kth.sePublications
Change search
Refine search result
1234 1 - 50 of 171
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alberti, Marina
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Chemical Science and Engineering (CHE).
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Relational approaches for joint object classification andscene similarity measurement in indoor environments2014In: Proc. of 2014 AAAI Spring Symposium QualitativeRepresentations for Robots 2014, Palo Alto, California: The AAAI Press , 2014Conference paper (Refereed)
    Abstract [en]

    The qualitative structure of objects and their spatial distribution,to a large extent, define an indoor human environmentscene. This paper presents an approach forindoor scene similarity measurement based on the spatialcharacteristics and arrangement of the objects inthe scene. For this purpose, two main sets of spatialfeatures are computed, from single objects and objectpairs. A Gaussian Mixture Model is applied both onthe single object features and the object pair features, tolearn object class models and relationships of the objectpairs, respectively. Given an unknown scene, the objectclasses are predicted using the probabilistic frameworkon the learned object class models. From the predictedobject classes, object pair features are extracted. A fi-nal scene similarity score is obtained using the learnedprobabilistic models of object pair relationships. Ourmethod is tested on a real world 3D database of deskscenes, using a leave-one-out cross-validation framework.To evaluate the effect of varying conditions on thescene similarity score, we apply our method on mockscenes, generated by removing objects of different categoriesin the test scenes.

    Download full text (pdf)
    fulltext
  • 2.
    Almeida, Diogo
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Ambrus, Rares
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Caccamo, Sergio
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Chen, Xi
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Cruciani, Silvia
    Pinto Basto De Carvalho, Joao F
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Haustein, Joshua
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Marzinotto, Alejandro
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Vina, Francisco
    KTH.
    Karayiannidis, Yiannis
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Ögren, Petter
    KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Team KTH’s Picking Solution for the Amazon Picking Challenge 20162017In: Warehouse Picking Automation Workshop 2017: Solutions, Experience, Learnings and Outlook of the Amazon Robotics Challenge, 2017Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    In this work we summarize the solution developed by Team KTH for the Amazon Picking Challenge 2016 in Leipzig, Germany. The competition simulated a warehouse automation scenario and it was divided in two tasks: a picking task where a robot picks items from a shelf and places them in a tote and a stowing task which is the inverse task where the robot picks items from a tote and places them in a shelf. We describe our approach to the problem starting from a high level overview of our system and later delving into details of our perception pipeline and our strategy for manipulation and grasping. The solution was implemented using a Baxter robot equipped with additional sensors.

  • 3.
    Almeida, Diogo
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Ambrus, Rares
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Caccamo, Sergio
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Chen, Xi
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Cruciani, Silvia
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Pinto Basto de Carvalho, Joao Frederico
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Haustein, Joshua
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Marzinotto, Alejandro
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Viña, Francisco
    Karayiannidis, Yiannis
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Ögren, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Kragic, Danica
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Team KTH’s Picking Solution for the Amazon Picking Challenge 20162020In: Advances on Robotic Item Picking: Applications in Warehousing and E-Commerce Fulfillment, Springer Nature , 2020, p. 53-62Chapter in book (Other academic)
    Abstract [en]

    In this chapter we summarize the solution developed by team KTH for the Amazon Picking Challenge 2016 in Leipzig, Germany. The competition, which simulated a warehouse automation scenario, was divided into two parts: a picking task, where the robot picks items from a shelf and places them into a tote, and a stowing task, where the robot picks items from a tote and places them in a shelf. We describe our approach to the problem starting with a high-level overview of the system, delving later into the details of our perception pipeline and strategy for manipulation and grasping. The hardware platform used in our solution consists of a Baxter robot equipped with multiple vision sensors.

  • 4.
    Ambrus, Rares
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bore, Nils
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Autonomous meshing, texturing and recognition of object models with a mobile robot2017In: 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) / [ed] Bicchi, A Okamura, A, IEEE , 2017, p. 5071-5078Conference paper (Refereed)
    Abstract [en]

    We present a system for creating object models from RGB-D views acquired autonomously by a mobile robot. We create high-quality textured meshes of the objects by approximating the underlying geometry with a Poisson surface. Our system employs two optimization steps, first registering the views spatially based on image features, and second aligning the RGB images to maximize photometric consistency with respect to the reconstructed mesh. We show that the resulting models can be used robustly for recognition by training a Convolutional Neural Network (CNN) on images rendered from the reconstructed meshes. We perform experiments on data collected autonomously by a mobile robot both in controlled and uncontrolled scenarios. We compare quantitatively and qualitatively to previous work to validate our approach.

  • 5.
    Ambrus, Rares
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bore, Nils
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Autonomous meshing, texturing and recognition of objectmodels with a mobile robot2017Conference paper (Refereed)
    Abstract [en]

    We present a system for creating object modelsfrom RGB-D views acquired autonomously by a mobile robot.We create high-quality textured meshes of the objects byapproximating the underlying geometry with a Poisson surface.Our system employs two optimization steps, first registering theviews spatially based on image features, and second aligningthe RGB images to maximize photometric consistency withrespect to the reconstructed mesh. We show that the resultingmodels can be used robustly for recognition by training aConvolutional Neural Network (CNN) on images rendered fromthe reconstructed meshes. We perform experiments on datacollected autonomously by a mobile robot both in controlledand uncontrolled scenarios. We compare quantitatively andqualitatively to previous work to validate our approach.

    Download full text (pdf)
    fulltext
  • 6.
    Ambrus, Rares
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bore, Nils
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Meta-rooms: Building and Maintaining Long Term Spatial Models in a Dynamic World2014In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2014), IEEE conference proceedings, 2014, p. 1854-1861Conference paper (Refereed)
    Abstract [en]

    We present a novel method for re-creating the static structure of cluttered office environments -which we define as the " meta-room" -from multiple observations collected by an autonomous robot equipped with an RGB-D depth camera over extended periods of time. Our method works directly with point clusters by identifying what has changed from one observation to the next, removing the dynamic elements and at the same time adding previously occluded objects to reconstruct the underlying static structure as accurately as possible. The process of constructing the meta-rooms is iterative and it is designed to incorporate new data as it becomes available, as well as to be robust to environment changes. The latest estimate of the meta-room is used to differentiate and extract clusters of dynamic objects from observations. In addition, we present a method for re-identifying the extracted dynamic objects across observations thus mapping their spatial behaviour over extended periods of time.

    Download full text (pdf)
    fulltext
  • 7.
    Ambrus, Rares
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Ekekrantz, Johan
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Unsupervised learning of spatial-temporal models of objects in a long-term autonomy scenario2015In: 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), IEEE , 2015, p. 5678-5685Conference paper (Refereed)
    Abstract [en]

    We present a novel method for clustering segmented dynamic parts of indoor RGB-D scenes across repeated observations by performing an analysis of their spatial-temporal distributions. We segment areas of interest in the scene using scene differencing for change detection. We extend the Meta-Room method and evaluate the performance on a complex dataset acquired autonomously by a mobile robot over a period of 30 days. We use an initial clustering method to group the segmented parts based on appearance and shape, and we further combine the clusters we obtain by analyzing their spatial-temporal behaviors. We show that using the spatial-temporal information further increases the matching accuracy.

  • 8.
    Ambrus, Rares
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Unsupervised object segmentation through change detection in a long term autonomy scenario2016In: IEEE-RAS International Conference on Humanoid Robots, IEEE, 2016, p. 1181-1187Conference paper (Refereed)
    Abstract [en]

    In this work we address the problem of dynamic object segmentation in office environments. We make no prior assumptions on what is dynamic and static, and our reasoning is based on change detection between sparse and non-uniform observations of the scene. We model the static part of the environment, and we focus on improving the accuracy and quality of the segmented dynamic objects over long periods of time. We address the issue of adapting the static structure over time and incorporating new elements, for which we train and use a classifier whose output gives an indication of the dynamic nature of the segmented elements. We show that the proposed algorithms improve the accuracy and the rate of detection of dynamic objects by comparing with a labelled dataset.

  • 9. Autin, D
    et al.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Using multiple gaussian hypotheses to represent probability distributions for mobile robot localization2000Conference paper (Refereed)
    Abstract [en]

    A new mobile robot localization technique is presented which uses multiple Gaussian hypotheses to represent the probability distribution of the robots location in the environment. A tree of hypotheses is built by the application of Bayes' rule with each new sensor mesurement. However, such a tree can grow without bound and so rules are introduced for the elimination of the least likely hypotheses from the tree and for the proper re-distribution of their probability. This technique is applied to a feature-based mobile robot localization scheme and experimental results are given demonstrating the effectiveness of the scheme.

  • 10.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Bishop, Adrian N.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Simultaneous Object Class and Pose Estimation for Mobile Robotic Applications with Minimalistic Recognition2010In: 2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA)    / [ed] Rakotondrabe M; Ivan IA, 2010, p. 2020-2027Conference paper (Refereed)
    Abstract [en]

    In this paper we address the problem of simultaneous object class and pose estimation using nothing more than object class label measurements from a generic object classifier. We detail a method for designing a likelihood function over the robot configuration space. This function provides a likelihood measure of an object being of a certain class given that the robot (from some position) sees and recognizes an object as being of some (possibly different) class. Using this likelihood function in a recursive Bayesian framework allows us to achieve a kind of spatial averaging and determine the object pose (up to certain ambiguities to be made precise). We show how inter-class confusion from certain robot viewpoints can actually increase the ability to determine the object pose. Our approach is motivated by the idea of minimalistic sensing since we use only class label measurements albeit we attempt to estimate the object pose in addition to the class.

  • 11.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Göbelbecker, Moritz
    Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Germany.
    Pronobis, Andrzej
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Sjöö, Kristoffer
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Plan-based Object Search and Exploration Using Semantic Spatial Knowledge in the Real World2011In: Proc. of the European Conference on Mobile Robotics (ECMR'11), 2011Conference paper (Refereed)
    Abstract [en]

    In this paper we present a principled planner based approach to the active visual object search problem in unknown environments. We make use of a hierarchical planner that combines the strength of decision theory and heuristics. Furthermore, our object search approach leverages on the conceptual spatial knowledge in the form of object cooccurences and semantic place categorisation. A hierarchical model for representing object locations is presented with which the planner is able to perform indirect search. Finally we present real world experiments to show the feasibility of the approach.

  • 12.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Henell, Daniel
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Shilkrot, R.
    Kinect@Home: Crowdsourcing a large 3D dataset of real environments2012In: AAAI Spring Symposium - Technical Report: Volume SS-12-06, 2012, 2012, Vol. SS-12-06, p. 8-9Conference paper (Refereed)
    Abstract [en]

    We present Kinect@Home, aimed at collecting a vast RGB-D dataset from real everyday living spaces. This dataset is planned to be the largest real world image collection of everyday environments to date, making use of the availability of a widely adopted robotics sensor which is also in the homes of millions of users, the Microsoft Kinect camera.

  • 13.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Exploiting and modeling local 3D structure for predicting object locations2012In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, IEEE , 2012, p. 3885-3892Conference paper (Refereed)
    Abstract [en]

    In this paper, we argue that there is a strong correlation between local 3D structure and object placement in everyday scenes. We call this the 3D context of the object. In previous work, this is typically hand-coded and limited to flat horizontal surfaces. In contrast, we propose to use a more general model for 3D context and learn the relationship between 3D context and different object classes. This way, we can capture more complex 3D contexts without implementing specialized routines. We present extensive experiments with both qualitative and quantitative evaluations of our method for different object classes. We show that our method can be used in conjunction with an object detection algorithm to reduce the rate of false positives. Our results support that the 3D structure surrounding objects in everyday scenes is a strong indicator of their placement and that it can give significant improvements in the performance of, for example, an object detection system. For evaluation, we have collected a large dataset of Microsoft Kinect frames from five different locations, which we also make publicly available.

  • 14.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    What can we learn from 38,000 rooms?: Reasoning about unexplored space in indoor environments2012In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, IEEE , 2012, p. 4675-4682Conference paper (Refereed)
    Abstract [en]

    Many robotics tasks require the robot to predict what lies in the unexplored part of the environment. Although much work focuses on building autonomous robots that operate indoors, indoor environments are neither well understood nor analyzed enough in the literature. In this paper, we propose and compare two methods for predicting both the topology and the categories of rooms given a partial map. The methods are motivated by the analysis of two large annotated floor plan data sets corresponding to the buildings of the MIT and KTH campuses. In particular, utilizing graph theory, we discover that local complexity remains unchanged for growing global complexity in real-world indoor environments, a property which we exploit. In total, we analyze 197 buildings, 940 floors and over 38,000 real-world rooms. Such a large set of indoor places has not been investigated before in the previous work. We provide extensive experimental results and show the degree of transferability of spatial knowledge between two geographically distinct locations. We also contribute the KTH data set and the software tools to with it.

    Download full text (pdf)
    fulltext
  • 15.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Järleberg, Erik
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Prentice, S.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Predicting what lies ahead in the topology of indoor environments2012In: Spatial Cognition VIII: International Conference, Spatial Cognition 2012, Kloster Seeon, Germany, August 31 – September 3, 2012. Proceedings / [ed] Cyrill Stachniss, Kerstin Schill, David Uttal, Springer, 2012, p. 1-16Conference paper (Refereed)
    Abstract [en]

    A significant amount of research in robotics is aimed towards building robots that operate indoors yet there exists little analysis of how human spaces are organized. In this work we analyze the properties of indoor environments from a large annotated floorplan dataset. We analyze a corpus of 567 floors, 6426 spaces with 91 room types and 8446 connections between rooms corresponding to real places. We present a system that, given a partial graph, predicts the rest of the topology by building a model from this dataset. Our hypothesis is that indoor topologies consists of multiple smaller functional parts. We demonstrate the applicability of our approach with experimental results. We expect that our analysis paves the way for more data driven research on indoor environments.

  • 16.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Pronobis, Andrzej
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Gobelbecker, Moritz
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Active Visual Object Search in Unknown Environments Using Uncertain Semantics2013In: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 29, no 4, p. 986-1002Article in journal (Refereed)
    Abstract [en]

    In this paper, we study the problem of active visual search (AVS) in large, unknown, or partially known environments. We argue that by making use of uncertain semantics of the environment, a robot tasked with finding an object can devise efficient search strategies that can locate everyday objects at the scale of an entire building floor, which is previously unknown to the robot. To realize this, we present a probabilistic model of the search environment, which allows for prioritizing the search effort to those parts of the environment that are most promising for a specific object type. Further, we describe a method for reasoning about the unexplored part of the environment for goal-directed exploration with the purpose of object search. We demonstrate the validity of our approach by comparing it with two other search systems in terms of search trajectory length and time. First, we implement a greedy coverage-based search strategy that is found in previous work. Second, we let human participants search for objects as an alternative comparison for our method. Our results show that AVS strategies that exploit uncertain semantics of the environment are a very promising idea, and our method pushes the state-of-the-art forward in AVS.

  • 17.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Sjöö, Kristoffer
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Pronobis, Andrzej
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Search in the real world: Active visual object search based on spatial relations2011In: IEEE International Conference on Robotics and Automation (ICRA), 2011, IEEE , 2011, p. 2818-2824Conference paper (Refereed)
    Abstract [en]

    Objects are integral to a robot’s understandingof space. Various tasks such as semantic mapping, pick-andcarrymissions or manipulation involve interaction with objects.Previous work in the field largely builds on the assumption thatthe object in question starts out within the ready sensory reachof the robot. In this work we aim to relax this assumptionby providing the means to perform robust and large-scaleactive visual object search. Presenting spatial relations thatdescribe topological relationships between objects, we thenshow how to use these to create potential search actions. Weintroduce a method for efficiently selecting search strategiesgiven probabilities for those relations. Finally we performexperiments to verify the feasibility of our approach.

    Download full text (pdf)
    SearchREalWorld
  • 18.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Sjöö, Kristoffer
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Object search on a mobile robot using relational spatial information2010In: Proc. of the 11th Int Conference on Intelligent Autonomous Systems (IAS-11), Amsterdam: IOS Press, 2010, p. 111-120Conference paper (Refereed)
    Abstract [en]

    We present a method for utilising knowledge of qualitative spatial relations between objects in order to facilitate efficient visual search for those objects. A computational model for the relation is used to sample a probability distribution that guides the selection of camera views. Specifically we examine the spatial relation “on”, in the sense of physical support, and show its usefulness in search experiments on a real robot. We also experimentally compare different search strategies and verify the efficiency of so-called indirect search.

  • 19.
    Barbosa, Fernando S.
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Duberg, Daniel
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Tumova, Jana
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Guiding Autonomous Exploration with Signal Temporal Logic2019In: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 4, no 4, p. 3332-3339Article in journal (Refereed)
    Abstract [en]

    Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a method to influence the manner the robot moves in the environment by taking into consideration a user-defined spatial preference formulated in a fragment of signal temporal logic (STL). We propose to guide the motion planning toward minimizing the violation of such preference through a cost function that integrates the quantitative semantics, i.e., robustness of STL. To demonstrate the effectiveness of the proposed approach, we integrate it into the autonomous exploration planner (AEP). Results from simulations and real-world experiments are presented, highlighting the benefits of our approach.

  • 20.
    Basiri, Meysam
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bishop, Adrian N.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Distributed control of triangular formations with angle-only constraints2010In: Systems & control letters (Print), ISSN 0167-6911, E-ISSN 1872-7956, Vol. 59, no 2, p. 147-154Article in journal (Refereed)
    Abstract [en]

    This paper considers the coupled, bearing-only formation control of three mobile agents moving in the plane. Each agent has only local inter-agent bearing knowledge and is required to maintain a specified angular separation relative to both neighbor agents. Assuming that the desired angular separation of each agent relative to the group is feasible, a triangle is generated. The control law is distributed and accordingly each agent can determine their own control law using only the locally measured bearings. A convergence result is established in this paper which guarantees global asymptotic convergence of the formation to the desired formation shape.

  • 21.
    Basiri, Meysam
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Bishop, Adrian N.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Distributed Control of Triangular Sensor Formations with Angle-Only Constraints2009In: 2009 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND INFORMATION PROCESSING (ISSNIP 2009), NEW YORK: IEEE , 2009, p. 121-126Conference paper (Refereed)
    Abstract [en]

    This paper considers the coupled formation control of three mobile agents moving in the plane. Each agent has only local inter-agent bearing knowledge and is required to maintain a specified angular separation relative to its neighbors. The problem considered in this paper differs from similar problems in the literature since no inter-agent distance measurements are employed and the desired formation is specified entirely by the internal triangle angles. Each agent's control law is distributed and based only on its locally measured bearings. A convergence result is established which guarantees global convergence of the formation to the desired formation shape.

  • 22.
    Bertolli, Federico
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Christensen, Henrik I.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    SLAM using visual scan-matching with distinguishable 3D points2006In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols 1-12, NEW YORK: IEEE , 2006, p. 4042-4047Conference paper (Refereed)
    Abstract [en]

    Scan-matching based on data from a laser scanner is frequently used for mapping and localization. This paper presents an scan-matching approach based instead on visual information from a stereo system. The Scale Invariant Feature Transform (SIFT) is used together with epipolar constraints to get high matching precision between the stereo images. Calculating the 3D position of the corresponding points in the world results in a visual scan where each point has a descriptor attached to it. These descriptors can be used when matching scans acquired from different positions. Just like in the work with laser based scan matching a map can be defined as a set of reference scans and their corresponding acquisition point. In essence this reduces each visual scan that can consist of hundreds of points to a single entity for which only the corresponding robot pose has to be estimated in the map. This reduces the overall complexity of the map. The SIFT descriptor attached to each of the points in the reference allows for robust matching and detection of loop closing situations. The paper presents real-world experimental results from an indoor office environment.

  • 23.
    Bishop, Adrian
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Stochastically convergent localization of objects and actively controllable sensor-object pose2009In: Proceedings of 10th European Control Conference (ECC 2009), 2009Conference paper (Refereed)
    Abstract [en]

    The problem of object (network) localization using a mobile sensor is examined in this paper. Specifically, we consider a set of stationary objects located in the plane and a single mobile nonholonomic sensor tasked at estimating their relative position from range and bearing measurements. We derive a coordinate transform and a relative sensor-object motion model that leads to a novel problem formulation where the measurements are linear in the object positions. We then apply an extended Kalman filter-like algorithm to the estimation problem. Using stochastic calculus we provide an analysis of the convergence properties of the filter. We then illustrate that it is possible to steer the mobile sensor to achieve a relative sensor-object pose using a continuous control law. This last fact is significant since we circumvent Brockett's theorem and control the relative sensor-source pose using a simple controller.

  • 24.
    Bishop, Adrian N.
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    A Stochastically Stable Solution to the Problem of Robocentric Mapping2009In: ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, 2009, p. 1540-1547Conference paper (Refereed)
    Abstract [en]

    This paper provides a novel solution for robo-centric mapping using an autonomous mobile robot. The robot dynamic model is the standard unicycle model and the robot is assumed to measure both the range and relative bearing to the landmarks. The algorithm introduced in this paper relies on a coordinate transformation and an extended Kalman filter like algorithm. The coordinate transformation considered in this paper has not been previously considered for robocentric mapping applications. Moreover, we provide a rigorous stochastic stability analysis of the filter employed and we examine the conditions under which the mean-square estimation error converges to a steady-state value.

  • 25.
    Bishop, Adrian N.
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    An Optimality Analysis of Sensor-Target Geometries for Signal Strength Based Localization2009In: 2009 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND INFORMATION PROCESSING (ISSNIP 2009), NEW YORK: IEEE , 2009, p. 127-132Conference paper (Refereed)
    Abstract [en]

    In this paper we characterize the bounds on localization accuracy in signal strength based localization. In particular, we provide a novel and rigorous analysis of the relative receiver-transmitter geometry and the effect of this geometry on the potential localization performance. We show that uniformly spacing sensors around the target is not optimal if the sensor-target ranges are not identical and is not necessary in any case. Indeed, we show that in general the optimal sensor-target geometry for signal strength based localization is not unique.

  • 26.
    Bishop, Adrian N.
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Stochastically convergent localization of objects by mobile sensors and actively controllable relative sensor-object2015In: 2009 European Control Conference, ECC 2009, 2015, p. 2384-2389Conference paper (Refereed)
    Abstract [en]

    The problem of object (network) localization using a mobile sensor is examined in this paper. Specifically, we consider a set of stationary objects located in the plane and a single mobile nonholonomic sensor tasked at estimating their relative position from range and bearing measurements. We derive a coordinate transform and a relative sensor-object motion model that leads to a novel problem formulation where the measurements are linear in the object positions. We then apply an extended Kalman filter-like algorithm to the estimation problem. Using stochastic calculus we provide an analysis of the convergence properties of the filter. We then illustrate that it is possible to steer the mobile sensor to achieve a relative sensor-object pose using a continuous control law. This last fact is significant since we circumvent Brockett's theorem and control the relative sensor-source pose using a simple controller.

  • 27. Bishop, A.N.
    et al.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Global Robot Localization with Random Finite Set Statistics2010In: Fusion 2010: 13th International Conference on Information Fusion, 2010, p. 5711873-Conference paper (Refereed)
    Abstract [en]

    We re-examine the problem of global localization of a robot using a rigorous Bayesian framework based on the idea of random finite sets. Random sets allow us to naturally develop a complete model of the underlying problem accounting for the statistics of missed detections and of spurious/erroneously detected (potentially unmodeled) features along with the statistical models of robot hypothesis disappearance and appearance. In addition, no explicit data association is required which alleviates one of the more difficult sub-problems. Following the derivation of the Bayesian solution, we outline its first-order statistical moment approximation, the so called probability hypothesis density filter. We present a statistical estimation algorithm for the number of potential robot hypotheses consistent with the accumulated evidence and we show how such an estimate can be used to aid in re-localization of kidnapped robots. We discuss the advantages of the random set approach and examine a number of illustrative simulations.

  • 28.
    Boberg, Anders
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bishop, Adrian N.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Robocentric Mapping and Localization in Modified Spherical Coordinates with Bearing Measurements2009In: 2009 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND INFORMATION PROCESSING (ISSNIP 2009), NEW YORK: IEEE , 2009, p. 139-144Conference paper (Refereed)
    Abstract [en]

    In this paper, a new approach to robotic mapping is presented that uses modified spherical coordinates in a robot-centered reference frame and a bearing-only measurement model. The algorithm provided in this paper permits robust delay-free state initialization and is computationally more efficient than the current standard in bearing-only (delay-free initialized) simultaneous localization and mapping (SLAM). Importantly, we provide a detailed nonlinear observability analysis which shows the system is generally observable. We also analyze the error convergence of the filter using stochastic stability analysis. We provide an explicit bound on the asymptotic mean state estimation error. A comparison of the performance of this filter is also made against a standard world-centric SLAM algorithm in a simulated environment.

  • 29.
    Bonnevie, Rodrigue
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Duberg, Daniel
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Long-Term Exploration in Unknown Dynamic Environments2021In: 2021 7Th International Conference On Automation, Robotics And Applications (Icara 2021), Institute of Electrical and Electronics Engineers (IEEE) , 2021, p. 32-37Conference paper (Refereed)
    Abstract [en]

    The task of exploration does not end when the robot has covered the entire environment. The world is dynamic and to model this property and to keep the map up to date the robot needs to re-explore. In this work, we present an approach to long-term exploration that builds on prior work on dynamic mapping, volumetric representations of space, and exploration planning. The main contribution of our work is a novel formulation of the information gain function that controls the exploration so that it trades off revisiting highly dynamic areas where changes are very likely with covering the rest of the environment to ensure both coverage and up-to-date estimates of the dynamics. We provide experimental validation of our approach in three different simulated environments.

  • 30.
    Bore, Nils
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Ambrus, Rares
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Efficient retrieval of arbitrary objects from long-term robot observations2017In: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 91, p. 139-150Article in journal (Refereed)
    Abstract [en]

    We present a novel method for efficient querying and retrieval of arbitrarily shaped objects from large amounts of unstructured 3D point cloud data. Our approach first performs a convex segmentation of the data after which local features are extracted and stored in a feature dictionary. We show that the representation allows efficient and reliable querying of the data. To handle arbitrarily shaped objects, we propose a scheme which allows incremental matching of segments based on similarity to the query object. Further, we adjust the feature metric based on the quality of the query results to improve results in a second round of querying. We perform extensive qualitative and quantitative experiments on two datasets for both segmentation and retrieval, validating the results using ground truth data. Comparison with other state of the art methods further enforces the validity of the proposed method. Finally, we also investigate how the density and distribution of the local features within the point clouds influence the quality of the results.

  • 31.
    Bore, Nils
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Ekekrantz, Johan
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Folkesson, John
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Detection and Tracking of General Movable Objects in Large Three-Dimensional Maps2019In: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 35, no 1, p. 231-247Article in journal (Refereed)
    Abstract [en]

    This paper studies the problem of detection and tracking of general objects with semistatic dynamics observed by a mobile robot moving in a large environment. A key problem is that due to the environment scale, the robot can only observe a subset of the objects at any given time. Since some time passes between observations of objects in different places, the objects might be moved when the robot is not there. We propose a model for this movement in which the objects typically only move locally, but with some small probability they jump longer distances through what we call global motion. For filtering, we decompose the posterior over local and global movements into two linked processes. The posterior over the global movements and measurement associations is sampled, while we track the local movement analytically using Kalman filters. This novel filter is evaluated on point cloud data gathered autonomously by a mobile robot over an extended period of time. We show that tracking jumping objects is feasible, and that the proposed probabilistic treatment outperforms previous methods when applied to real world data. The key to efficient probabilistic tracking in this scenario is focused sampling of the object posteriors.

  • 32.
    Bore, Nils
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Querying 3D Data by Adjacency Graphs2015In: Computer Vision Systems / [ed] Nalpantidis, Lazaros and Krüger, Volker and Eklundh, Jan-Olof and Gasteratos, Antonios, Springer Publishing Company, 2015, p. 243-252Chapter in book (Refereed)
    Abstract [en]

    The need for robots to search the 3D data they have saved is becoming more apparent. We present an approach for finding structures in 3D models such as those built by robots of their environment. The method extracts geometric primitives from point cloud data. An attributed graph over these primitives forms our representation of the surface structures. Recurring substructures are found with frequent graph mining techniques. We investigate if a model invariant to changes in size and reflection using only the geometric information of and between primitives can be discriminative enough for practical use. Experiments confirm that it can be used to support queries of 3D models.

    Download full text (pdf)
    fulltext
  • 33.
    Bore, Nils
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Retrieval of Arbitrary 3D Objects From Robot Observations2015In: Retrieval of Arbitrary 3D Objects From Robot Observations, Lincoln: IEEE Robotics and Automation Society, 2015, p. 1-8Conference paper (Refereed)
    Abstract [en]

    We have studied the problem of retrieval of arbi-trary object instances from a large point cloud data set. Thecontext is autonomous robots operating for long periods of time,weeks up to months and regularly saving point cloud data. Theever growing collection of data is stored in a way that allowsranking candidate examples of any query object, given in theform of a single view point cloud, without the need to accessthe original data. The top ranked ones can then be compared ina second phase using the point clouds themselves. Our methoddoes not assume that the point clouds are segmented or that theobjects to be queried are known ahead of time. This means thatwe are able to represent the entire environment but it also posesproblems for retrieval. To overcome this our approach learnsfrom each actual query to improve search results in terms of theranking. This learning is automatic and based only on the queries.We demonstrate our system on data collected autonomously by arobot operating over 13 days in our building. Comparisons withother techniques and several variations of our method are shown.

  • 34.
    Brucker, Manuel
    et al.
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Durner, Maximilian
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Ambrus, Rares
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Marton, Zoltan Csaba
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Wendt, Axel
    Robert Bosch, Corp Res, St Joseph, MI USA.;Robert Bosch, Corp Res, Gerlingen, Germany..
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Arras, Kai O.
    Robert Bosch, Corp Res, St Joseph, MI USA.;Robert Bosch, Corp Res, Gerlingen, Germany..
    Triebel, Rudolph
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany.;Tech Univ Munich, Dep Comp Sci, Munich, Germany..
    Semantic Labeling of Indoor Environments from 3D RGB Maps2018In: 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE Computer Society, 2018, p. 1871-1878Conference paper (Refereed)
    Abstract [en]

    We present an approach to automatically assign semantic labels to rooms reconstructed from 3D RGB maps of apartments. Evidence for the room types is generated using state-of-the-art deep-learning techniques for scene classification and object detection based on automatically generated virtual RGB views, as well as from a geometric analysis of the map's 3D structure. The evidence is merged in a conditional random field, using statistics mined from different datasets of indoor environments. We evaluate our approach qualitatively and quantitatively and compare it to related methods.

  • 35.
    Bruns, Leonard
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    On the Evaluation of RGB-D-Based Categorical Pose and Shape Estimation2023In: Intelligent Autonomous Systems 17, IAS-17 / [ed] Petrovic, I Menegatti, E Markovic, I, Springer Nature , 2023, Vol. 577, p. 360-377Conference paper (Refereed)
    Abstract [en]

    Recently, various methods for 6D pose and shape estimation of objects have been proposed. Typically, these methods evaluate their pose estimation in terms of average precision and reconstruction quality in terms of chamfer distance. In this work, we take a critical look at this predominant evaluation protocol, including metrics and datasets. We propose a new set of metrics, contribute new annotations for the Redwood dataset, and evaluate state-of-the-art methods in a fair comparison. We find that existing methods do not generalize well to unconstrained orientations and are actually heavily biased towards objects being upright. We provide an easy-to-use evaluation toolbox with well-defined metrics, method, and dataset interfaces, which allows evaluation and comparison with various state-of-the-art approaches (https://github.com/roym899/pose and shape evaluation).

  • 36.
    Bruns, Leonard
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    RGB-D-based categorical object pose and shape estimation: Methods, datasets, and evaluation2023In: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 168, article id 104507Article in journal (Refereed)
    Abstract [en]

    Recently, various methods for 6D pose and shape estimation of objects at a per-category level have been proposed. This work provides an overview of the field in terms of methods, datasets, and evaluation protocols. First, an overview of existing works and their commonalities and differences is provided. Second, we take a critical look at the predominant evaluation protocol, including metrics and datasets. Based on the findings, we propose a new set of metrics, contribute new annotations for the Redwood dataset, and evaluate state-of-the-art methods in a fair comparison. The results indicate that existing methods do not generalize well to unconstrained orientations and are actually heavily biased towards objects being upright. We provide an easy-to-use evaluation toolbox with well-defined metrics, methods, and dataset interfaces, which allows evaluation and comparison with various state-of-the-art approaches (https://github.com/roym899/pose_and_shape_evaluation).

  • 37.
    Bruns, Leonard
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    SDFEst: Categorical Pose and Shape Estimation of Objects From RGB-D Using Signed Distance Fields2022In: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 7, no 4, p. 9597-9604Article in journal (Refereed)
    Abstract [en]

    Rich geometric understanding of the world is an important component of many robotic applications such as planning and manipulation. In this paper, we present a modular pipeline for pose and shape estimation of objects from RGB-D images given their category. The core of our method is a generative shape model, which we integrate with a novel initialization network and a differentiable renderer to enable 6D pose and shape estimation from a single or multiple views. We investigate the use of discretized signed distance fields as an efficient shape representation for fast analysis-by-synthesis optimization. Our modular framework enables multi-view optimization and extensibility. We demonstrate the benefits of our approach over state-of-the-art methods in several experiments on both synthetic and real data. We open-source our approach at https://github.com/roym899/sdfest.

  • 38. Caputo, B.
    et al.
    Pronobis, Andrzej
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Overview of the CLEF 2009 robot vision track2009In: CLEF2009 Working Notes: Working Notes for CLEF 2009 Workshop, co-located with the 13th European Conference on Digital Libraries (ECDL 2009), Corfù, Greece, September 30 - October 2, 2009 / [ed] Carol Peters, Nicola Ferro, CEUR-WS , 2009Conference paper (Refereed)
    Abstract [en]

    The robot vision task has been proposed to the ImageCLEF participants for the first time in 2009. The task attracted a considerable attention, with 19 inscribed research groups, 7 groups eventually participating and a total of 27 submitted runs. The task addressed the problem of visual place recognition applied to robot topological localization. Specifically, participants were asked to classify rooms on the basis of image sequences, captured by a perspective camera mounted on a mobile robot. The sequences were acquired in an office environment, under varying illumination conditions and across a time span of almost two years. The training and validation set consisted of a subset of the IDOL2 database1. The test set consisted of sequences similar to those in the training and validation set, but acquired 20 months later and imaging also additional rooms. Participants were asked to build a system able to answer the question "where are you?" (I am in the kitchen, in the corridor, etc) when presented with a test sequence imaging rooms seen during training, or additional rooms that were not imaged in the training sequence. The system had to assign each test image to one of the rooms present in the training sequence, or indicate that the image came from a new room. We asked all participants to solve the problem separately for each test image (obligatory task). Additionally, results could also be reported for algorithms exploiting the temporal continuity of the image sequences (optional task). Of the 27 runs, 21 were submitted to the obligatory task, and 6 to the optional task. The best result in the obligatory task was obtained by the Multimedia Information Retrieval Group of the University of Glasgow, UK with an approach based on local feature matching. The best result in the optional task was obtained by the Intelligent Systems and Data Mining Group (SIMD) of the University of Castilla-La Mancha, Albacete, Spain, with an approach based on local features and a particle filter.

  • 39.
    Chen, Xi
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Ghadirzadeh, Ali
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Björkman, Mårten
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Adversarial Feature Training for Generalizable Robotic Visuomotor Control2020In: 2020 International Conference on Robotics And Automation (ICRA), Institute of Electrical and Electronics Engineers (IEEE) , 2020, p. 1142-1148, article id 9197505Conference paper (Refereed)
    Abstract [en]

    Deep reinforcement learning (RL) has enabled training action-selection policies, end-to-end, by learning a function which maps image pixels to action outputs. However, it's application to visuomotor robotic policy training has been limited because of the challenge of large-scale data collection when working with physical hardware. A suitable visuomotor policy should perform well not just for the task-setup it has been trained for, but also for all varieties of the task, including novel objects at different viewpoints surrounded by task-irrelevant objects. However, it is impractical for a robotic setup to sufficiently collect interactive samples in a RL framework to generalize well to novel aspects of a task.In this work, we demonstrate that by using adversarial training for domain transfer, it is possible to train visuomotor policies based on RL frameworks, and then transfer the acquired policy to other novel task domains. We propose to leverage the deep RL capabilities to learn complex visuomotor skills for uncomplicated task setups, and then exploit transfer learning to generalize to new task domains provided only still images of the task in the target domain. We evaluate our method on two real robotic tasks, picking and pouring, and compare it to a number of prior works, demonstrating its superiority.

  • 40.
    Chen, Xi
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Ghadirzadeh, Ali
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Björkman, Mårten
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Meta-Learning for Multi-objective Reinforcement Learning2019In: Proceedings 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019, Institute of Electrical and Electronics Engineers (IEEE) , 2019, p. 977-983Conference paper (Refereed)
    Abstract [en]

    Multi-objective reinforcement learning (MORL) is the generalization of standard reinforcement learning (RL) approaches to solve sequential decision making problems that consist of several, possibly conflicting, objectives. Generally, in such formulations, there is no single optimal policy which optimizes all the objectives simultaneously, and instead, a number of policies has to be found each optimizing a preference of the objectives. In this paper, we introduce a novel MORL approach by training a meta-policy, a policy simultaneously trained with multiple tasks sampled from a task distribution, for a number of randomly sampled Markov decision processes (MDPs). In other words, the MORL is framed as a meta-learning problem, with the task distribution given by a distribution over the preferences. We demonstrate that such a formulation results in a better approximation of the Pareto optimal solutions in terms of both the optimality and the computational efficiency. We evaluated our method on obtaining Pareto optimal policies using a number of continuous control problems with high degrees of freedom. 

  • 41.
    Chen, Xi
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Ghadirzadeh, Ali
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Folkesson, John
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Björkman, Mårten
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Deep Reinforcement Learning to Acquire Navigation Skills for Wheel-Legged Robots in Complex Environments2018In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Institute of Electrical and Electronics Engineers (IEEE) , 2018Conference paper (Refereed)
    Abstract [en]

    Mobile robot navigation in complex and dynamic environments is a challenging but important problem. Reinforcement learning approaches fail to solve these tasks efficiently due to reward sparsities, temporal complexities and high-dimensionality of sensorimotor spaces which are inherent in such problems. We present a novel approach to train action policies to acquire navigation skills for wheel-legged robots using deep reinforcement learning. The policy maps height-map image observations to motor commands to navigate to a target position while avoiding obstacles. We propose to acquire the multifaceted navigation skill by learning and exploiting a number of manageable navigation behaviors. We also introduce a domain randomization technique to improve the versatility of the training samples. We demonstrate experimentally a significant improvement in terms of data-efficiency, success rate, robustness against irrelevant sensory data, and also the quality of the maneuver skills.

  • 42.
    Duberg, Daniel
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    The Obstacle-restriction Method for Tele-operation of Unmanned Aerial Vehicles with Restricted Motion2018In: 2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), IEEE , 2018, p. 266-273Conference paper (Refereed)
    Abstract [en]

    This paper presents a collision avoidance method for tele-operated unmanned aerial vehicles (UAVs). The method is designed to assist the operator at all times, such that the operator can focus solely on the main objectives instead of avoiding obstacles. We restrict the altitude to be fixed in a three dimensional environment to simplify the control and operation of the UAV. The method contributes a number of desired properties not found in other collision avoidance systems for tele-operated UAVs. Our method i) can handle situations where there is no input from the user by actively stopping and proceeding to avoid obstacles, ii) allows the operator to slide between prioritizing staying away from objects and getting close to them in a safe way when so required, and iii) provides for intuitive control by not deviating too far from the control input of the operator. We demonstrate the effectiveness of the method in real world experiments with a physical hexacopter in different indoor scenarios. We also present simulation results where we compare controlling the UAV with and without our method activated.

  • 43.
    Duberg, Daniel
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    UFOExplorer: Fast and Scalable Sampling-Based Exploration With a Graph-Based Planning Structure2022In: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 7, no 2, p. 2487-2494Article in journal (Refereed)
    Abstract [en]

    We propose UFOExplorer, a fast and efficient exploration method that scales well with the environment size. An exploration paradigm driven by map updates is proposed to enable the robot to react quicker and to always move towards the optimal exploration goal. For each map update, a dense graph-based planning structure is updated and extended. The planning structure is then used to generate a path using a simple exploration heuristic, which guides the robot towards the closest exploration goal. The proposed method scales well with the environment size, as the planning cost is amortized when updating and extending the planning structure. The simple exploration heuristic performs on par with the most recent state-of-the-art methods in smaller environments and outperforms them in larger environments, both in terms of exploration speed and computational efficiency. The implementation of the method is made available for future research.

  • 44.
    Duberg, Daniel
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    UFOMap: An Efficient Probabilistic 3D Mapping Framework That Embraces the Unknown2020In: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 5, no 4, p. 6411-6418Article in journal (Refereed)
    Abstract [en]

    3D models are an essential part of many robotic applications. In applications where the environment is unknown a-priori, or where only a part of the environment is known, it is important that the 3D model can handle the unknown space efficiently. Path planning, exploration, and reconstruction all fall into this category. In this letter we present an extension to OctoMap which we call UFOMap. UFOMap uses an explicit representation of all three states in the map, i.e., unknown, free, and occupied. This gives, surprisingly, a more memory efficient representation. We provide methods that allow for significantly faster insertions into the octree. Furthermore, UFOMap supports fast queries based on occupancy state using so called indicators and based on location by exploiting the octree structure and bounding volumes. This enables real-time colored octree mapping at high resolution (below 1 cm). UFOMap is contributed as a C++ library that can be used standalone but is also integrated into ROS.

  • 45.
    Duberg, Daniel
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    von Platen, Edvin
    Khoche, Ajinkya
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    UFOMap: For Consumers and Producers of Stuff and Things in a TreeManuscript (preprint) (Other academic)
    Abstract [en]

    For autonomous robots to have a deeper understanding of their environment, non-geometric, or semantic information, is required. However, there is currently a gap between the producers and consumers of dense semantic maps. Where producers are focused on reconstruction accuracy but not usability. We introduce an efficient semantic extension of the octree-based online 3D volumetric mapping framework UFOMap, for storing non-geometric information and to bridge this gap. By using a general semantic representation with a compact and dynamic data structure, our framework is capable of building large-scale semantic maps in real time. Benchmarks show that this semantic representation has more than an order of magnitude lower memory footprint than other approaches and up to three orders of magnitude faster queries of information. For example, UFOMap can construct truly large-scale volumetric semantic maps in real-time at high resolution. The framework is available as a standalone open source repository at https://github.com/UnknownFreeOccupied/ufomap and integrated with the Robot Operating System (ROS).

  • 46. Egerstedt, Magnus
    et al.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    A control theoretic formulation of the generalized SLAM problem in robotics2008In: 2008 American Control Conference: Vols 1-12, 2008, p. 2409-2414Conference paper (Refereed)
    Abstract [en]

    Simultaneous Localization and Mapping (SLAM) has emerged as a key capability for autonomous mobile robots navigating in unknown environments. The basic idea behind SLAM is to concurrently obtain a map of the environment and an estimate of where the robot is placed within this map. In other words, the map and the robot's pose have to be estimated at the same time, given the same data set. This paper revisits this problem from a control theoretic vantage point by reformulating the SLAM problem as a problem of simultaneously estimating the state and the output map of a controlled, dynamical system. What is different with this formulation is that the map is contained in the output map and not, as previously done, in the state of the system.

  • 47.
    Ekekrantz, Johan
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Pronobis, Andrzej
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Adaptive Iterative Closest Keypoint2013In: 2013 European Conference on Mobile Robots, ECMR 2013 - Conference Proceedings, New York: IEEE , 2013, p. 80-87Conference paper (Refereed)
    Abstract [en]

    Finding accurate correspondences between overlapping 3D views is crucial for many robotic applications, from multi-view 3D object recognition to SLAM. This step, often referred to as view registration, plays a key role in determining the overall system performance. In this paper, we propose a fast and simple method for registering RGB-D data, building on the principle of the Iterative Closest Point (ICP) algorithm. In contrast to ICP, our method exploits both point position and visual appearance and is able to smoothly transition the weighting between them with an adaptive metric. This results in robust initial registration based on appearance and accurate final registration using 3D points. Using keypoint clustering we are able to utilize a non exhaustive search strategy, reducing runtime of the algorithm significantly. We show through an evaluation on an established benchmark that the method significantly outperforms current methods in both robustness and precision.

    Download full text (pdf)
    fulltext
  • 48.
    Ekekrantz, Johan
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Thippur, Akshaya
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC).
    Probabilistic Primitive Refinement algorithm for colored point cloud data2015In: 2015 European Conference on Mobile Robots (ECMR), Lincoln: IEEE conference proceedings, 2015Conference paper (Refereed)
    Abstract [en]

    In this work we present the Probabilistic Primitive Refinement (PPR) algorithm, an iterative method for accurately determining the inliers of an estimated primitive (such as planes and spheres) parametrization in an unorganized, noisy point cloud. The measurement noise of the points belonging to the proposed primitive surface are modelled using a Gaussian distribution and the measurements of extraneous points to the proposed surface are modelled as a histogram. Given these models, the probability that a measurement originated from the proposed surface model can be computed. Our novel technique to model the noisy surface from the measurement data does not require a priori given parameters for the sensor noise model. The absence of sensitive parameters selection is a strength of our method. Using the geometric information obtained from such an estimate the algorithm then builds a color-based model for the surface, further boosting the accuracy of the segmentation. If used iteratively the PPR algorithm can be seen as a variation of the popular mean-shift algorithm with an adaptive stochastic kernel function.

  • 49.
    Ekvall, Staffan
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Integrating active mobile robot object recognition and SLAM in natural environments2006In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols 1-12, NEW YORK: IEEE , 2006, p. 5792-5797Conference paper (Refereed)
    Abstract [en]

    Linking semantic and spatial information has become an important research area in robotics since, for robots interacting with humans and performing tasks in natural environments, it is of foremost importance to be able to reason beyond simple geometrical and spatial levels. In this paper, we consider this problem in a service robot scenario where a mobile robot autonomously navigates in a domestic environment, builds a map as it moves along, localizes its position in it, recognizes objects on its way and puts them in the map. The experimental evaluation is performed in a realistic setting where the main concentration is put on the synergy of object recognition and Simultaneous Localization and Mapping systems.

  • 50.
    Ekvall, Staffan
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Object detection and mapping for service robot tasks2007In: Robotica (Cambridge. Print), ISSN 0263-5747, E-ISSN 1469-8668, Vol. 25, p. 175-187Article in journal (Refereed)
    Abstract [en]

    The problem studied in this paper is a mobile robot that autonomously navigates in a domestic: environment, builds a map as it moves along and localizes its position in it. In addition, the robot detects predefined objects, estimates their position in the environment and integrates this with the localization module to automatically put the objects in the generated map. Thus, we demonstrate one of the possible strategies for the integration of spatial and semantic knowledge in a service robot scenario where a simultaneous localization and mapping (SLAM) and object detection/ recognition system work in synergy to provide a richer representation of the environment than it would be possible with either of the methods alone. Most SLAM systems build maps that are only used for localizing the robot. Such maps are typically based on grids or different types of features such as point and lines. The novelty is the augmentation of this process with an object-recognition system that detects objects in the environment and puts them in the map generated by the SLAM system. The metric map is also split into topological entities corresponding to rooms. In this way, the user can command the robot to retrieve a certain object from a certain room. We present the results of map building and an extensive evaluation of the object detection algorithm performed in an indoor setting.

1234 1 - 50 of 171
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf