract [en]

    Linear control theory is used to construct an output feedback controller to attenuate the amplitude of the Tollmien–Schlichting waves inside the boundary layer developing over an unswept wing. The analysis is based on direct numerical simulations. The studied scenario includes the impulse response of the system to a generic disturbance in the freestream, which triggers a Tollmien–Schlichting wave packet inside the boundary layer. The performance of a linear quadratic Gaussian controller is analyzed to suppress the amplitude of the Tollmien–Schlichting wave packet using a row of sensors and plasma actuators localized at the wall. The target of the controller is chosen as a subset of proper orthogonal decomposition modes describing the dynamics of the unstable disturbances. The plasma actuators are implemented as volume forcing. To account for the limitations of the plasma actuators concerning a unidirectional forcing, several strategies are implemented in the linear quadratic Gaussian framework. Their performances are compared with that for classical linear quadratic Gaussian controller. These controllers successfully reduced the amplitude of the wave packet.

  • 16.
    Dadfar, Reza
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Henningson, Dans S.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Control of instabilities in boundary layer of unswept wingManuscript (preprint) (Other academic)
  • 17.
    Dadfar, Reza
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Henningson, Dans S.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Feedback Control for Laminarization of flow over Wings2015In: Flow Turbulence and Combustion, ISSN 1386-6184, E-ISSN 1573-1987, Vol. 94, no 1, p. 43-62Article in journal (Refereed)
    Abstract [en]

    An active control strategy is implemented to attenuate the amplitude of the Tollmien-Schlichting (TS) waves inside the boundary layer of an airfoil. The dynamics of the system are modelled by the linearised Navier-Stokes equations. The impulse response to an initial disturbance, initially located outside of the boundary layer and in front of the airfoil is considered. The perturbation evolves and penetrates inside the boundary layer and triggers the TS waves. Different control strategies including the linear quadratic Gaussian (LQG) and model predictive control (MPC) are designed based on a reduced order model where the sensors and actuators are localised near the wall. An output projection is used to identify the unstable disturbances; the objective function of the controller is selected as a set of proper orthogonal decomposition (POD) modes; to isolate the dynamics of the TS waves, the modes with high energy contents in the TS wave frequency band are considered as the objective of the controller. A plasma actuator is modelled and implemented as an external forcing on the flow. To account for the limitations of the plasma actuator several strategies are examined and the results are compared with a classical LQG controller. The outcomes reveal successful performance in mitigating the amplitude of the wavepacket developing inside the boundary layer.

  • 18.
    Dadfar, Reza
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Semeraro, Onofrio
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Hanifi, Anfreshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Henningson, Dan Stefan
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Output feedback control of flow on a flat plate past a leading edge using plasma actuatorsIn: AIAA Journal, ISSN 0001-1452, E-ISSN 1533-385XArticle in journal (Refereed)
    Abstract [en]

    The evolution and control of a two dimensional (2D) wavepacket developing on a flat plate with a leading edge is investigated by means of direct numerical simulation (DNS).

    The aim is to identify and suppress the wavepackets generated by freestream perturbations. A sensor is placed close to the wall in order to detect the upcoming wavepacket, while an actuator is placed further downstream to control it. A plasma actuator is modelled as an external forcing on the flow using a model based and validated on experimental investigations. A Linear Quadratic Gaussian (LQG) controller is designed and an output projection is used to build the objective function. Moreover, by appropriate selection of the Proper Orthogonal Decomposition (POD) modes, we identify the disturbances to be damped. A reduced-order model of the input-output system is constructed by using system identification via the Eigensystem Realization Algorithm (ERA) algorithm.

    A limitation of the plasma actuators is the uni-directional forcing of the generated wall jet, which is predetermined by the electrodes location. In this paper, we address this limitation by proposing and comparing two different solutions: i) by introducing an offset in the control signal such that the resulting total forcing is oriented along one direction; ii) by using two plasma actuators acting in opposite directions. The results are compared with the ideal case where constraints are not accounted for the control design. We show that the resulting controllers based on plasma actuators can successfully attenuate the amplitude of the wavepacket developing inside the boundary layer.

  • 19.
    Dadfar, Reza
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Semeraro, Onofrio
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Output Feedback Control of Blasius Flow with Leading Edge Using Plasma Actuator2013In: AIAA Journal, ISSN 0001-1452, E-ISSN 1533-385X, Vol. 51, no 9, p. 2192-2207Article in journal (Refereed)
    Abstract [en]

    The evolution and control of a two-dimensional wave packet developing on a flat plate with a leading edge is investigated by means of direct numerical simulation. The aim is to identify and suppress the wave packets generated by freestream perturbations. A sensor is placed close to the wall to detect the upcoming wave packet, while an actuator is placed further downstream to control it. A plasma actuator is modeled as an external forcing on the flow using a model based and validated on experimental investigations. A linear quadratic Gaussian controller is designed, and an output projection is used to build the objective function. Moreover, by appropriate selection of the proper orthogonal decomposition modes, we identify the disturbances to be damped. A reduced-order model of the input-output system is constructed by using system identification via the eigensystem realization algorithm. A limitation of the plasma actuators is the unidirectional forcing of the generated wall jet, which is predetermined by the electrodes' location. In this paper, we address this limitation by proposing and comparing two different solutions: 1) introducing an offset in the control signal such that the resulting total forcing is oriented along one direction, and 2) using two plasma actuators acting in opposite directions. The results are compared with the ideal case where constraints are not accounted for the control design. We show that the resulting controllers based on plasma actuators can successfully attenuate the amplitude of the wave packet developing inside the boundary layer.

  • 20. Dankowicz, H.
    et al.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. Swedish Defense Research Agency (FOI).
    Henningson, Dan
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. Swedish Defense Research Agency (FOI).
    Editorial: Applied mechanics reviews2014In: Applied Mechanics Review, ISSN 0003-6900, E-ISSN 1088-8535, Vol. 66, no 2Article in journal (Refereed)
  • 21. Dankowicz, Harry
    et al.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Henningson, Dan
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Untitled2014In: Applied Mechanics Review, ISSN 0003-6900, E-ISSN 1088-8535, Vol. 66, no 2, p. 020201-Article in journal (Refereed)
  • 22.
    Donelli, Raffaele
    et al.
    CIRA.
    de Rosa, D.
    Hein, Stefan
    DLR.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Mughal, Shahid
    Imperial College.
    Perraud, Jean
    ONERA.
    Schrauf, Geza
    Airbus.
    STABILITY ANALYSIS OF THE PATHFINDER WINDTUNNEL MODEL FOR THE CALIBRATION OF TRANSITION PREDICTION IN ETW2009Report (Other academic)
  • 23.
    Eliasson, Peter
    et al.
    Swedish Defence Research Agency, FOI.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Peng, Shia-Hui
    Swedish Defence Research Agency, FOI.
    Influence of Transition on High-Lift Prediction with the NASA Trap Wing Model2011Conference paper (Refereed)
    Abstract [en]

    A computational analysis on the influence of the transition for the NASA Trap Wing Model has been carried out, which is an extension of the work presented for the 1st AIAA High Lift Prediction Workshop. The transition prediction is based on stability analyses with a database method in spanwise sections. Comparisons with experimental data are made to find appropriate N-factors for the eN method leading to the estimated interval 5< N <10. The computed transition locations are used to specify laminar and turbulent regions in the 3D calculations. Including transition improves the results, especially with locations from higher N-factors, and good agreement with experimental data for aerodynamic forces, moments and pressure distributions is obtained.

  • 24.
    Eliasson, Peter
    et al.
    Swedish Defence Research Agency, FOI.
    Peng, Shia-Hui
    Swedish Defence Research Agency, FOI.
    Hanifi, Ardeshir
    Swedish Defence Research Agency, FOI.
    Improving the Prediction for the NASA High-Lift Trap Wing Model2011In: 49th AIAA Aerospace Sciences Meeting, 2011Conference paper (Refereed)
  • 25.
    Futrzynski, Romain
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Weng, Chenyang
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Boij, Susann
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Efraimsson, Gunilla
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Numerical study of the Stokes layer in oscillating channel flowManuscript (preprint) (Other academic)
    Abstract [en]

    Oscillating turbulent channel flows present particular physics that proves to be particularly difficult to understand. In this paper, a case where the amplitude of the oscillations at the center of the channel is approximately 15% of the mean velocity and the dimensionless angular forcing frequency is 0.01 was studied using several numerical methods. DNS was performed to serve as reference to which the results from an LES were compared. The LES data was post-processed using both phase averaging and the more recent dynamic mode decomposition (DMD), which extracts coherent structures based on their frequency. It was found that the DMD is not able to extract faint harmonic components of the oscillations, which have been observed with phase averaging and Fourier transforms. It is, however, able to extract accurate profiles of the mean and forcing frequency quantities. Compared to the DNS, the accuracy of the LES results was similar to analytical models, although no single model gives accurate result for every quantity investigated.  

  • 26.
    Godard, Jean Luc
    et al.
    ONERA.
    Arnal, Daniel
    ONERA.
    Sousa, Joao M.M.
    Technical University of Lisbon.
    Krier, Johan
    Sucipto, T.
    Donelli, Raffaele
    CIRA.
    Hein, Stefan
    DLR.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Additional computations for the S2MA results Final analysis2008Report (Other academic)
  • 27.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    A Study of Transitional Separation Bubbles2007Report (Other academic)
  • 28.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Progress of receptivity methods and its impact on transition prediction and NLF design2009Report (Other academic)
  • 29.
    Hanifi, Ardeshir
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Amoignon, Olivier
    Pralits, Jan Oscar
    Chevalier, Mattias
    A Gradient-based Optimization Method for Natural Laminar Flow Design2010In: / [ed] Schlatter, Philipp; Henningson, Dan S., Springer , 2010, p. 3-10Conference paper (Refereed)
  • 30.
    Hanifi, Ardeshir
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Amoignon, Olivier
    FOI.
    Pralits, Jan
    Tempelmann, David
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    A Gradient-based Optimization Method for Natural Laminar Flow Design: OPTLAM Project Final Report2012Report (Other academic)
  • 31.
    Hanifi, Ardeshir
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hein, Stefan
    DLR.
    Linear Stability characteristics of the boundarylayer on the modied NACA 67 1-215 airfoil2011Report (Other academic)
  • 32.
    Hein, Stefan
    et al.
    DLR.
    Schülein, Erik
    DLR.
    Hanifi, Ardeshir
    Swedish Defence Research Agency, FOI.
    Arnal, Daniel
    ONERA.
    Laminar Flow Control by Suction at Mach 22010In: / [ed] Schlatter, Philipp; Henningson, Dan S., Springer , 2010, p. 189-194Conference paper (Refereed)
  • 33.
    Heninngson, Dan S.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    The Application of Optimal Control to Boundary Layer Flow2006In: IUTAM Symposium on One Hundred Years of Boundary Layer Research / [ed] G.E.A. Meier, K.R. Sreenivasan, Hans-Joachim Heinemann, Springer, 2006, p. 59-71Conference paper (Refereed)
    Abstract [en]

    Modern optimal control theory can be used to calculate the optimal steady suction needed to e.g. relaminarize the flow or to delay transition. This has been used to devise the best possible suction distributions for keeping the flow laminar, and applied for flat plate boundary layers as well as boundary layers on swept wings of airplanes. Optimal control theory can also be used to device tile best possible measurement feedback control. Real time measurements of How quantities at the wall is fed back to control the flow through wall actuation, using e.g. blowing and suction. We have applied modern control theory to channel flows as well as two and three-dimensional boundary layers, and Found that now disturbances can be cancelled, transition delayed and low Reynolds number turbulence relarninarized.

  • 34.
    Herbst, Astrid
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Deubelbeiss, S
    Spehr, Saskia
    Hanifi, Ardeshir
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Instability characteristics of harmonic disturbances in a turbulent separation bubble2005In: Proceedings of XVII Congresso Aimeta di Meccanica Teorica e Applicata, 2005Conference paper (Refereed)
    Abstract [en]

    The instability characteristics of a turbulent flat plate boundary layer separating under a strong adverse pressure gradient are examined. The analysis is based on the data of direct numerical simulation. A theoretical model of harmonic perturbations is considered, including the contribution of the turbulent part of the flow, to investigate the stability characteristics of the flow. The structure of the organized waves is also investigated by means of Proper Orthogonal Decompositions (POD).

  • 35.
    Hosseini, Seyed M.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Henningson, Dan
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Effect of freestream turbulence on roughness-induced crossflow instability2013Report (Other academic)
    Abstract [en]

    The effect of freestream turbulence on generation of crossflow disturbances over swept wings is investigated through direct numerical simulations.  The set up follows  the  experiments  performed  by Downs  et  al.  in their  TAMU  experi- ment.  In this experiment the authors use ASU(67)-0315 wing geometry which promotes  growth  of crossflow  disturbances.   Distributed  roughness  elements are locally placed near the leading edge with a span-wise wavenumber, to ex- cite the corresponding crossflow vortices.  The response of boundary layer to external disturbances such as roughness heights, span-wise wavenumbers, Rey- nolds numbers and freestream turbulence characteristics are studied.  It must be noted that the experiments were conducted at a very low level of freestream turbulence  intensity  (T u).   In this  study,  we fully  reproduce the  freestream isotropic homogenous turbulence through a DNS code using detailed freestream spectrum data provided by the experiment. The generated freestream fields are then applied as the inflow boundary condition for direct numerical simulation of the wing. The geometrical set up is the same as the experiment along with application of distributed roughness elements near the leading edge to precipi- tate stationary crossflow disturbances.  The effects of the generated freestream turbulence are then studied on the initial amplitudes and growth of the bound- ary layer perturbations.  It appears that the freestream turbulence damps out the dominant stationary crossflow vortices.

     

  • 36.
    Hosseini, Seyed M.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Tempelmann, David
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Stabilization of a swept-wing boundary layer by distributed roughness elements2013In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 718, p. R1-Article in journal (Refereed)
    Abstract [en]

    The stabilization of a swept-wing boundary layer by distributed surface roughness elements is studied by performing direct numerical simulations. The configuration resembles experiments studied by Saric and coworkers at Arizona State University, who employed this control method in order to delay transition. An array of cylindrical roughness elements are placed near the leading edge to excite subcritical cross-flow modes. Subcritical refers to the modes that are not critical with respect to transition. Their amplification to nonlinear amplitudes modifies the base flow such that the most unstable cross-flow mode and secondary instabilities are damped, resulting in downstream shift of the transition location. The experiments by Saric and coworkers were performed at low levels of free stream turbulence, and the boundary layer was therefore dominated by stationary cross-flow disturbances. Here, we consider a more complex disturbance field, which comprises both steady and unsteady instabilities of similar amplitudes. It is demonstrated that the control is robust with respect to complex disturbance fields as transition is shifted from 45 to 65% chord.

  • 37.
    Hosseini, Seyed Mohammad
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics. FOI, Sweden.
    Henningson, Dan Stefan
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Effect of Freestream Turbulence on Roughness-induced Crossflow Instability2015In: Procedia IUTAM, Elsevier, 2015, p. 303-310Conference paper (Refereed)
    Abstract [en]

    The effect of freestream turbulence on generation of crossflow disturbances over swept wings is investigated through direct nu- merical simulations. The set up follows the experiments performed by Downs et al. (2012). In these experiments the authors use ASU(67)-0315 wing geometry which promotes growth of crossflow disturbances. Distributed roughness elements are locally placed near the leading edge with a given spanwise wavenumber to excite the corresponding stationary crossflow vortices. In present study, we partially reproduce the isotropic homogenous freestream turbulence through direct numerical simulations using freestream spectrum data from the experiments. The generated freestream fields are then applied as the inflow boundary condition for direct numerical simulation of the wing. The distributed roughness elements are modelled through wing surface deformation and placed near the leading edge to trigger the stationary crossflow disturbances. The effects of the generated freestream turbulence on the initial amplitudes and growth of the boundary layer perturbations are then studied.

  • 38.
    Hosseini, Seyed Mohammad
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Simoni, Daniele
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Direct numerical simulation of flow around a turbine blade: A transition study2015Report (Other academic)
  • 39.
    Hosseini, Seyed Mohammad
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Vinuesa, Ricardo
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. Swedish Defence Research Agency, Sweden.
    Heninngson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Direct numerical simulation of the flow around a wing section at moderate Reynolds number2016In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 61, p. 117-128Article in journal (Refereed)
    Abstract [en]

    Abstract A three-dimensional direct numerical simulation has been performed to study the turbulent flow around the asymmetric NACA4412 wing section at a moderate chord Reynolds number of R e c = 400 , 000 , with an angle of attack of A o A = 5 ∘ . The mesh was optimized to properly resolve all relevant scales in the flow, and comprises around 3.2 billion grid points. The incompressible spectral-element Navier–Stokes solver Nek5000 was used to carry out the simulation. An unsteady volume force is used to trip the flow to turbulence on both sides of the wing at 10% of the chord. Full turbulence statistics are computed in addition to collection of time history data in selected regions. The Reynolds numbers on the suction side reach Reτ ≃ 373 and R e Ξ = 2 , 800 with the pressure-gradient parameter ranging from β ≈ 0.0 to β ≈ 85. Similarly, on the pressure side, the Reynolds numbers reach Reτ ≈ 346 and R e Ξ = 818 while β changes from β ≈ 0.0 to β ≈ − 0.25 . The effect of adverse pressure gradients on the mean flow is consistent with previous observations, namely a steeper incipient log law, a more prominent wake region and a lower friction. The turbulence kinetic energy profiles show a progressively larger inner peak for increasing pressure gradient, as well as the emergence and development of an outer peak with stronger APGs. The present simulation shows the potential of high-order (spectral) methods in simulating complex external flows at moderately high Reynolds numbers.

  • 40.
    Hosseini, Seyed Mohammad
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Vinuesa, Ricardo
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Swedish Defense Research Agency, FOI, Sweden.
    Henningson, Dan
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Direct numerical simulation of the flow around a wing section at moderate Reynolds numberManuscript (preprint) (Other academic)
  • 41.
    Hosseini, Seyed Mohammd
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. FOI, Sweden.
    Henningson, Dan
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Effect of freestream turbulence on roughness-induced crossflow instabilityManuscript (preprint) (Other academic)
    Abstract [en]

    The effect of freestream turbulence on generation and breakdown of crossflow disturbances over a swept wing is investigated through direct numerical simu- lations. The setup of simulations follows the experiments performed by Downs et al. which were conducted at a very low freestream turbulence level. The stationary cross flow vortices are generated by a row of uniformly distributed roughness elements. Here, the isotropic freestream turbulence are numerically generated through separate simulations. The generated freestream fields are then added to the inflow boundary condition for simulation of flow over the swept wing. Different levels of freestream turbulence and roughness heights are considered. It was observed that low freestream turbulence level could play a major role in triggering transition of the flow dominated by stationary cross- flow vortices. Similar to the observations in the experiment, increasing the turbulence level moved the transition location further upstream. Moreover, it was found that slight increment in the height of critically spaced roughness elements had an stabilizing effect and delayed transition to turbulence. The ob- servations made in the present study may explain the counter-intuitive results of the recent flight experiment by Saric et al. (2015), where transition occurred further downstream on the wing model with painted surface compared to the model with polished surface. 

  • 42.
    Iuliano, E.
    et al.
    CIRA.
    Quagliarella, D.
    CIRA.
    Donelli, Raffaele
    CIRA.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Godard, Jean-Luc
    ONERA.
    Design of a Supersonic High-Swept Wing NLF Airfoil2006Report (Other academic)
  • 43.
    Juniper, Matthew P.
    et al.
    Cambridge University.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Swedish Defence Research Agency.
    Theofilis, Vassilios
    Universidad Politécnica de Madrid.
    Modal Stability Theory: Lecture notes from the FLOW-NORDITA Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 20132014In: Applied Mechanics Review, ISSN 0003-6900, E-ISSN 1088-8535, Vol. 66, no 2, p. 024804-, article id AMR-13-1059Article, review/survey (Refereed)
    Abstract [en]

    This article contains a review of modal stability theory. It covers local stability analysis of parallel flows including temporal stability, spatial stability, phase velocity, group velocity, spatio-temporal stability, the linearized Navier-Stokes equations, the Orr-Sommerfeld equation, the Rayleigh equation, the Briggs-Bers criterion, Poiseuille flow, free shear flows, and secondary modal instability. It also covers the parabolized stability equation (PSE), temporal and spatial biglobal theory, 2D eigenvalue problems, 3D eigenvalue problems, spectral collocation methods, and other numerical solution methods. Computer codes are provided for tutorials described in the article. These tutorials cover the main topics of the article and can be adapted to form the basis of research codes.

  • 44. Moens, Frédéric
    et al.
    Perraud, Jean
    Krumbein, Andreas
    Toulorge, Thomas
    Iannelli, Pierluigi
    Eliasson, Peter
    Hanifi, Ardeshir
    FOI, Stockholm, Sweden.
    Transition Prediction and Impact on 3D High-Lift Wing Configuration2007In: A collection of technical papers: 25th AIAA Applied Aerodynamics Conference : Miami, Florida, 25-28 June 2007, American Institute of Aeronautics and Astronautics, 2007, p. 1593-1613Conference paper (Refereed)
    Abstract [en]

    The evolution of maximum lift coefficient of a transport aircraft as a function of Reynolds number can be linked to modifications of the laminar-turbulent transition process. In the framework of European project EUROLIFT (I), a task was dedicated to the physical understanding and the numerical modeling of the transition process in high-lift configurations. Then, in the follow-on project EUROLIFT II, a major step is the integration of transition prediction tools within Reynolds-averaged Navier-Stokes (RANS) solvers in order to estimate the impact of transition on performance. This paper presents an overview of the different activities dealing with transition in the EUROLIFT II project.

  • 45. Moens, Frédéric
    et al.
    Perraud, Jean
    Krumbein, Andreas
    Toulorge, Thomas
    Iannelli, Pierluigi
    Eliasson, Peter
    Hanifi, Ardeshir
    Totalförsvarets Forskningsinstitut, Sverige.
    Transition Prediction and Impact on a Three-Dimensional High-Lift-Wing Configuration2008In: Journal of Aircraft, ISSN 0021-8669, E-ISSN 1533-3868, Vol. 45, no 5, p. 1751-1766Article in journal (Refereed)
    Abstract [en]

    The evolution of the maximum-lift coefficient of a transport aircraft as a function of Reynolds number can be linked to modifications. of the laminar-turbulent transition process. In the framework of European project EUROLIFT I, a task was dedicated to the physical understanding and the numerical modeling of the transition process in high-lift configurations. Then in the follow-up project EUROLIFT II, a major step was the integration of transition-prediction tools within Reynolds-averaged Navier-Stokes solvers to estimate the impact of transition on performance. This paper presents an overview of the different activities dealing with transition in the EUROLIFT II project.

  • 46.
    Negi, Prabal Singh
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    LES of the unsteady response of a natural laminar flow airfoil2018In: 2018 Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics, 2018Conference paper (Refereed)
    Abstract [en]

    Large-eddy simulations are performed to investigate the dynamic response of a natural laminar flow airfoil undergoing harmonic pitch oscillations at a chord based Reynolds number of Rec= 750, 000. Large changes in the transition location are observed throughout the pitch cycles which leads to a non-linear response of the aerodynamic force coefficients. Preliminary results show that the evolution of the boundary layer over the airfoil can be modeled by using a simple phase-lag concept which implies that the boundary-layer evolution is quasi-steady in nature. A simple empirical model is developed based on this quasi-steady, phase-lag assumption which fits very well with the measured experimental data.

  • 47.
    Negi, Prabal Singh
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Vinuesa, Ricardo
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Unsteady aerodynamic effects in small-amplitude pitch oscillations of an airfoil2018In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 71, p. 378-391Article in journal (Refereed)
    Abstract [en]

    High-fidelity wall-resolved large-eddy simulations (LES) are utilized to investigate the flow-physics of small-amplitude pitch oscillations of an airfoil at Rec=100,000. The investigation of the unsteady phenomenon is done in the context of natural laminar flow airfoils, which can display sensitive dependence of the aerodynamic forces on the angle of attack in certain “off-design” conditions. The dynamic range of the pitch oscillations is chosen to be in this sensitive region. Large variations of the transition point on the suction-side of the airfoil are observed throughout the pitch cycle resulting in a dynamically rich flow response. Changes in the stability characteristics of a leading-edge laminar separation bubble has a dominating influence on the boundary layer dynamics and causes an abrupt change in the transition location over the airfoil. The LES procedure is based on a relaxation-term which models the dissipation of the smallest unresolved scales. The validation of the procedure is provided for channel flows and for a stationary wing at Rec=400,000.

  • 48. Paredes, P.
    et al.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics. FOI, Sweden.
    Theofilis, V.
    Henningson, Dan Stefan
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    The Nonlinear PSE-3D Concept for Transition Prediction in Flows with a Single Slowly-varying Spatial Direction2015In: Procedia IUTAM, Elsevier, 2015, p. 36-44Conference paper (Refereed)
    Abstract [en]

    A number of flow cases of practical significance exhibit a predominant spatial direction, along which the mean properties of the flow field vary slowly while having fast variations on the cross-sectional planes. This property is taken into account when the three- dimensional parabolized stability equations (PSE-3D) are derived. These equations represent the most efficient approach for the solution of the instability problem of such flows. In this work, the linear PSE-3D are extended to predict the nonlinear development of perturbations in this kind of complex three-dimensional flows. The newly developed method is formulated and verified for different flow problems of interest. Firstly, it has been verified by computing the evolution of linear and nonlinear Tollmien- Schlichting waves in Blasius boundary layer, showing excellent agreement with traditional nonlinear PSE predictions. Also, the evolution of optimal streaks is simulated and compared against direct numerical simulations. Finally, the nonlinear development of stationary crossflow instabilities in a three-dimensional boundary layer is monitored using a non-orthogonal coordinate system to follow the instability trajectory, showing again a very good agreement with PSE results.

  • 49.
    Perraud, Jean
    et al.
    ONERA.
    Archambaud, Jean-Pierre
    ONERA.
    Schrauf, Geza
    Airbus.
    Donelli, Raffaele
    CIRA.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Quest, Jürgen
    ETW.
    Hein, Stefan
    DLR.
    Streit, Thomas
    DLR.
    Fey, E.
    Egami, Y.
    High Reynolds Number Transition Ex-periments in ETW (TELFONA project)2010In: / [ed] P. Schlatter, D.S. Henningson, Springer, 2010Conference paper (Refereed)
    Abstract [en]

    A wind–tunnel experiment on laminar-turbulent transition has been performed in ETW (the European Transonic Wind Tunnel in Koln) at high Reynolds number and cryogenic conditions. The studied geometry is a sting mounted full model in swept–wing configuration. The transition location was determined by means of Temperature Sensitive Paint (CryoTSP). The experimental observations were further analysed using different transition prediction tools, based on linear stability theory.

  • 50.
    Perraud, Jean
    et al.
    ONERA.
    Schrauf, Geza
    Airbus.
    Donelli, Raffaele
    CIRA.
    Hanifi, Ardeshir
    FOI.
    Quest, Jürgen
    ETW.
    Streit, Thomas
    DLR.
    Hein, Stefan
    DLR.
    Fey, U.
    DLR.
    Egami, Y.
    DLR.
    Transonic High Reynolds Number Transition Experiments  in the ETW Cryogenic Wind Tunnel2010Conference paper (Refereed)
    Abstract [en]

    With the goal of studying Natural Laminar Flow (NLF) wings for future ‘green’ transport aircraft, the aim of the European Research Project TELFONA is to develop and demonstrate the possibility of testing full aircraft models with NLF wings at large Reynolds numbers in the cryogenic Wind Tunnel ETW. Two main steps were defined, first the design and test of a ‘calibration’ model, to be followed by a realistic transport aircraft model. This paper is dedicated to the first one, which was especially designed in order to allow a calibration of the Wind Tunnel transition N-factors at large values of the chord Reynolds number typical of testing in ETW. The paper will describe these different phases of the activities, from design, testing and numerical validation, with a focus on the validation and calibration of transition prediction tools. Examples of numerical results obtained by the project partners will be confronted to the experiments. 

12 1 - 50 of 95
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf