Endre søk
Begrens søket
123 1 - 50 of 104
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Boujemaoui, Assya
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Carlsson, Linn
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Lahcini, Mohammed
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Sehaqui, Houssine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Facile Preparation Route for Nanostructured Composites: Surface-Initiated Ring-Opening Polymerization of epsilon-Caprolactone from High-Surface-Area Nanopaper2012Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 4, nr 6, s. 3191-3198Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, highly porous nanopaper, i.e., sheets of papers made from non-aggregated nanofibrillated cellulose (NFC), have been surface-grafted with poly(epsilon-caprolactone) (PCL) by surface-initiated ring-opening polymerization (SI-ROP). The nanopaper has exceptionally high surface area (similar to 300 m(2)/g). The "grafting from" of the nanopapers was compared to "grafting from" of cellulose in the form of filter paper, and in both cases either titanium n-butoxide (Ti(On-Bu)(4)) or tin octoate (Sn(Oct)(2)) was utilized as a catalyst. It was found that a high surface area leads to significantly higher amount of grafted PCL in the substrates when Sn(Oct)2 was utilized as a catalyst. Up to 79 wt % PCL was successfully grafted onto the nanopapers as compared to filter paper where only 2-3 wt % PCL was grafted. However, utilizing Ti(On-Bu)4 this effect was not seen and the grafted amount was essentially similar, irrespectively of surface area. The mechanical properties of the grafted nanopaper proved to be superior to those of pure PCL films, especially at elevated temperatures. The present bottom-up preparation route of NFC-based composites allows high NFC content and provides excellent nanostructural control. This is an important advantage compared with some existing preparation routes where dispersion of the filler in the matrix is challenging.

  • 2.
    Boujemaoui, Assya
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Mazieres, Stephane
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Destarac, Mathias
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    SI-RAFT/MADIX polymerization of vinyl acetate on cellulose nanocrystals for nanocomposite applications2016Inngår i: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 99, s. 240-249Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the present work, poly(vinyl acetate) grafted cellulose nanocrystals (CNC-g-PVAc) were prepared via surface initiated reversible addition-fragmentation chain transfer and macromolecular design via the interchange of xanthates (SI-RAFT/MADIX) polymerization. Successful grafting of PVAc from CNC was confirmed by FT-IR and TGA analysis. PVAc nanocomposites reinforced with CNC-g-PVAc, as well as pristine CNC for comparison, of different weight percentages (0.5, 1, 3 and 5 wt%) of CNC were prepared via solvent casting. The PVAc reinforced with CNC-g-PVAc resulted in higher transparency and improved mechanical properties compared with unmodified CNC nanocomposites. The addition of 5 wt% CNC-g-PVAc increased the modulus of neat PVAc with as much as 154%. The proposed SI-RAFT/MADIX on CNC could be applied to wide range of monomers, and it is believed to be an efficient and robust method for CNC functionalization, thus expanding the potential applicability of CNC.

  • 3.
    Boujemaoui, Assya
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Mongkhontreerat, Surinthra
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Preparation and characterization of functionalized cellulose nanocrystals2015Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 115, s. 457-464Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, a series of functional nanocrystals (F-CNCs) was successfully produced by an efficient preparation method, combining acid hydrolysis and Fischer esterification with various organic acids. Functionalities such as ATRP initiators, double bonds, triple bonds, and thiols could be incorporated on CNCs. Surface modification was confirmed by FT-IR, XPS, and elemental analysis. Physical properties of FC-NCs were assessed by AFM, XRD and TGA. Moreover, ATRP initiator functionalized CNCs were utilized to graft poly(methyl methacrylate) via ATRP, thiol functionalized CNCs were reacted with Ellman's reagent to determine the thiol content and dye disperse red 13 was attached to alkyne functionalized CNCs to estimate the propiolate content. The herein presented method is a highly versatile and straightforward procedure for the preparation of F-CNCs which is believed to be a better alternative for the commonly utilized, extensive, multistep, and time consuming post functionalization methods.

  • 4.
    Boujemaoui, Assya
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Sanchez, Carmen Cobo
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Engström, Joakim
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Bruce, Carl
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. RISE Innventia AB, Stockholm, Sweden.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study2017Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 40, s. 35305-35318Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the present work, cellulose nanocrystals (CNCs) have been surface-modified either via covalent grafting or through physisorption of poly(n-butyl methacrylate) (PBMA) and employed as reinforcement in PCL. Covalent grafting was achieved by surface-initiated atom transfer radical polymerization (SI-ATRP). Two approaches were utilized for the physisorption: using either micelles of poly(dimethyl aminoethyl methacrylate)-block-poly(n-butyl methacrylate) (PDMAEMA-b-PBMA) or latex nanoparticles of poly(dimethyl aminoethyl methacrylate-co-methacrylic acid)-block-poly(n-butyl methacrylate) (P(DMAEMA-co-MAA)-b-PBMA). Block copolymers (PDMAEMA-b-PBMA)s were obtained by ATRP and subsequently micellized. Latex nanoparticles were produced via reversible addition-fragmentation chain-transfer (RAFT) mediated surfactant-free emulsion polymerization, employing polymer-induced self-assembly (PISA) for the particle formation. For a reliable comparison, the amounts of micelles/latex particles adsorbed and the amount of polymer grafted onto the CNCs were kept similar. Two different chain lengths of PBMA were targeted, below and above the critical molecular weight for chain entanglement of PBMA (M-n,M-c similar to 56 000 g mo1(-1)). Poly(epsilon-caprolactone) (PCL) nanocomposites reinforced with unmodified and modified CNCs in different weight percentages (0.5, 1, and 3 wt %) were prepared via melt extrusion. The resulting composites were evaluated by UV-vis, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and tensile testing. All materials resulted in higher transparency, greater thermal stability, and stronger mechanical properties than unfilled PCL and nanocomposites containing unmodified CNCs. The degradation temperature of PCL reinforced with grafted CNCs was higher than that of micelle-modified CNCs, and the latter was higher than that of latex-adsorbed CNCs with a long PBMA chain length. The results clearly indicate that covalent grafting is superior to physisorption with regard to thermal and mechanical properties of the final nanocomposite. This unique study is of great value for the future design of CNC-based nanocomposites with tailored properties.

  • 5.
    Bruce, Carl
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Johansson, Mats
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Bionanocomposites reinforcedwith cellulose nanofibrils compatibilized through covalent grafting or physisorption of PCL –a comparative studyManuskript (preprint) (Annet vitenskapelig)
  • 6.
    Bruce, Carl
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Javakhishvili, Irakli
    Technical University of Denmark.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Hvilsted, Søren
    Technical University of Denmark.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Preparation and evaluation of triblock copolymers based on poly(2-(dimethylamino)ethyl methacrylate) and poly(epsilon-caprolactone)2013Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 245, s. 613-POLY-Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    In this work, the preparation of two block copolymers based on poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(ε-caprolactone) (PCL) has been conducted, creating the triblock copolymers PDMAEMA-b-PCL-b-PDMAEMA and PCL-b-PDMAEMA-b-PCL. The PDMAEMA-part was then quaternized, to give polyelectrolytes with either one or two charged block(s). Subsequently, differences in properties were studied in the solid state, in solution and in water dispersion with techniques including differential scanning calorimetry, size exclusion chromatography and dynamic light scattering.

  • 7.
    Bruce, Carl
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Javakhishvili, Irakli
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Hvilsted, Søren
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Well-defined ABA- and BAB-type block copolymers of PDMAEMA and PCL2014Inngår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 4, nr 49, s. 25809-25818Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Triblock copolymers of ABA- and BAB-type consisting of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, A) and poly(epsilon-caprolactone) (PCL, B) have successfully been prepared. PDMAEMA-b-PCL-b-PDMAEMA (ABA) and PCL-b-PDMAEMA-b-PCL (BAB) were synthesised by a combination of ring-opening polymerisation of epsilon-CL, atom transfer radical polymerisation of DMAEMA and end-group conversion, performed through either acylation or azide-alkyne "click" chemistry. All samples were analysed by size exclusion chromatography where it was found that the evaluation of PDMAEMA-containing polymers was difficult due to the thermoresponsivity of PDMAEMA, affecting the solubility of the polymer in the temperature range at which the SEC was operated. From differential scanning calorimetry measurements it was shown that the crystallinity could be altered by changing the order of the blocks; with PDMAEMA as the outer block (ABA), the inherent crystallinity of PCL was destroyed while with PCL as the outer block (BAB), the degree of crystallinity was in the same proximity as for a PCL homopolymer.

  • 8.
    Bruce, Carl
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Utsel, Simon
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Javakhishvili, Irakli
    Technical University of Denmark.
    Pettersson, Torbjörn
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Hvilsted, Søren
    Technical University of Denmark.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Preparation and evaluation of well-defined di- and triblock copolymers based on poly[2-(dimethylamino)ethyl methacrylate] and poly(ε-caprolactone)2014Inngår i: ACS National Meeting, 2014Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this work, di- and triblock copolymers based on poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(ε-caprolactone) (PCL) have been prepared. The PDMAEMA length was kept constant for both di- and triblock copolymers, while in the diblock copolymers the PCL length was varied in three different lengths, yielding three separate block copolymers. For the triblock blockcopolymers, on the other hand, also the PCL blocks were of the same length yielding one ABA- and one BAB-type block copolymer. In the next step, the PDMAEMA-part was quaternized to yield polyelectrolytes with either one or two charged block(s). In the final step, difference in adsorption behavior onto a negatively charged cellulose surface and subsequent alteration of surface properties was investigated. Overall, the polymers were evaluated in solid state, in solution, in water dispersion, and on cellulose surfaces with techniques including differential scanning calorimetry, size exclusion chromatography, dynamic light scattering and quartz crystal microbalance.

  • 9.
    Bruce, Carl
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Utsel, Simon
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Larsson, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Carlmark, Anna
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Fogelström, Linda
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Malmström, Eva
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    A comparative study of covalent grafting and physical adsorption of PCL onto cellulose2012Konferansepaper (Fagfellevurdert)
    Abstract [en]

    A growing concern for the environment has, in the past years, directed the research towards a bigger focus on new “greener” materials, such as cellulose-reinforced options. Cellulose is the most abundant organic raw material in the world and it is a versatile material. However, to be able to use it in applications where it is not inherently compatible, a modification is often necessary.1-3 One common method to achieve this modification is to graft polymers onto/from the cellulose chain. This can change the inherent properties of cellulose to attain new properties, such as dimensional stability and water repellency.3 In addition to this, it has been shown that polyectrolytes can be physiosorbed onto charged surfaces.4 Due to this, it is possible to physically modify cellulose by adsorbing a polymer through electrostatic interactions instead of attaching it with a covalent bond.5

    However, a more detailed investigation concerning differences of covalent and physical attachment of poly(ε-caprolactone) (PCL) onto cellulose, has to the author’s best knowledge not been performed. Therefore, this project aims to compare these two techniques. Covalently bonded PCL was grafted by surface-initiated ring opening polymerization (SI-ROP) from the cellulose. For the adsorption approach, a block copolymer consisting of PCL and a shorter segment of poly(di(methylamino)ethyl methacrylate) (PDMAEMA) was made combining ROP and atom transfer radical polymerization (ATRP). The PDMAEMA-part was then quaternized, which resulted in a cationically charged chain – a polyelectrolyte. This can then be used as an electrostatic linker allowing the PDMAEMA-PCL copolymer to be adsorbed onto the negatively charged cellulose model surface. Finally, differences between the two approaches are evaluated regarding for example surface coverage and grafting/physiosorption efficiency investigated with techniques such as atomic force microscopy (AFM).

  • 10.
    Bruce, Carl
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Utsel, Simon
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi.
    Larsson, Emma
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Carlmark, Anna
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Fogelström, Linda
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Wågberg, Lars
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi.
    Malmström, Eva
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Preparation and evaluation of a block copolymer compatibilizer for biocomposite applications2012Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this study, a comparison between covalent grafting and physical adsorption of PCL onto a nanocellulose model surface was conducted. For the covalent attachment, surface-initiated ring-opening polymerization (SI-ROP) was performed. For the physical attachment, a charged block copolymer consisting of PCL and quaternized PDMAEMA was synthesized by ROP and ATRP, and adsorbed to the cellulose. Finally, differences in between the two substrates were investigated with techniques such as AFM.

  • 11.
    Bruce, Carl
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Utsel, Simon
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Pettersson, Torbjörn
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Physical Tuning of Cellulose-Polymer Interactions Utilizing Cationic Block Copolymers Based on PCL and Quaternized PDMAEMA2013Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this study, the aim was to prepare and evaluate a block copolymer that can be used as a compatibilizer in cellulose fiber-reinforced biocomposites. It is an amphiphilic block copolymer consisting of poly(ε-caprolactone) (PCL), prepared with  ring-opening polymerization (ROP)1, and a shorter segment of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) synthesized with atom transfer radical polymerization (ATRP)2. The PDMAEMA-part was prepared in one single length, while the PCL-part was varied in three different lengths. In the last synthesis step the PDMAEMA-part was quaternized, turning it into a cationically charged chain – a polyelectrolyte. The block copolymers were then able to form cationic micelles in water, from where they can adsorb, under mild conditions, to anionic surfaces such as silicon oxide and cellulose-model surfaces. A similar concept has been investigated earlier in a system fully prepared with ATRP3. Additionally, physical adsorption of micelles is a milder approach of attaching a polymer to a cellulose surface compared to more traditional covalent attachment4, making it an interesting option to use in industry. After adsorption, the surface had a more hydrophobic character shown with contact angle measurements, and with AFM force measurements, it was demonstrated that there is a clear entanglement behavior obtained between the block copolymers and a PCL surface at about 60 °C, which is of importance for the information regarding the adhesive interface in a future biocomposite.

  • 12.
    Bruce, Carl
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Utsel, Simon
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Pettersson, Torbjörn
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Physical Tuning of Cellulose-Polymer Interactions Utilizing Cationic Block Copolymers Based on PCL and Quaternized PDMAEMA2013Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this study, the aim was to prepare and evaluate a block copolymer that can be used as a compatabilizer in cellulose fiber-reinforced biocomposites. It as an amphiphilic block copolymer consisting of poly(ε-caprolactone) (PCL), made with  ring-opening polymerization (ROP), and a shorter segment of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) that was synthesized with atom transfer radical polymerization (ATRP). The PDMAEMA-part was made in one single length, while the PCL-part was varied in three different lengths; in total were three block copolymers prepared. In the last step of the synthesis, the PDMAEMA-part was quaternized that turns it into a cationically charged chain – a polyelectrolyte. The block copolymers were then able to form cationic micelles in water, from where they can adsorb, under mild conditions, to anionic surfaces such as silicon oxide and cellulose-model surfaces. This provides the surface with a more hydrophobic character shown with contact angle measurements. Finally, with atomic force microscopy (AFM) force measurements, it was demonstrated that there is a clear entanglement behavior obtained between the block copolymers and a PCL surface at about 60 °C, which is of importance for the information regarding the adhesive interface in a future biocomposite.

  • 13.
    Bruce, Carl
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Utsel, Simon
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Pettersson, Torbjörn
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Larsson, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Preparation and evaluation of a block copolymer compatibilizer for biocomposite applications2012Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this study, the concept of using a free polymer as a compatibilzer in biocomposite applications has been evaluated with focus on the polymer poly(ɛ-caprolactone) (PCL), commonly used in conventional grafting onto/from cellulose. A block copolymer consisting of PCL and a shorter segment of poly(di(methylamino)ethyl methacrylate) (PDMAEMA) was made combining ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The length of the PDMAEMA-part was kept constant, and the PCL-part was varied in three different lengths, yielding three separate block copolymers. As a final step, the PDMAEMA-part was quaternized, which resulted in cationically charged chains –polyelectrolytes. The charged part could then be used as an electrostatic linker allowing the PDMAEMA-PCL copolymer to be adsorbed onto negatively charged cellulose model surfaces. Finally, these cellulose model surfaces were evaluated regarding for example amount of polymer adsorbed and hydrophobic character, investigated with techniques such as quartz crystal microbalance (QCM) and contact angle measurements.

  • 14.
    Carlmark, Anna
    KTH, Tidigare Institutioner                               , Polymerteknologi.
    Atom transfer radical polymerization from multifunctional substrates2002Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Atom transfer radical polymerization (ATRP) has proven to be a powerful technique to obtain polymers with narrow polydispersities and controlled molecular weight. It also offers control over chain-ends. The technique is the most studied and utilized of thecontrolled/”living” radical polymerization techniques since a large number of monomerscan be polymerized under simple conditions. ATRP can be used to obtain polymer graftsfrom multifunctional substrates. The substrates can be either soluble (i. e. based ondendritic molecules) or insoluble (such as gold or silicon surfaces). The large number ofgrowing chains from the multifunctional substrates increases the probability of inter-and intramolecular reactions. In order to control these kinds of polymerizing systems, andsuppress side-reactions such as termination, the concentration of propagating radicalsmust be kept low. To elaborate such a system a soluble multifunctional substrate, based on 3-ethyl-3-(hydroxymethyl)oxetane, was synthesized. It was used as a macroinitiatorfor the atom transfer radical polymerisation of methyl acrylate (MA) mediated byCu(I)Br and tris(2-(dimethylamino)ethyl)amine (Me6-TREN) in ethyl acetate at room temperature. This yielded a co-polymer with a dendritic-linear architecture. Since mostsolid substrates are sensitive to the temperatures at which most ATRP polymerisations are performed, lowering the polymerization temperatures are preferred. ATRP at ambienttemperature is always more desirable since it also suppresses the formation of thermally formed polymer. The macroinitiator contained approximately 25 initiating sites, which well mimicked the conditions on a solid substrate. The polymers had low polydispersity and conversions as high as 65% were reached without loss of control. The solid substrateof choice was cellulose fibers that prior to this study not had been grafted through ATRP.As cellulose fibers a filter paper, Whatman 1, was used due to its high cellulose content.The hydroxyl groups on the surface was first reacted with 2-bromoisobutyryl bromidefollowed by grafting of MA. Essentially the same reaction conditions were used that hadbeen elaborated from the soluble substrate. The grafting yielded fibers that were very hydrophobic (contact angles>100°). By altering the sacrificial initiator-to-monomer ratiothe amount of polymer that was attached to the surface could be tailor. PMA with degreesof polymerization (DP’s) of 100, 200 and 300 were aimed. In order to control that thepolymerizations from the surface was indeed “living” a second layer of a hydrophilicmonomer, 2-hydroxymethyl methacrylate (HEMA), was grafted onto the surface. Thisdramatically changed the hydrophobic behavior of the fibers.

  • 15.
    Carlmark, Anna
    KTH, Tidigare Institutioner, Fiber- och polymerteknologi.
    Complex Macromolecular Architectures by Atom Transfer Radical Polymerization2004Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Controlled radical polymerization has proven to be a viableroute to obtain polymers with narrow polydispersities (PDI's)and controlled molecular weights under simple reactionconditions. It also offers control over the chain-]ends of thesynthesized polymer. Atom transfer radical polymerization(ATRP) is the most studied and utilized of these techniques. Inthis study ATRP has been utilized as a tool to obtain differentcomplex macromolecular structures.

    In order to elaborate a system for which a multitude ofchains can polymerize in a controlled manner and in closeproximity to one another, a multifunctional initiator based onpoly(3-ethyl-3-(hydroxymethyl)oxetane was synthesized. Themacroinitiator was used to initiate ATRP of methyl acrylate(MA). The resulting dendritic-]linear copolymer hybrids hadcontrolled molecular weights and low PDI's. Essentially thesame system was used for the grafting of MA from a solidsubstrate, cellulose. A filter paper was used as cellulosesubstrate and the hydroxyl groups on the cellulose weremodified into bromo-]ester groups, known to initiate ATRP.Subsequent grafting of MA by ATRP on the cellulose made thesurface hydrophobic. The amount of polymer that was attached tothe cellulose could be tailored. In order to control that thesurface polymerization was -eliving-f and hence that thechain-]end functionality was intact, a second layer of ahydrophilic monomer, 2-hydroxyethyl methacrylate, was graftedonto the PMA- grafted cellulose. This dramatically changed thehydrophilicity of the cellulose.

    Dendronized polymers of generation one, two and three weresynthesized by ATRP of acrylic macromonomers based on2,2-bis(hydroxymethyl)propionic acid. In the macromonomerroute, macromonomers of each generation were polymerized byATRP. The polymerizations resulted in polymers with low PDI's.The kinetics of the reactions were investigated, and thepolymerizations followed first-order kinetics when ethyl2-bromopropionate was used as the initiator. In the-egraft-]onto-f route dendrons were divergently attached to adendronized polymer of generation one, that had been obtainedby ATRP.

  • 16.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Tailoring cellulose surfaces by controlled polymerization methods2013Inngår i: Macromolecular Chemistry and Physics, ISSN 1022-1352, E-ISSN 1521-3935, Vol. 214, nr 14, s. 1539-1544Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellulose, with its excellent mechanical properties and low weight, would be highly advantageous to employ in bioplastics and biocomposites applications. However, to expand the utilization of cellulose beyond its traditional uses, a modification of the fiber surface is often a prerequisite. One approach is to graft polymer chains on the surface in order to compatibilize the fibers with a non-polar polymer matrix or to introduce functionalities. By exploiting controlled polymerization methods such as ATRP, RAFT, ROP, and ROMP, the surface of the fibers can be carefully tailored. Herein, an overview on controlled, heterogeneous grafting of cellulose fibers and fibrils employing both "grafting from" and "grafting to" methodologies is provided, focusing on the latest findings.

  • 17.
    Carlmark, Anna
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Boujemaoui, Assya
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Mongkhontreerat, Surinthra
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Functional cellulose nanocrystals for ATRP and click chemistry-preparation and characterization2015Inngår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 249Artikkel i tidsskrift (Annet vitenskapelig)
  • 18.
    Carlmark, Anna E.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Carlsson, Linn
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Malmström, Eva E.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Surface-initiated ring-opening metathesis polymerization from cellulose fibers2011Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 242, s. 432-POLY-Artikkel i tidsskrift (Fagfellevurdert)
  • 19.
    Carlmark, Anna E
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Vestberg, Robert
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Malmström Jonsson, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Atom transfer radical polymerization of methyl acrylate from a multifunctional initiator at ambient temperature2002Inngår i: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 43, nr 15, s. 4237-4242Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A multifunctional initiator for ATRP has been synthesized by reacting a hyperbranched polyether, based on 3-ethyl-3-(hydroxymethyl)oxetane, with 2-bromo-isobutyrylbromide. The macroinitiator contained approximately 25 initiating sites per molecule. It was used for the atom transfer radical polymerization of methyl acrylate mediated by Cu(I)Br and tris(2-(dimethylamino)ethyl)amine (Me-6-TREN) in ethyl acetate at room temperature. This yielded a co-polymer with a dendritic-linear architecture. The large number of growing chains from each macromolecule increases the probability of inter-and intramolecular reactions. In order to control these kinds of polymerizing systems and prevent them from forming a gel, the concentration of propagating radicals must be kept low. The polymerizations under these conditions were well controlled. When a ratio of initiating sites-to-catalyst of 1:0.05 was used, the polymers from all of the reactions had a low polydispersity, ranging from 1.1 to 1.4. None of the polymerizations under these conditions gave gelation. Monomer conversions as high as 65% were reached while maintaining control over the polymerization. (C) 2002 Elsevier Science Ltd. All rights reserved.

  • 20.
    Carlmark, Anna
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Hawker, Craig J.
    Hult, Anders
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Malkoch, Michael
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    New methodologies in the construction of dendritic materials2009Inngår i: Chemical Society Reviews, ISSN 0306-0012, E-ISSN 1460-4744, Vol. 38, nr 2, s. 352-362Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Dendritic polymers are highly branched polymer structures, with complex, secondary architectures and well-defined spatial location of functional groups. Due to their unique physical and chemical features, applications in areas such as targeted drug-delivery, macromolecular carriers, catalysis, sensors, light harvesting, surface engineering and biomimetic materials have been proposed. However, only a few dendritic materials have been exploited commercially due to time consuming syntheses and the generation of significant waste/presence of unreacted starting materials. This tutorial review describes traditional synthesis of dendritic materials as well as recent advances in synthetic strategies, for example the use of Click chemistry, as a tool to efficiently obtain complex, functional dendritic structures.

  • 21.
    Carlmark, Anna
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Larsson, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Grafting of cellulose by ring-opening polymerisation - A review2012Inngår i: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 48, nr 10, s. 1646-1659Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    In this review, homogeneous and heterogeneous grafting from cellulose and cellulose derivatives by ring-opening polymerisation (ROP) are reported. Cellulose is biorenewable and biodegradable as well as a stiff material with a relatively low specific weight, foreseen to be an excellent replacement for synthetic materials. By utilising ROP of monomers such as -caprolactone or l-lactide from cellulose, composite materials with new and/or improved properties can be obtained. Grafting of solid cellulose substrates, such as cotton, microfibrillated cellulose (MFC) or cellulose nanocrystals, renders cellulose that can easily be dispersed into polymer matrices and may be used as reinforcing elements to improve mechanical and/or barrier properties of biocomposites. A surface grafted polymer can also tailor the interfacial properties between a matrix and the fibrillar structure of cellulose. When derivatives of cellulose are grafted with polymers in homogenous media, amphiphilic materials with interesting properties can be achieved, anticipated to be utilised for applications such as encapsulation and release.

  • 22.
    Carlmark, Anna
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Atom transfer radical polymerization from cellulose fibers at ambient temperature2002Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 124, nr 6, s. 900-901Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellulose fibers have been successfully grafted with poly(methyl acrylate) using atom transfer radical polymerization, mediated by Me6-TREN and Cu(I)Br at ambient temperature. The initially hydrophilic cellulose was first modified by reacting the hydrozyl groups with 2-bromoisobutyryl bromide whereupon methyl acrylate was grafted from the surface. The resulting polymer-grafted papers were extremely hydrophobic, θa = 133°. FT-IR analysis indicates that the amount of grafted polymer can be controlled by adding sacrificial initiator to the polymerizing system. Size exclusion chromatography of the bulk polymer revealed narrow polydispersities and a molecular weight corresponding to the ratio [M]:[I].

  • 23.
    Carlmark, Anna
    et al.
    KTH, Tidigare Institutioner                               , Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Tidigare Institutioner                               , Fiber- och polymerteknologi.
    ATRP grafting from cellulose fibers to create block-copolymer grafts2003Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 4, nr 6, s. 1740-1745Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellulose fibers, in the form of a conventional filter paper, have been modified by reacting the hydroxyl groups on the fiber surface with 2-bromoisobutyryl bromide, followed by grafting using ATRP conditions. The papers were first grafted with methyl acrylate (MA), rendering the paper very hydrophobic as reported in an earlier work. The papers were analyzed by gravimetry, FT-IR, ESCA, and AFM. To verify that the polymerization from the surface was living, a second layer of another, hydrophilic, polymer, 2-hydroxyethyl methacrylate (HEMA), was grafted upon the PMA layer, creating a block-copolymer graft from the fibers. After the layer of PHEMA had been attached, contact angle measurements were no longer possible, because of the absorbing nature of PHEMA-grafted layer. This indicates that a copolymer had indeed been formed on the surface. FT-IR showed a large increase in carbonyl content after the PHEMA-grafting, which further proves that a layer of PHEMA was attached to the PMA layer. This goes to show that the hydrophilic/ hydrophobic behavior of a cellulose surface can be tailored by the use of living/controlled radical polymerization methods such as ATRP.

  • 24.
    Carlmark, Anna
    et al.
    KTH, Tidigare Institutioner, Fiber- och polymerteknologi.
    Malmström, Eva E
    KTH, Tidigare Institutioner, Fiber- och polymerteknologi.
    ATRP of dendronized aliphatic macromonomers of generation one, two, and three2004Inngår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 37, nr 20, s. 7491-7496Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Atom transfer radical polymerization (ATRP) of dendritic, aliphatic macromonomers has been investigated. The macromonomers were based on acrylate functionalized 2,2-bis(methylol)propionic acid (bis-MPA) dendrons, with a flexible spacer of 10 carbons incorporated in the structure in between the polymerizable group and the dendritic wedge. Dendronized polymers of generation one, two, and three were successfully synthesized by ATRP. The polymerizations proceeded until over 80% conversion was reached, while maintaining control over polydispersity index (PDI). Plots of ln([M](0)/[M]) vs time for the polymerization of all three macromonomers showed a linear dependence, indicating that the number of propagating radicals in the reaction solution was constant throughout the reaction, when ethyl 2-bromopropionate (EBrP) was used as an initiator (i.e., radical termination was negligible). All of the resulting polymers had low PDI values and molecular weight close to the theoretical ones. The products were analyzed by H-1 and C-13 NMR spectroscopies, size exclusion chromatography (SEC), differential scanning calorimetry (DSC), and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF).

  • 25.
    Carlmark, Anna
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Malkoch, Michael
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Dendritic architectures based on bis-MPA: functional polymeric scaffolds for application-driven research2013Inngår i: Chemical Society Reviews, ISSN 0306-0012, E-ISSN 1460-4744, Vol. 42, nr 13, s. 5858-5879Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Dendritic polymers are highly branched, globular architectures with multiple representations of functional groups. These nanoscale organic frameworks continue to fascinate researchers worldwide and are today under intensive investigation in application-driven research. A large number of potential application areas have been suggested for dendritic polymers, including theranostics, biosensors, optics, adhesives and coatings. The transition from potential to real applications is strongly dictated by their commercial accessibility, scaffolding ability as well as biocompatibility. A dendritic family that fulfills these requirements is based on the 2,2-bismethylolpropionic acid (bis-MPA) monomer. This critical review is the first of its kind to cover most of the research activities generated on aliphatic polyester dendritic architectures based on bis-MPA. It is apparent that these scaffolds will continue to be in the forefront of cutting-edge research as their structural variations are endless including dendrons, dendrimers, hyperbranched polymers, dendritic-linear hybrids and their hybridization with inorganic surfaces.

  • 26.
    Carlsson, Linn
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Fall, Andreas
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Chaduc, Isabelle
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Charleux, Bernadette
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    D'Agosto, Franck
    Lansalot, Muriel
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Modification of cellulose model surfaces by cationic polymer latexes prepared by RAFT-mediated surfactant-free emulsion polymerization2014Inngår i: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 5, nr 20, s. 6076-6086Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper presents the successful surface modification of a model cellulose substrate by the preparation and subsequent physical adsorption of cationic polymer latexes. The first part of the work introduces novel charged polymer nanoparticles constituted of amphiphilic block copolymers based on cationic poly(N,N-dimethylaminoethyl methacrylate-co-methacrylic acid) (P(DMAEMA-co-MAA)) as the hydrophilic segment, and poly(methyl methacrylate) (PMMA) as the hydrophobic segment. First, RAFT polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) in water was performed at pH 7, below its pK(a). The simultaneous hydrolysis of DMAEMA led to the formation of a statistical copolymer incorporating mainly protonated DMAEMA units and some deprotonated methacrylic acid units at pH 7. The following step was the RAFT-mediated surfactant-free emulsion polymerization of methyl methacrylate (MMA) using P(DMAEMA-co-MAA) as a hydrophilic macromolecular RAFT agent. During the synthesis, the formed amphiphilic block copolymers self-assembled into cationic latex nanoparticles by polymerization-induced self-assembly (PISA). The nanoparticles were found to increase in size with increasing molar mass of the hydrophobic block. The cationic latexes were subsequently adsorbed to cellulose model surfaces in a quartz crystal microbalance equipment with dissipation (QCM-D). The adsorbed amount, in mg m(-2), increased with increasing size of the nanoparticles. This approach allows for physical surface modification of cellulose, utilizing a water suspension of particles for which both the surface chemistry and the surface structure can be altered in a well-defined way.

  • 27.
    Carlsson, Linn
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Fall, Andreas
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Chaduc, Isabelle
    Charleux, Bernadette
    D'Agosto, Franck
    Lansalot, Muriel
    Modification of cellulose surfaces by cationic latex prepared by RAFT-mediated surfactant-free emulsion polymerizationManuskript (preprint) (Annet vitenskapelig)
  • 28.
    Carlsson, Linn
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Ingverud, Tobias
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Blomberg, Hanna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Larsson, Per Tomas
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. Innventia AB, Sweden.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Surface characteristics of cellulose nanoparticles grafted by surface-initiated ring-opening polymerization of epsilon-caprolactone2015Inngår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 22, nr 2, s. 1063-1074Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study, surface-initiated ring-opening polymerization has been employed for the grafting of epsilon-caprolactone from cellulose nanoparticles, made by partial hydrolysis of cellulose cotton linters. A sacrificial initiator was employed during the grafting reactions, to form free polymer in parallel to the grafting reaction. The degree of polymerization of the polymer grafts, and of the free polymer, was varied by varying the reaction time. The aim of this study was to estimate the cellulose nanoparticle degree of surface substitution at different reaction times. This was accomplished by combining measurement results from spectroscopy and chromatography. The prepared cellulose nanoparticles were shown to have 3.1 (+/- 0.3) % of the total anhydroglucose unit content present at the cellulose nanoparticle surfaces. This effectively limits the amount of cellulose that can be targeted by the SI-ROP reactions. For a certain SI-ROP reaction time, it was assumed that the resulting degree of polymerization (DP) of the grafts and the DP of the free polymer were equal. Based on this assumption it was shown that the cellulose nanoparticle surface degree of substitution remained approximately constant (3-7 %) and seemingly independent of SI-ROP reaction time. We believe this work to be an important step towards a deeper understanding of the processes and properties controlling SI-ROP reactions occurring at cellulose surfaces.

  • 29.
    Carlsson, Linn K.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Boujemaoui, Assya
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Sehaqui, Houssine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Lachini, Mohammad
    Malmström Jonsson, Eva E.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Carlmark, Anna E.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Synthesis and characterization of biocomposites from cellulose nano- and filter papers prepared by ring-opening polymerization of epsilon-caprolactone with titanium based catalyst2012Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 243Artikkel i tidsskrift (Annet vitenskapelig)
  • 30.
    Carlsson, Linn
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Larsson, Per Tomas
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Ingverud, Tobias
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Blomberg, Hanna
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Solid State CP/MAS 13C-NMR investigation of hydrolyzed cotton linters grafted by surface‐initiated ring‐opening polymerization of ε‐caprolactoneManuskript (preprint) (Annet vitenskapelig)
  • 31.
    Carlsson, Linn
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Surface-initiated ring-opening metathesis polymerisation from cellulose fibres2012Inngår i: POLYM CHEM-UK, ISSN 1759-9954, Vol. 3, nr 3, s. 727-733Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study, cellulose fibres have been grafted utilizing surface-initiated ring-opening metathesis polymerisation (SI-ROMP). Initially, a Grubbs' type catalyst was immobilized onto filter paper whereafter SI-ROMP of norbornene was performed from the surface of the fibres at three different reaction temperatures, room temperature (RT), 0 degrees C and -18 degrees C, and for different reaction times. The evaluation of the grafted cellulose was performed by contact angle measurements, FT-Raman spectroscopy, FE-SEM and TGA. After the grafting, all samples were clearly hydrophobic with weight increases up to over 100%. The FT-Raman spectroscopy analysis showed significant structural changes after polymerization for cellulose substrates polymerized at 0 degrees C and RT, confirming that a polymer was grafted from the surface. FE-SEM images verified that these samples are covered by polynorbornene and that the fibrillar structure of the native cellulose disappeared. For the samples grafted at -18 degrees C, no significant changes were seen with these analysis methods. However, SI-ROMP appears to be a versatile method to modify cellulose fibres.

  • 32.
    Carlsson, Linn
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Utsel, Simon
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Surface-initiated ring-opening polymerization from cellulose model surfaces monitored by a Quartz Crystal Microbalance2012Inngår i: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 8, nr 2, s. 512-517Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Polymer surface-grafting is an excellent method to modify the properties of a surface. However, surface-initiated polymerization is still relatively poorly understood due to the lack of appropriate characterization methods and tools to monitor the polymerizations. Herein, we report the in situ, surface-initiated ring-opening polymerization (SI-ROP) investigated in real time by the Quartz Crystal Microbalance (QCM) technique. The polymerization was performed from a cellulose model surface and the polymerization was initiated directly from the available hydroxyl groups on the cellulose. The cyclic monomer 3-caprolactone and an organic catalyst, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), were used, and the reaction was performed in bulk at room temperature. Since a free polymer was formed in bulk in parallel to the grafting from the surface, the reaction was performed in three cycles with rinsing steps in between to measure only the effect of the surface grafting. The change in frequency showed that the grafted amount of polymer increased after each cycle indicating that most of the chain ends remained active. After polymer grafting, the cellulose model surface showed a more hydrophobic character, and the surface roughness of the cellulose model surface was reduced. This study clearly shows that QCM is a viable method to monitor SI-ROP in situ from cellulose surfaces. We believe this is an important step towards a deeper understanding of how to tailor the interface between polymer-modified cellulose and a polymer matrix in biocomposites.

  • 33.
    Coullerez, Geraldine
    et al.
    KTH, Tidigare Institutioner, Fiber- och polymerteknologi.
    Carlmark, Anna
    KTH, Tidigare Institutioner, Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Tidigare Institutioner, Fiber- och polymerteknologi.
    Jonsson, Mats
    KTH, Tidigare Institutioner, Kemi.
    Understanding copper-based atom-transfer radical polymerization in aqueous media2004Inngår i: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 108, nr 35, s. 7129-7131Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study investigates the mechanism of copper(I)-mediated living atom-transfer radical polymerization (ATRP) in aqueous media. It is shown that the ATRP apparent rate constant for polymerization of methoxycapped oligo(ethylene glycol) methacrylate (OEGMA) in water (k(P)(app)) at room temperature correlates with the redox potential (E-1/2) of the copper complexes. The results are discussed along with previously published results on the kinetics for bulk polymerization of methyl acrylate at 60 degreesC with the redox potentials measured in MeCN. The faster ATRP kinetics in water can mainly be attributed to a higher equilibrium concentration of propagating radicals [W] and to solvent effects on the rate of propagation k(p). It is shown that [R*] can be calculated from the redox properties of the alkyl halide and the copper complex. The values of [R*] in MeCN/bulk and in H2O were determined to be 8.2 x 10(-8) and 6.3 x 10(-5) M, respectively. The respective kp values are in good agreement with the literature values (3.6 x 10(3) M-1 s(-1) for OEGMA in water and 2.5 x 10(3) M-1 s(-1) for methyl acrylate in bulk).

  • 34. El Ghaoui, Hanane
    et al.
    Raihane, Mustapha
    Rhouta, Benaissa
    Bitinis, Natacha
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Arroyo, Miguel
    Verdejo, Raquel
    Lopez-Manchado, Miguel A.
    Lahcini, Mohammed
    Bismuth complex catalysts for the in situ preparation of polycaprolactone/silicate bionanocomposites2014Inngår i: Polymer international, ISSN 0959-8103, E-ISSN 1097-0126, Vol. 63, nr 4, s. 709-717Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Solvent-free, bismuth-catalysed in situ polymerization of caprolactone in the presence of layered silicates enables the formulation of a series of polycaprolactone/silicate bionanocomposites. Three organophilic montmorillonites obtained by cationic exchange reaction with tetrabutylammonium iodide, benzyltriethylammonium chloride and vinylbenzyltriphenylphosphonium chloride salts, respectively, were used as reinforcing reagents for these materials. The effects of clay and bismuth catalyst type (bismuth(III) acetate and triphenylbismuth) are discussed on the basis of composite morphologies and molecular weights of resulting polymers.

  • 35.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Benselfelt, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    D'Agosto, Franck
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), LCPP, 69616 Villeurbanne, France .
    Lansalot, Muriel
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), LCPP, 69616 Villeurbanne, France .
    Carlmark, Anna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. RISE.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state2019Inngår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, s. 4287-4302Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cationic latexes with Tgs ranging between −40 °C and 120 °C were synthesised using n-butyl acrylate (BA) and/or methyl methacrylate (MMA) as the core polymers. Reversible addition–fragmentation chain transfer (RAFT) combined with polymerisation-induced self-assembly (PISA) allowed for in situ chain-extension of a cationic macromolecular RAFT agent (macroRAFT) of poly(N-[3-(dimethylamino)propyl] methacrylamide) (PDMAPMA), used as stabiliser in so-called surfactant-free emulsion polymerisation. The resulting narrowly distributed nanosized latexes adsorbed readily onto silica surfaces and to model surfaces of cellulose nanofibrils, as demonstrated by quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. Adsorption to anionic surfaces increased when increasing ionic strength to 10 mM, indicating the influence of the polyelectrolyte effect exerted by the corona. The polyelectrolyte corona affected the interactions in the wet state, the stability of the latex and re-dispersibility after drying. The QCM-D measurements showed that a lower Tg of the core results in a more strongly interacting adsorbed layer at the solid–liquid interface, despite a comparable adsorbed mass, indicating structural differences of the investigated latexes in the wet state. The two latexes with Tg below room temperature (i.e. PBATg-40 and P(BA-co-MMA)Tg3) exhibited film formation in the wet state, as shown by AFM colloidal probe measurements. It was observed that P(BA-co-MMA)Tg3 latex resulted in the largest pull-off force, above 200 m Nm−1 after 120 s in contact. The strongest wet adhesion was achieved with PDMAPMA-stabilized latexes soft enough to allow for interparticle diffusion of polymer chains, and stiff enough to create a strong adhesive joint. Fundamental understanding of interfacial properties of latexes and cellulose enables controlled and predictive strategies to produce strong and tough materials with high nanocellulose content, both in the wet and dry state.

  • 36.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hatton, Fiona
    Univ Sheffield, Dept Chem, Sheffield, S Yorkshire, England..
    Boujemaoui, Assya
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Sanchez, Carmen Cobo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    D'Agosto, Franck
    C2P2 CNRS CPE UCBL, CPE Lyon, Bat 308F, Villeurbanne, France..
    Lansalot, Muriel
    C2P2 CNRS CPE UCBL, CPE Lyon, Bat 308F, Villeurbanne, France..
    Fogelstrom, Linda
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Carlmark, Anna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. RISE Res Inst Sweden Div Bioecon, Nanocellulose, Stockholm, Sweden..
    Tailored nano-latexes for modification of nanocelluloses: Compatibilizing and plasticizing effects2018Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Artikkel i tidsskrift (Annet vitenskapelig)
  • 37.
    Engström, Joakim
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Hatton, Fiona
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    DAgosto, Franck
    UCBL, CPE, CNRS, C2P2, CPE Lyon Bat 308F, Villeurbanne, France..
    Lansalot, Muriel
    UCBL, CPE, CNRS, C2P2, CPE Lyon Bat 308F, Villeurbanne, France..
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Surface modification of cellulose substrates by tailored latex nanoparticles for improvement of interfacial adhesion2016Inngår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Artikkel i tidsskrift (Annet vitenskapelig)
  • 38.
    Fogelström, Linda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Hansson, Susanne
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Hult, Anders
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Linear vs. Hyperbranched Polymers in the Preparation of Polymer/Clay NanocompositesManuskript (preprint) (Annet vitenskapelig)
  • 39.
    Gicquel, Erwan
    et al.
    Grenoble INP Pagora CNRS, St Martin Dheres, France..
    Jean, Bruno
    CERMAV, St Martin Dheres, France..
    Engström, Joakim
    KTH.
    Martin, Celine
    Grenoble INP Pagora CNRS, St Martin Dheres, France..
    Carlmark, Anna
    KTH.
    Bras, Julien
    Grenoble INP Pagora CNRS, St Martin Dheres, France..
    Rheological behavior of thermosensitive hydrogel suspensions based on Cellulose Nanocrystals with adsorbed thermo-responsive polymer2017Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Artikkel i tidsskrift (Annet vitenskapelig)
  • 40.
    Gicquel, Erwan
    et al.
    Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France..
    Martin, Caine
    Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France..
    Gauthier, Quentin
    Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France..
    Engström, Joakim
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Abbattista, Clara
    Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France..
    Carlmark, Anna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Cranston, Emily D.
    Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.;Univ British Columbia, Dept Wood Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada..
    Jean, Bruno
    Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France..
    Bras, Julien
    Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France.;Inst Univ France, F-75000 Paris, France..
    Tailoring Rheological Properties of Thermoresponsive Hydrogels through Block Copolymer Adsorption to Cellulose Nanocrystals2019Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, nr 7, s. 2545-2556Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study investigates the adsorption of a block copolymer composed of a poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) cationic polyelectrolyte and a poly(di(ethylene glycol) methyl ethermethacrylate) (PDEGMA) on oxidized cellulose nanocrystals (TO-CNCs) to produce hydrogels. PDMEAMA-b-PDEGMA was synthesized by atom-transfer radical polymerization. The extent and dynamics of the adsorption of PDMAEMA-b-PDEGMA on TO-CNCs were determined by electromechanical microbalance and optical techniques. Electrostatic adsorption was identified on TO-CNCs with the quaternized block copolymer. Small-angle neutron scattering experiments were performed to investigate the polymer behavior on the TO-CNC surfaces. Depending on the temperature, block copolymer induces the aggregation of nanocrystals after adsorption by connecting CNCs bundles with block copolymer chains. A reversible liquid-to-gel transition, triggered by temperature, was clearly detected by rheological measurements for the copolymer-CNC mixtures. At the optimal copolymer to CNC ratio the viscosity increased by 4 orders of magnitude at low shear rates. These stimuli-responsive CNC-based materials could be used as injectable biomedical systems.

  • 41.
    Hansson, Susanne
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Toward Industrial Grafting of Cellulosic Substrates via ARGET ATRP2015Inngår i: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 132, nr 6, s. 41434-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    For the past decade, the interest in controlled grafting of cellulose has increased immensely. Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) has attracted the most interest; however, the sensitivity of this system has so far hindered its utilization in industry. In this study, filter paper, dissolving pulp, bleached and unbleached Kraft-pulp, and chemi-thermomechanical pulp papers were grafted with methyl methacrylate, employing activators regenerated by electron transfer (ARGET) ATRP. The reactions were performed in bulk or with small amounts of aqueous solutions, with no deoxygenation performed. To further demonstrate the robustness of this method towards simpler and more industry-friendly processes, the polymerizations were conducted in glass jars with screw lids. The possibility of recycling the reaction solution was also explored. We believe his thorough study to be an important step towards industrializing the "grafting-from" concept, and the results herein can most likely be extended to other surfaces and monomers.

  • 42.
    Hansson, Susanne
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Tischer, Thomas
    Karlsruhe Institute of Technology (KIT).
    Goldmann, Anja S.
    Karlsruhe Institute of Technology (KIT).
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Barner-Kowollik, Christopher
    Karlsruhe Institute of Technology (KIT).
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Comparison of the grafting-from and grafting-to approaches when modifying cellulose via ARGET ATRP2012Konferansepaper (Annet vitenskapelig)
  • 43.
    Hansson, Susanne
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Tischer, Thomas
    Karlsruhe Institute of Technology (KIT).
    Goldmann, Anja S.
    Karlsruhe Institute of Technology (KIT).
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Barner-Kowollik, Christopher
    Karlsruhe Institute of Technology (KIT).
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Comparison of the grafting-from and grafting-to approaches when modifying cellulose via ARGET ATRP2012Konferansepaper (Annet vitenskapelig)
  • 44.
    Hansson, Susanne
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Tischer, Thomas
    Goldmann, Anja S.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Barner-Kowollik, Christopher
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Visualization of poly(methyl methacrylate) (PMMA) grafts on cellulose via high-resolution FT-IR microscopy imaging2012Inngår i: Polymer Chemistry, ISSN 1759-9954, Vol. 3, nr 2, s. 307-309Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellulose surfaces grafted with PMMA of different graft lengths were characterized via high-resolution FT-IR microscopy imaging, visualizing the polymer distribution on the surface. The results from the FT-IR measurements can be compared with the molecular weights obtained from SEC and (1)H NMR of the macromolecules formed in solution.

  • 45.
    Hansson, Susanne
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Trouillet, Vanessa
    KIT Institute for Applied Materials (IAM-ESS).
    Tischer, Thomas
    KIT Institut für Technische Chemie und Polymerchemie.
    Goldmann, Anja
    KIT Institut für Technische Chemie und Polymerchemie.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Barner-Kowollik, Christopher
    KIT Institut für Technische Chemie und Polymerchemie.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Grafting Efficiency of Synthetic Polymers onto Biomaterials: A comparative study of grafting- from versus grafting- to2013Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 14, nr 1, s. 64-74Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the present study, the two grafting techniques grafting-from - by activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) - and grafting-to - by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) - were systematically compared, employing cellulose as a substrate. In order to obtain a meaningful comparison, it is crucial that the graft lengths of the polymers that are grafted from and to the substrates are essentially identical. Herein, this was achieved by utilizing the free polymer formed in parallel to the grafting-from reaction as the polymer for the grafting-to reaction. Four graft lengths were investigated, and the molar masses of the four free polymers (21 ≤ Mn ≤ 100 kDa; 1.07 ≤ M ≤ 1.26), i.e. the polymers subsequently employed in the grafting-to reaction, were shown to be in the same range as the molar masses of the polymers grafted from the surface (23 ≤ Mn ≤ 87 kDa; 1.08 ≤ M ≤ 1.31). The molecular weights of the chains grafted from the surface were established after cleavage from the cellulose substrates via size exclusion chromatography (SEC). High-resolution Fourier transform infrared microscopy (FT-IRM) was employed as an efficient tool to study the spatial distribution of the polymer content on the grafted substrates. In addition, the functionalized substrates were analyzed by X-ray photoelectron spectroscopy (XPS), contact angle (CA) measurements, and field-emission scanning electron microscopy (FE-SEM). For cellulose substrates modified via the grafting-from approach, the content of polymer on the surfaces increased with increasing graft length, confirming the possibility to tailor not only the length of the polymer grafts but also the polymeric content on the surface. In comparison, for the grafting-to reaction, the grafted content could not be controlled by varying the length of the preformed polymer: the polymer content was essentially the same for the four graft lengths. Consequently, the obtained results, when employing cellulose as a substrate and under these conditions, suggest that the grafting-from approach is superior to the grafting-to technique with respect to controlling the distribution of the polymeric content on the surface.

  • 46.
    Hansson, Susanne
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Östmark, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    ARGET ATRP for Versatile Grafting of Cellulose Using Various Monomers2009Inngår i: ACS Applied Materials & Interfaces, ISSN 1944-8244, Vol. 1, nr 11, s. 2651-2659Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In recent years, cellulose-based materials have attracted significant attention. To broaden the application areas for cellulose, polymers are often grafted to/from the surface to modify its properties. This study applies ARGET (activators regenerated by electron transfer) ATRP (atom transfer radical polymerization) when straightforwardly grafting methyl methacrylate (MMA), styrene (St), and glycidyl methacrylate (GMA) from cellulose in the form of conventional filter paper In the presence of a sacrificial initiator. The free polymer, formed from the free initiator in parallel to the grafting, was characterized by H-1 NMR and SEC, showing that sufficient control is achieved. However, the analyses also indicated that the propagation from the surface cannot be neglected compared to the propagation of the free polymer at higher targeted molecular weights, which is an assumption often made. The grafted filter papers were evaluated with FT-IR, suggesting that the amount of polymer on the surface increased with increasing monomer conversion, which the FE-SEM micrographs of the substrates also demonstrated. Water contact angle (CA) measurements implied that covering layers of PMMA and PS were formed on the cellulose substrate, making the surface hydrophobic, in spite of low DPs. The CA of the PGMA-grafted filter papers revealed that, by utilizing either aprotic or protic solvents when washing the substrates, it was possible to either preserve or hydrolyze the epoxy groups. Independent of the solvent used, all grafted filter papers were essentially colorless after the washing procedure because of the low amount of copper required when performing ARGET ATRP. Nevertheless, surface modification of cellulose via ARGET ATRP truly facilitates the manufacturing since no thorough freeze-thaw degassing procedures are required.

  • 47.
    Hatton, Fiona
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. University of Sheffield, United Kingdom.
    Engström, Joakim
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Forsling, Josefine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Biomimetic adsorption of zwitterionic-xyloglucan block copolymers to CNF: towards tailored super-absorbing cellulose materials2017Inngår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, nr 24, s. 14947-14958Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A biomimetic, facile approach to cellulose modification is the utilisation of self-adsorbing, naturally occurring biopolymers, such as the hemicellulose xyloglucan (XG). Herein, XG-block-poly(sulfobetaine methacrylate) (XG-b-PSBMA) zwitterionic block copolymers have been prepared and assessed for their ability to adsorb to cellulose, specifically cellulose nanofibrils (CNF). The polymers were synthesised using reversible addition-fragmentation chain-transfer (RAFT) polymerisation, employing an XG macromolecular RAFT agent (XG-RAFT), polymerising a sulfobetaine methacrylate (SBMA) under aqueous conditions. The incorporation of the XG block shifted the upper critical solution temperature (UCST) values to higher temperatures (20 and 30 °C) compared with the PSBMA homopolymers (17 and 22 °C) and the transition was also broadened. The adsorption of the polymers to a CNF surface was monitored using quartz crystal microbalance with dissipation monitoring (QCM-D), showing that the XG block enhanced the adsorption of the zwitterionic polymer. The formation of CNF-composite films was achieved utilising a facile vacuum filtration methodology, and the targeted compositions were confirmed by FT-IR and TGA analyses. The films exhibited high degrees of swelling in water, which were investigated at two different temperatures, 5 and 60 °C (below and above the polymer USCT values). These results highlight the advantage of using an XG block for the biomimetic modification of cellulose to form new cellulose-composite materials such as super-absorbing films.

  • 48.
    Hatton, Fiona
    et al.
    Dept Chem, Sheffield, S Yorkshire, England..
    Engström, Joakim
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Forsling, Josefine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Ruda, Marcus
    CelluTech AB, Stockholm, Sweden..
    D'Agosto, Franck
    C2P2, UMR 5265, Villeurbanne, France..
    Lansalot, Muriel
    C2P2, UMR 5265, Villeurbanne, France..
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Xyloglucan functional block-copolymers: A modular platform for cellulose modification2017Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Artikkel i tidsskrift (Annet vitenskapelig)
  • 49.
    Hatton, Fiona
    et al.
    Univ Sheffield, Dept Chem, Sheffield, S Yorkshire, England..
    Kedzior, Stephanie
    McMaster Univ, Chem Engn, Hamilton, ON, Canada..
    Larsson, Emma
    KTH.
    Cranston, Emily
    McMaster Univ, Chem Engn, Hamilton, ON, Canada..
    Carlmark, Anna
    KTH.
    Grafting-from cellulose via photoinduced Cu-mediated reversible deactivation radical polymerisation2017Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Artikkel i tidsskrift (Annet vitenskapelig)
  • 50.
    Hatton, Fiona L.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Kedzior, S. A.
    Cranston, E. D.
    Carlmark, Anna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Grafting-from cellulose nanocrystals via photoinduced Cu-mediated reversible-deactivation radical polymerization2017Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 157, s. 1033-1040Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work we describe the grafting of cellulose nanocrystals (CNCs) by surface-initiated photoinduced Cu-mediated reversible-deactivation radical polymerization (RDRP). Initially, CNCs obtained through sulfuric acid hydrolysis were functionalized with a tertiary bromo-ester moiety as an initiating group for the subsequent RDRP of methyl acrylate, targeting three different degrees of polymerization for the polymer grafts: 50, 300 and 600. The polymerizations proceeded in DMSO in the presence of CuBr2 and Me6TREN as the catalytic system utilizing a UV source (λmax ≈ 360 nm). The technique proved highly versatile for the modification of CNCs with poly(methyl acrylate), where considerably high grafting was achieved in short reaction times (90 min), with simple purification steps. CNC morphology was maintained and polymer grafts were evident through FT-IR spectroscopy, thermal analysis, contact angle measurements, X-ray photoelectron microscopy and x-ray diffraction.

123 1 - 50 of 104
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf