Ändra sökning
Avgränsa sökresultatet
123456 1 - 50 av 298
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aarno, Daniel
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ekvall, Staffan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Adaptive virtual fixtures for machine-assisted teleoperation tasks2005Ingår i: 2005 IEEE International Conference on Robotics and Automation (ICRA), Vols 1-4, 2005, s. 1139-1144Konferensbidrag (Refereegranskat)
    Abstract [en]

    It has been demonstrated in a number of robotic areas how the use of virtual fixtures improves task performance both in terms of execution time and overall precision, [1]. However, the fixtures are typically inflexible, resulting in a degraded performance in cases of unexpected obstacles or incorrect fixture models. In this paper, we propose the use of adaptive virtual fixtures that enable us to cope with the above problems. A teleoperative or human machine collaborative setting is assumed with the core idea of dividing the task, that the operator is executing, into several subtasks. The operator may remain in each of these subtasks as long as necessary and switch freely between them. Hence, rather than executing a predefined plan, the operator has the ability to avoid unforeseen obstacles and deviate from the model. In our system, the probability that the user is following a certain trajectory (subtask) is estimated and used to automatically adjusts the compliance. Thus, an on-line decision of how to fixture the movement is provided.

  • 2.
    Aarno, Daniel
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Layered HMM for motion intention recognition2006Ingår i: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols 1-12, NEW YORK: IEEE , 2006, s. 5130-5135Konferensbidrag (Refereegranskat)
    Abstract [en]

    Acquiring, representing and modeling human skins is one of the key research areas in teleoperation, programming. by-demonstration and human-machine collaborative settings. One of the common approaches is to divide the task that the operator is executing into several subtasks in order to provide manageable modeling. In this paper we consider the use of a Layered Hidden Markov Model (LHMM) to model human skills. We evaluate a gestem classifier that classifies motions into basic action-primitives, or gestems. The gestem classifiers are then used in a LHMM to model a simulated teleoperated task. We investigate the online and offline classilication performance with respect to noise, number of gestems, type of HAIM and the available number of training sequences. We also apply the LHMM to data recorded during the execution of a trajectory-tracking task in 2D and 3D with a robotic manipulator in order to give qualitative as well as quantitative results for the proposed approach. The results indicate that the LHMM is suitable for modeling teleoperative trajectory-tracking tasks and that the difference in classification performance between one and multi dimensional HMMs for gestem classification is small. It can also be seen that the LHMM is robust w.r.t misclassifications in the underlying gestem classifiers.

  • 3.
    Aarno, Daniel
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Motion intention recognition in robot assisted applications2008Ingår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 56, nr 8, s. 692-705Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Acquiring, representing and modelling human skills is one of the key research areas in teleoperation, programming-by-demonstration and human-machine collaborative settings. The problems are challenging mainly because of the lack of a general mathematical model to describe human skills. One of the common approaches is to divide the task that the operator is executing into several subtasks or low-level subsystems in order to provide manageable modelling. In this paper we consider the use of a Layered Hidden Markov Model (LHMM) to model human skills. We evaluate a gesteme classifier that classifies motions into basic action-primitives, or gestemes. The gesteme classifiers are then used in a LHMM to model a teleoperated task. The proposed methodology uses three different HMM models at the gesteme level: one-dimensional HMM, multi-dimensional HMM and multidimensional HMM with Fourier transform. The online and off-line classification performance of these three models is evaluated with respect to the number of gestemes, the influence of the number of training samples, the effect of noise and the effect of the number of observation symbols. We also apply the LHMM to data recorded during the execution of a trajectory tracking task in 2D and 3D with a mobile manipulator in order to provide qualitative as well as quantitative results for the proposed approach. The results indicate that the LHMM is suitable for modelling teleoperative trajectory-tracking tasks and that the difference in classification performance between one and multidimensional HMMs for gesteme classification is small. It can also be seen that the LHMM is robust with respect to misclassifications in the underlying gesteme classifiers.

  • 4.
    Aarno, Daniel
    et al.
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Kragic, Danica
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Christensen, Henrik
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Artificial potential biased probabilistic roadmap method2004Ingår i: 2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, s. 461-466Konferensbidrag (Refereegranskat)
    Abstract [en]

    Probabilistic roadmap methods (PRMs) have been successfully used to solve difficult path planning problems but their efficiency is limited when the free space contains narrow passages through which the robot must pass. This paper presents a new sampling scheme that aims to increase the probability of finding paths through narrow passages. Here, a biased sampling scheme is used to increase the distribution of nodes in narrow regions of the free space. A partial computation of the artificial potential field is used to bias the distribution of nodes.

  • 5.
    Aarno, Daniel
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Lingelbach, F.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Constrained path planning and task-consistent path adaptation for mobile manipulators2005Ingår i: 2005 12th International Conference on Advanced Robotics, 2005, s. 268-273Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents our ongoing research in the design of a versatile service robot capable of operating in a home or office environment. Ideas presented here cover architectural issues and possible applications for such a robot system with focus on tasks requiring constrained end-effector motions. Two key components of such system is a path planner and a reactive behavior capable of force relaxation and path adaptation. These components are presented in detail along with an overview of the software architecture they fit into.

  • 6.
    Aarno, Daniel
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Sommerfeld, Johan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Pugeault, Nicolas
    Kalkan, Sinan
    Woergoetter, Florentin
    Krüger, Norbert
    Early reactive grasping with second order 3D feature relations2008Ingår i: Recent Progress In Robotics: Viable Robotic Service To Human / [ed] Lee, S; Suh, IH; Kim, MS, 2008, Vol. 370, s. 91-105Konferensbidrag (Refereegranskat)
    Abstract [en]

    One of the main challenges in the field of robotics is to make robots ubiquitous. To intelligently interact with the world, such robots need to understand the environment and situations around them and react appropriately, they need context-awareness. But how to equip robots with capabilities of gathering and interpreting the necessary information for novel tasks through interaction with the environment and by providing some minimal knowledge in advance? This has been a longterm question and one of the main drives in the field of cognitive system development. The main idea behind the work presented in this paper is that the robot should, like a human infant, learn about objects by interacting with them, forming representations of the objects and their categories that are grounded in its embodiment. For this purpose, we study an early learning of object grasping process where the agent, based on a set of innate reflexes and knowledge about its embodiment. We stress out that this is not the work on grasping, it is a system that interacts with the environment based on relations of 3D visual features generated trough a stereo vision system. We show how geometry, appearance and spatial relations between the features can guide early reactive grasping which can later on be used in a more purposive manner when interacting with the environment.

  • 7.
    Almeida, Diogo
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH.
    Ambrus, Rares
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Caccamo, Sergio
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Chen, Xi
    KTH.
    Cruciani, Silvia
    Pinto Basto De Carvalho, Joao F
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Haustein, Joshua
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Marzinotto, Alejandro
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Vina, Francisco
    KTH.
    Karayiannidis, Yannis
    KTH.
    Ögren, Petter
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Optimeringslära och systemteori.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Team KTH’s Picking Solution for the Amazon Picking Challenge 20162017Ingår i: Warehouse Picking Automation Workshop 2017: Solutions, Experience, Learnings and Outlook of the Amazon Robotics Challenge, 2017Konferensbidrag (Övrig (populärvetenskap, debatt, mm))
    Abstract [en]

    In this work we summarize the solution developed by Team KTH for the Amazon Picking Challenge 2016 in Leipzig, Germany. The competition simulated a warehouse automation scenario and it was divided in two tasks: a picking task where a robot picks items from a shelf and places them in a tote and a stowing task which is the inverse task where the robot picks items from a tote and places them in a shelf. We describe our approach to the problem starting from a high level overview of our system and later delving into details of our perception pipeline and our strategy for manipulation and grasping. The solution was implemented using a Baxter robot equipped with additional sensors.

  • 8.
    Antonova, Rika
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Cruciani, Silvia
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Reinforcement Learning for Pivoting TaskManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    In this work we propose an approach to learn a robust policy for solving the pivoting task. Recently, several model-free continuous control algorithms were shown to learn successful policies without prior knowledge of the dynamics of the task. However, obtaining successful policies required thousands to millions of training episodes, limiting the applicability of these approaches to real hardware. We developed a training procedure that allows us to use a simple custom simulator to learn policies robust to the mismatch of simulation vs robot. In our experiments, we demonstrate that the policy learned in the simulator is able to pivot the object to the desired target angle on the real robot. We also show generalization to an object with different inertia, shape, mass and friction properties than those used during training. This result is a step towards making model-free reinforcement learning available for solving robotics tasks via pre-training in simulators that offer only an imprecise match to the real-world dynamics.

  • 9.
    Antonova, Rika
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS. KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kokic, Mia
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS. KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Stork, Johannes A.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS. KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kragic, Danica
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS. KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Global Search with Bernoulli Alternation Kernel for Task-oriented Grasping Informed by Simulation2018Ingår i: Proceedings of The 2nd Conference on Robot Learning, PMLR 87, 2018, s. 641-650Konferensbidrag (Refereegranskat)
    Abstract [en]

    We develop an approach that benefits from large simulated datasets and takes full advantage of the limited online data that is most relevant. We propose a variant of Bayesian optimization that alternates between using informed and uninformed kernels. With this Bernoulli Alternation Kernel we ensure that discrepancies between simulation and reality do not hinder adapting robot control policies online. The proposed approach is applied to a challenging real-world problem of task-oriented grasping with novel objects. Our further contribution is a neural network architecture and training pipeline that use experience from grasping objects in simulation to learn grasp stability scores. We learn task scores from a labeled dataset with a convolutional network, which is used to construct an informed kernel for our variant of Bayesian optimization. Experiments on an ABB Yumi robot with real sensor data demonstrate success of our approach, despite the challenge of fulfilling task requirements and high uncertainty over physical properties of objects.

  • 10.
    Arnekvist, Isac
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kragic, Danica
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Stork, Johannes A.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Vpe: Variational policy embedding for transfer reinforcement learning2019Konferensbidrag (Refereegranskat)
  • 11.
    Baisero, Andrea
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Pokorny, Florian T.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Ek, Carl Henrik
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    The Path Kernel2013Ingår i: ICPRAM 2013 - Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods, 2013, s. 50-57Konferensbidrag (Refereegranskat)
    Abstract [en]

    Kernel methods have been used very successfully to classify data in various application domains. Traditionally, kernels have been constructed mainly for vectorial data defined on a specific vector space. Much less work has been addressing the development of kernel functions for non-vectorial data. In this paper, we present a new kernel for encoding sequential data. We present our results comparing the proposed kernel to the state of the art, showing a significant improvement in classification and a much improved robustness and interpretability.

  • 12.
    Baisero, Andrea
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Pokorny, Florian T.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Ek, Carl Henrik
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    The path kernel: A novel kernel for sequential data2015Ingår i: Pattern Recognition: Applications and Methods : International Conference, ICPRAM 2013 Barcelona, Spain, February 15–18, 2013 Revised Selected Papers / [ed] Ana Fred, Maria De Marsico, Springer Berlin/Heidelberg, 2015, s. 71-84Konferensbidrag (Refereegranskat)
    Abstract [en]

    We define a novel kernel function for finite sequences of arbitrary length which we call the path kernel. We evaluate this kernel in a classification scenario using synthetic data sequences and show that our kernel can outperform state of the art sequential similarity measures. Furthermore, we find that, in our experiments, a clustering of data based on the path kernel results in much improved interpretability of such clusters compared to alternative approaches such as dynamic time warping or the global alignment kernel.

  • 13.
    Barck-Holst, Carl
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ralph, Maria
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Holmar, Fredrik
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Learning Grasping Affordance Using Probabilistic and Ontological Approaches2009Ingår i: 2009 International Conference on Advanced Robotics, ICAR 2009, IEEE , 2009, s. 96-101Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present two approaches to modeling affordance relations between objects, actions and effects. The first approach we present focuses on a probabilistic approach which uses a voting function to learn which objects afford which types of grasps. We compare the success rate of this approach to a second approach which uses an ontological reasoning engine for learning affordances. Our second approach employs a rule-based system with axioms to reason on grasp selection for a given object.

  • 14. Bekiroglu, Y.
    et al.
    Damianou, A.
    Detry, Renaud
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. University of Liège.
    Stork, Johannes A.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ek, Carl Henrik
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. University of Bristol.
    Probabilistic consolidation of grasp experience2016Ingår i: Proceedings - IEEE International Conference on Robotics and Automation, IEEE conference proceedings, 2016, s. 193-200Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a probabilistic model for joint representation of several sensory modalities and action parameters in a robotic grasping scenario. Our non-linear probabilistic latent variable model encodes relationships between grasp-related parameters, learns the importance of features, and expresses confidence in estimates. The model learns associations between stable and unstable grasps that it experiences during an exploration phase. We demonstrate the applicability of the model for estimating grasp stability, correcting grasps, identifying objects based on tactile imprints and predicting tactile imprints from object-relative gripper poses. We performed experiments on a real platform with both known and novel objects, i.e., objects the robot trained with, and previously unseen objects. Grasp correction had a 75% success rate on known objects, and 73% on new objects. We compared our model to a traditional regression model that succeeded in correcting grasps in only 38% of cases.

  • 15.
    Bekiroglu, Yasemin
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Detry, Renaud
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Grasp Stability from Vision and Touch2012Konferensbidrag (Refereegranskat)
  • 16.
    Bekiroglu, Yasemin
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Detry, Renaud
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Joint Observation of Object Pose and Tactile Imprints for Online Grasp Stability Assessment2011Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper studies the viability of concurrentobject pose tracking and tactile sensing for assessing graspstability on a physical robotic platform. We present a kernellogistic-regression model of pose- and touch-conditional graspsuccess probability. Models are trained on grasp data whichconsist of (1) the pose of the gripper relative to the object,(2) a tactile description of the contacts between the objectand the fully-closed gripper, and (3) a binary descriptionof grasp feasibility, which indicates whether the grasp canbe used to rigidly control the object. The data is collectedby executing grasps demonstrated by a human on a roboticplatform composed of an industrial arm, a three-finger gripperequipped with tactile sensing arrays, and a vision-based objectpose tracking system. The robot is able to track the poseof an object while it is grasping it, and it can acquiregrasp tactile imprints via pressure sensor arrays mounted onits gripper’s fingers. We consider models defined on severalsubspaces of our input data – using tactile perceptions orgripper poses only. Models are optimized and evaluated with f-fold cross-validation. Our preliminary results show that stabilityassessments based on both tactile and pose data can providebetter rates than assessments based on tactile data alone.

  • 17.
    Bekiroglu, Yasemin
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Detry, Renaud
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Learning Tactile Characterizations Of Object- And Pose-specific Grasps2011Konferensbidrag (Refereegranskat)
    Abstract [en]

    Our aim is to predict the stability of a grasp from the perceptions available to a robot before attempting to lift up and transport an object. The percepts we consider consist of the tactile imprints and the object-gripper configuration read before and until the robot’s manipulator is fully closed around an object. Our robot is equipped with multiple tactile sensing arrays and it is able to track the pose of an object during the application of a grasp. We present a kernel-logistic-regression model of pose- and touch-conditional grasp success probability which we train on grasp data collected by letting the robot experience the effect on tactile and visual signals of grasps suggested by a teacher, and letting the robot verify which grasps can be used to rigidly control the object. We consider models defined on several subspaces of our input data – e.g., using tactile perceptions or pose information only. Our experiment demonstrates that joint tactile and pose-based perceptions carry valuable grasp-related information, as models trained on both hand poses and tactile parameters perform better than the models trained exclusively on one perceptual input.

  • 18.
    Bekiroglu, Yasemin
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Huebner, Kai
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Integrating Grasp Planning with Online Stability Assessment using Tactile Sensing2011Ingår i: IEEE International Conference on Robotics and Automation, IEEE conference proceedings, 2011, s. 4750-4755Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents an integration of grasp planning and online grasp stability assessment based on tactile data. We show how the uncertainty in grasp execution posterior to grasp planning can be dealt with using tactile sensing and machine learning techniques. The majority of the state-of-the-art grasp planners demonstrate impressive results in simulation. However, these results are mostly based on perfect scene/object knowledge allowing for analytical measures to be employed. It is questionable how well these measures can be used in realistic scenarios where the information about the object and robot hand may be incomplete and/or uncertain. Thus, tactile and force-torque sensory information is necessary for successful online grasp stability assessment. We show how a grasp planner can be integrated with a probabilistic technique for grasp stability assessment in order to improve the hypotheses about suitable grasps on different types of objects. Experimental evaluation with a three-fingered robot hand equipped with tactile array sensors shows the feasibility and strength of the integrated approach.

  • 19.
    Bekiroglu, Yasemin
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kyrki, Ville
    Department of Information Technology, Lappeenranta University of Technology, Finland.
    Learning grasp stability based on tactile data and HMMs2010Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, the problem of learning grasp stability in robotic object grasping based on tactile measurements is studied. Although grasp stability modeling and estimation has been studied for a long time, there are few robots today able of demonstrating extensive grasping skills. The main contribution of the work presented here is an investigation of probabilistic modeling for inferring grasp stability based on learning from examples. The main objective is classification of a grasp as stable or unstable before applying further actions on it, e.g. lifting. The problem cannot be solved by visual sensing which is typically used to execute an initial robot hand positioning with respect to the object. The output of the classification system can trigger a regrasping step if an unstable grasp is identified. An off-line learning process is implemented and used for reasoning about grasp stability for a three-fingered robotic hand using Hidden Markov models. To evaluate the proposed method, experiments are performed both in simulation and on a real robot system.

  • 20.
    Bekiroglu, Yasemin
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Laaksonen, Janne
    Department of Information Technology, Lappeenranta University of Technology, Finland.
    Jorgensen, Jimmy Alison
    The Maersk Mc-Kinney Moller Institute University of Southern Denmark, Denmark.
    Kyrki, Ville
    the Department of Information Technology, Lappeenranta University of Technology, Finland.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Assessing Grasp Stability Based on Learning and Haptic Data2011Ingår i: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 27, nr 3, s. 616-629Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An important ability of a robot that interacts with the environment and manipulates objects is to deal with the uncertainty in sensory data. Sensory information is necessary to, for example, perform online assessment of grasp stability. We present methods to assess grasp stability based on haptic data and machinelearning methods, including AdaBoost, support vector machines (SVMs), and hidden Markov models (HMMs). In particular, we study the effect of different sensory streams to grasp stability. This includes object information such as shape; grasp information such as approach vector; tactile measurements fromfingertips; and joint configuration of the hand. Sensory knowledge affects the success of the grasping process both in the planning stage (before a grasp is executed) and during the execution of the grasp (closed-loop online control). In this paper, we study both of these aspects. We propose a probabilistic learning framework to assess grasp stability and demonstrate that knowledge about grasp stability can be inferred using information from tactile sensors. Experiments on both simulated and real data are shown. The results indicate that the idea to exploit the learning approach is applicable in realistic scenarios, which opens a number of interesting venues for the future research.

  • 21.
    Bekiroglu, Yasemin
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Laaksonen, Janne
    the Department of Information Technology, Lappeenranta University of Technology, Finland.
    Jorgensen, Jimmy
    The Maersk Mc-Kinney Moller Institute University of Southern Denmark, Denmark.
    Kyrki, Ville
    the Department of Information Technology, Lappeenranta University of Technology, Finland.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Learning grasp stability based on haptic data2010Konferensbidrag (Refereegranskat)
  • 22.
    Bekiroglu, Yasemin
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Song, Dan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Wang, Lu
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    A probabilistic framework for task-oriented grasp stability assessment2013Ingår i: 2013 IEEE International Conference on Robotics and Automation (ICRA), IEEE Computer Society, 2013, s. 3040-3047Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a probabilistic framework for grasp modeling and stability assessment. The framework facilitates assessment of grasp success in a goal-oriented way, taking into account both geometric constraints for task affordances and stability requirements specific for a task. We integrate high-level task information introduced by a teacher in a supervised setting with low-level stability requirements acquired through a robot's self-exploration. The conditional relations between tasks and multiple sensory streams (vision, proprioception and tactile) are modeled using Bayesian networks. The generative modeling approach both allows prediction of grasp success, and provides insights into dependencies between variables and features relevant for object grasping.

  • 23.
    Bergström, Niklas
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Björkman, Mårten
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bohg, Jeannette
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Roberson-Johnson, Matthew
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kootstra, Gert
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Active Scene Analysis2010Konferensbidrag (Refereegranskat)
  • 24.
    Bergström, Niklas
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Björkman, Mårten
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Generating Object Hypotheses in Natural Scenes through Human-Robot Interaction2011Ingår i: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS / [ed] Amato, Nancy M., San Francisco: IEEE , 2011, s. 827-833Konferensbidrag (Refereegranskat)
    Abstract [en]

    We propose a method for interactive modeling ofobjects and object relations based on real-time segmentation ofvideo sequences. In interaction with a human, the robot canperform multi-object segmentation through principled model-ing of physical constraints. The key contribution is an efficientmulti-labeling framework, that allows object modeling anddisambiguation in natural scenes. Object modeling and labelingis done in a real-time, to which hypotheses and constraintsdenoting relations between objects can be added incrementally.Through instructions such as key presses or spoken words, ascene can be segmented in regions corresponding to multiplephysical objects. The approach solves some of the difficultproblems related to disambiguation of objects merged due totheir direct physical contact. Results show that even a limited setof simple interactions with a human operator can substantiallyimprove segmentation results.

  • 25.
    Bergström, Niklas
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Bohg, Jeannette
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Integration of Visual Cues for Robotic Grasping2009Ingår i: COMPUTER VISION SYSTEMS, PROCEEDINGS / [ed] Fritz M, Schiele B, Piater JH, Berlin: Springer-Verlag Berlin , 2009, Vol. 5815, s. 245-254Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, we propose a method that generates grasping actions for novel objects based on visual input from a stereo camera. We are integrating two methods that are advantageous either in predicting how to grasp an object or where to apply a grasp. The first one reconstructs a wire frame object model through curve matching. Elementary grasping actions can be associated to parts of this model. The second method predicts grasping points in a 2D contour image of an object. By integrating the information from the two approaches, we can generate a sparse set, of full grasp configurations that are of a good quality. We demonstrate our approach integrated in a vision system for complex shaped objects as well as in cluttered scenes.

  • 26.
    Bergström, Niklas
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ek, Carl Henrik
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Björkman, Mårten
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Scene Understanding through Autonomous Interactive Perception2011Ingår i: Computer Vision Systems: Lecture Notes in Computer Science / [ed] Crowley James L., Draper Bruce, Thonnat Monique, Springer Verlag , 2011, s. 153-162Konferensbidrag (Refereegranskat)
    Abstract [en]

    We propose a framework for detecting, extracting and mod-eling objects in natural scenes from multi-modal data. Our frameworkis iterative, exploiting different hypotheses in a complementary manner.We employ the framework in realistic scenarios, based on visual appear-ance and depth information. Using a robotic manipulator that interactswith the scene, object hypotheses generated using appearance informa-tion are confirmed through pushing. The framework is iterative, eachgenerated hypothesis is feeding into the subsequent one, continuously re-fining the predictions about the scene. We show results that demonstratethe synergic effect of applying multiple hypotheses for real-world sceneunderstanding. The method is efficient and performs in real-time.

  • 27.
    Bergström, Niklas
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ek, Carl Henrik
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Yamakawa, Yuji
    Senoo, Taku
    Ishikawa, Masatoshi
    On-line learning of temporal state models for flexible objects2012Ingår i: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids), IEEE , 2012, s. 712-718Konferensbidrag (Refereegranskat)
    Abstract [en]

    State estimation and control are intimately related processes in robot handling of flexible and articulated objects. While for rigid objects, we can generate a CAD model before-hand and a state estimation boils down to estimation of pose or velocity of the object, in case of flexible and articulated objects, such as a cloth, the representation of the object's state is heavily dependent on the task and execution. For example, when folding a cloth, the representation will mainly depend on the way the folding is executed.

  • 28.
    Billard, Aude
    et al.
    Ecole Polytech Fed Lausanne, Learning Algorithms & Syst Lab, Lausanne, Switzerland..
    Kragic, Danica
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Trends and challenges in robot manipulation2019Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 364, nr 6446, s. 1149-+Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Dexterous manipulation is one of the primary goals in robotics. Robots with this capability could sort and package objects, chop vegetables, and fold clothes. As robots come to work side by side with humans, they must also become human-aware. Over the past decade, research has made strides toward these goals. Progress has come from advances in visual and haptic perception and in mechanics in the form of soft actuators that offer a natural compliance. Most notably, immense progress in machine learning has been leveraged to encapsulate models of uncertainty and to support improvements in adaptive and robust control. Open questions remain in terms of how to enable robots to deal with the most unpredictable agent of all, the human.

  • 29.
    Björkman, Mårten
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bekiroglu, Yasemin
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Högman, Virgile
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Enhancing Visual Perception of Shape through Tactile Glances2013Ingår i: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, IEEE conference proceedings, 2013, s. 3180-3186Konferensbidrag (Refereegranskat)
    Abstract [en]

    Object shape information is an important parameter in robot grasping tasks. However, it may be difficult to obtain accurate models of novel objects due to incomplete and noisy sensory measurements. In addition, object shape may change due to frequent interaction with the object (cereal boxes, etc). In this paper, we present a probabilistic approach for learning object models based on visual and tactile perception through physical interaction with an object. Our robot explores unknown objects by touching them strategically at parts that are uncertain in terms of shape. The robot starts by using only visual features to form an initial hypothesis about the object shape, then gradually adds tactile measurements to refine the object model. Our experiments involve ten objects of varying shapes and sizes in a real setup. The results show that our method is capable of choosing a small number of touches to construct object models similar to real object shapes and to determine similarities among acquired models.

  • 30.
    Björkman, Mårten
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bergström, Niklas
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Detecting, segmenting and tracking unknown objects using multi-label MRF inference2014Ingår i: Computer Vision and Image Understanding, ISSN 1077-3142, E-ISSN 1090-235X, Vol. 118, s. 111-127Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This article presents a unified framework for detecting, segmenting and tracking unknown objects in everyday scenes, allowing for inspection of object hypotheses during interaction over time. A heterogeneous scene representation is proposed, with background regions modeled as a combinations of planar surfaces and uniform clutter, and foreground objects as 3D ellipsoids. Recent energy minimization methods based on loopy belief propagation, tree-reweighted message passing and graph cuts are studied for the purpose of multi-object segmentation and benchmarked in terms of segmentation quality, as well as computational speed and how easily methods can be adapted for parallel processing. One conclusion is that the choice of energy minimization method is less important than the way scenes are modeled. Proximities are more valuable for segmentation than similarity in colors, while the benefit of 3D information is limited. It is also shown through practical experiments that, with implementations on GPUs, multi-object segmentation and tracking using state-of-art MRF inference methods is feasible, despite the computational costs typically associated with such methods.

  • 31.
    Björkman, Mårten
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Active 3D scene segmentation and detection of unknown objects2010Ingår i: IEEE International Conference on Robotics and Automation (ICRA), Anchorage, USA / [ed] Antonio Bicchi, IEEE Robotics and Automation Society, 2010, s. 3114-3120Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present an active vision system for segmentationof visual scenes based on integration of several cues. The system serves as a visual front end for generation of object hypotheses for new, previously unseen objects in natural scenes. The system combines a set of foveal and peripheral cameraswhere, through a stereo based fixation process, object hypotheses are generated. In addition to considering the segmentation process in 3D, the main contribution of the paper is integration of different cues in a temporal framework and improvement of initial hypotheses over time.

  • 32.
    Björkman, Mårten
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Active 3D Segmentation through Fixation of Previously Unseen Objects2010Ingår i: British Machine Vision Conference (BMVC), Aberystwyth, UK / [ed] Frédéric Labrosse, Reyer Zwiggelaar, Yonghuai Liu, and Bernie Tiddeman, BMVA Press , 2010, s. 119.1-119.11Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present an approach for active segmentation based on integration of several cues.It serves as a framework for generation of object hypotheses of previously unseen objectsin natural scenes. Using an approximate Expectation-Maximisation method, the appearance,3D shape and size of objects are modelled in an iterative manner, with fixation usedfor unsupervised initialisation. To better cope with situations where an object is hard tosegregate from the surface it is placed on, a flat surface model is added to the typical twohypotheses used in classical figure-ground segmentation. The framework is further extendedto include modelling over time, in order to exploit temporal consistency for bettersegmentation and to facilitate tracking.

  • 33.
    Björkman, Mårten
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Combination of foveal and peripheral vision for object recognition and pose estimation2004Ingår i: 2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, s. 5135-5140Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, we present a real-time vision system that integrates a number of algorithms using monocular and binocular cues to achieve robustness in realistic settings, for tasks such as object recognition, tracking and pose estimation. The system consists of two sets of binocular cameras; a peripheral set for disparity based attention and a foveal one for higher level processes. Thus the conflicting requirements of a wide field of view and high resolution can be overcome. One important property of the system is that the step from task specification through object recognition to pose estimation is completely automatic, combining both appearance and geometric models. Experimental evaluation is performed in a realistic indoor environment with occlusions, clutter, changing lighting and background conditions.

  • 34.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Barck-Holst, Carl
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Hübner, Kai
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ralph, Maria
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Rasolzadeh, Babak
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Song, Dan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    TOWARDS GRASP-ORIENTED VISUAL PERCEPTION FOR HUMANOID ROBOTS2009Ingår i: INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, ISSN 0219-8436, Vol. 6, nr 3, s. 387-434Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A distinct property of robot vision systems is that they are embodied. Visual information is extracted for the purpose of moving in and interacting with the environment. Thus, different types of perception-action cycles need to be implemented and evaluated. In this paper, we study the problem of designing a vision system for the purpose of object grasping in everyday environments. This vision system is firstly targeted at the interaction with the world through recognition and grasping of objects and secondly at being an interface for the reasoning and planning module to the real world. The latter provides the vision system with a certain task that drives it and defines a specific context, i.e. search for or identify a certain object and analyze it for potential later manipulation. We deal with cases of: (i) known objects, (ii) objects similar to already known objects, and (iii) unknown objects. The perception-action cycle is connected to the reasoning system based on the idea of affordances. All three cases are also related to the state of the art and the terminology in the neuroscientific area.

  • 35.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bergström, Niklas
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Björkman, Mårten
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Acting and Interacting in the Real World2011Konferensbidrag (Refereegranskat)
  • 36. Bohg, Jeannette
    et al.
    Hausman, Karol
    Sankaran, Bharath
    Brock, Oliver
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Schaal, Stefan
    Sukhatme, Gaurav S.
    Interactive Perception: Leveraging Action in Perception and Perception in Action2017Ingår i: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 33, nr 6, s. 1273-1291Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recent approaches in robot perception follow the insight that perception is facilitated by interaction with the environment. These approaches are subsumed under the term Interactive Perception (IP). This view of perception provides the following benefits. First, interaction with the environment creates a rich sensory signal that would otherwise not be present. Second, knowledge of the regularity in the combined space of sensory data and action parameters facilitates the prediction and interpretation of the sensory signal. In this survey, we postulate this as a principle for robot perception and collect evidence in its support by analyzing and categorizing existing work in this area. We also provide an overview of the most important applications of IP. We close this survey by discussing remaining open questions. With this survey, we hope to help define the field of Interactive Perception and to provide a valuable resource for future research.

  • 37.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Johnson-Roberson, Matthew
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Björkman, Mårten
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Strategies for Multi-Modal Scene Exploration2010Ingår i: IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, s. 4509-4515Konferensbidrag (Refereegranskat)
    Abstract [en]

    We propose a method for multi-modal scene exploration where initial object hypothesis formed by active visual segmentation are confirmed and augmented through haptic exploration with a robotic arm. We update the current belief about the state of the map with the detection results and predict yet unknown parts of the map with a Gaussian Process. We show that through the integration of different sensor modalities, we achieve a more complete scene model. We also show that the prediction of the scene structure leads to a valid scene representation even if the map is not fully traversed. Furthermore, we propose different exploration strategies and evaluate them both in simulation and on our robotic platform.

  • 38.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Johnson-Roberson, Matthew
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Leon, Beatriz
    Universitat Jaume I, Castellon, Spain.
    Felip, Javier
    Universitat Jaume I, Castellon, Spain.
    Gratal, Xavi
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bergström, Niklas
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Morales, Antonio
    Universitat Jaume I, Castellon, Spain.
    Mind the Gap - Robotic Grasping under Incomplete Observation2011Ingår i: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, May 9-13, 2011, New York: IEEE , 2011, s. 686-693Konferensbidrag (Refereegranskat)
    Abstract [en]

    We consider the problem of grasp and manipulation planning when the state of the world is only partially observable. Specifically, we address the task of picking up unknown objects from a table top. The proposed approach to object shape prediction aims at closing the knowledge gaps in the robot's understanding of the world. A completed state estimate of the environment can then be provided to a simulator in which stable grasps and collision-free movements are planned. The proposed approach is based on the observation that many objects commonly in use in a service robotic scenario possess symmetries. We search for the optimal parameters of these symmetries given visibility constraints. Once found, the point cloud is completed and a surface mesh reconstructed. Quantitative experiments show that the predictions are valid approximations of the real object shape. By demonstrating the approach on two very different robotic platforms its generality is emphasized.

  • 39.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Grasping Familiar Objects using Shape Context2009Ingår i: ICAR: 2009 14th International Conference on Advanced Robotics, IEEE , 2009, s. 50-55Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present work on vision based robotic grasping. The proposed method relies on extracting and representing the global contour of an object in a monocular image. A suitable grasp is then generated using a learning framework where prototypical grasping points are learned from several examples and then used on novel objects. For representation purposes, we apply the concept of shape context and for learning we use a supervised learning approach in which the classifier is trained with labeled synthetic images. Our results show that a combination of a descriptor based on shape context with a non-linear classification algorithm leads to a stable detection of grasping points for a variety of objects. Furthermore, we will show how our representation supports the inference of a full grasp configuration.

  • 40.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Learning grasping points with shape context2010Ingår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 58, nr 4, s. 362-377Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents work on vision based robotic grasping. The proposed method adopts a learning framework where prototypical grasping points are learnt from several examples and then used on novel objects. For representation purposes, we apply the concept of shape context and for learning we use a supervised learning approach in which the classifier is trained with labelled synthetic images. We evaluate and compare the performance of linear and non-linear classifiers. Our results show that a combination of a descriptor based on shape context with a non-linear classification algorithm leads to a stable detection of grasping points for a variety of objects.

  • 41. Bohg, Jeannette
    et al.
    Morales, Antonio
    Asfour, Tamim
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Data-Driven Grasp Synthesis-A Survey2014Ingår i: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 30, nr 2, s. 289-309Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar, or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally, for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.

  • 42. Bohg, Jeannette
    et al.
    Welke, Kai
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Leon, Beatriz
    Department of Computer Science and Engineering, Universitat Jaume I, Spain.
    Do, Martin
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Song, Dan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Wohlkinger, Walter
    Automation and Control Institute, Technische Universität Wien, Austria.
    Madry, Marianna
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Aldoma, Aitor
    Automation and Control Institute, Technische Universität Wien, Austria.
    Przybylski, Markus
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Asfour, Tamim
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Marti, Higinio
    Department of Computer Science and Engineering, Universitat Jaume I, Spain.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Morales, Antonio
    Department of Computer Science and Engineering, Universitat Jaume I, Spain.
    Vincze, Markus
    Automation and Control Institute, Technische Universität Wien, Austria.
    Task-based Grasp Adaptation on a Humanoid Robot2012Ingår i: Proceedings 10th IFAC Symposium on Robot Control, 2012, s. 779-786Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based grasp inference have been leveraged by integrating them into one pipeline. This allows us to transfer task-specific grasp experience between objects of the same category. The effectiveness of the approach is demonstrated on the humanoid robot ARMAR-IIIa.

  • 43.
    Bueno, Jesus Ignacio
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Integration of tracking and adaptive Gaussian mixture models for posture recognition2006Ingår i: Proc. IEEE Int. Workshop Robot Human Interact. Commun., 2006, s. 623-628Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, we present a system for continuous posture recognition. The main contributions of the proposed approach are the integration of an adaptive color model with a tracking system that allows for robust continuous posture recognition based on Principal Component Analysis. The adaptive color model uses Gaussian Mixture Models for skin and background color representation, Bayesian framework for classification and Kalman filter for tracking hands and head of a person that interacts with the robot. Experimental evaluation shows that the integration of tracking and an adaptive color model supports the robustness and flexibility of the system when illumination changes occur.

  • 44.
    Butepage, Judith
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Black, Michael J.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Kjellström, Hedvig
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Deep representation learning for human motion prediction and classification2017Ingår i: 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), IEEE, 2017, s. 1591-1599Konferensbidrag (Refereegranskat)
    Abstract [en]

    Generative models of 3D human motion are often restricted to a small number of activities and can therefore not generalize well to novel movements or applications. In this work we propose a deep learning framework for human motion capture data that learns a generic representation from a large corpus of motion capture data and generalizes well to new, unseen, motions. Using an encoding-decoding network that learns to predict future 3D poses from the most recent past, we extract a feature representation of human motion. Most work on deep learning for sequence prediction focuses on video and speech. Since skeletal data has a different structure, we present and evaluate different network architectures that make different assumptions about time dependencies and limb correlations. To quantify the learned features, we use the output of different layers for action classification and visualize the receptive fields of the network units. Our method outperforms the recent state of the art in skeletal motion prediction even though these use action specific training data. Our results show that deep feedforward networks, trained from a generic mocap database, can successfully be used for feature extraction from human motion data and that this representation can be used as a foundation for classification and prediction.

  • 45.
    Butepage, Judith
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Cruciani, Silvia
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kokic, Mia
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Welle, Michael
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kragic, Danica
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    From Visual Understanding to Complex Object Manipulation2019Ingår i: Annual Review of Control, Robotics, and Autonomous Systems, Vol. 2, s. 161-179Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Planning and executing object manipulation requires integrating multiple sensory and motor channels while acting under uncertainty and complying with task constraints. As the modern environment is tuned for human hands, designing robotic systems with similar manipulative capabilities is crucial. Research on robotic object manipulation is divided into smaller communities interested in, e.g., motion planning, grasp planning, sensorimotor learning, and tool use. However, few attempts have been made to combine these areas into holistic systems. In this review, we aim to unify the underlying mechanics of grasping and in-hand manipulation by focusing on the temporal aspects of manipulation, including visual perception, grasp planning and execution, and goal-directed manipulation. Inspired by human manipulation, we envision that an emphasis on the temporal integration of these processes opens the way for human-like object use by robots.

  • 46.
    Butepage, Judith
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kjellström, Hedvig
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kragic, Danica
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Anticipating many futures: Online human motion prediction and generation for human-robot interaction2018Ingår i: 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE COMPUTER SOC , 2018, s. 4563-4570Konferensbidrag (Refereegranskat)
    Abstract [en]

    Fluent and safe interactions of humans and robots require both partners to anticipate the others' actions. The bottleneck of most methods is the lack of an accurate model of natural human motion. In this work, we present a conditional variational autoencoder that is trained to predict a window of future human motion given a window of past frames. Using skeletal data obtained from RGB depth images, we show how this unsupervised approach can be used for online motion prediction for up to 1660 ms. Additionally, we demonstrate online target prediction within the first 300-500 ms after motion onset without the use of target specific training data. The advantage of our probabilistic approach is the possibility to draw samples of possible future motion patterns. Finally, we investigate how movements and kinematic cues are represented on the learned low dimensional manifold.

  • 47.
    Bütepage, Judith
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kjellström, Hedvig
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kragic, Danica
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    A Probabilistic Semi-Supervised Approach to Multi-Task Human Activity ModelingManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Human behavior is a continuous stochastic spatio-temporal process which is governed by semantic actions and affordances as well as latent factors. Therefore, video-based human activity modeling is concerned with a number of tasks such as inferring current and future semantic labels, predicting future continuous observations as well as imagining possible future label and feature sequences. In this paper we present a semi-supervised probabilistic deep latent variable model that can represent both discrete labels and continuous observations as well as latent dynamics over time. This allows the model to solve several tasks at once without explicit fine-tuning. We focus here on the tasks of action classification, detection, prediction and anticipation as well as motion prediction and synthesis based on 3D human activity data recorded with Kinect. We further extend the model to capture hierarchical label structure and to model the dependencies between multiple entities, such as a human and objects. Our experiments demonstrate that our principled approach to human activity modeling can be used to detect current and anticipate future semantic labels and to predict and synthesize future label and feature sequences. When comparing our model to state-of-the-art approaches, which are specifically designed for e.g. action classification, we find that our probabilistic formulation outperforms or is comparable to these task specific models.

  • 48.
    Caccamo, Sergio
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bekiroglu, Yasemin
    Ek, Carl Henrik
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Active Exploration Using Gaussian Random Fields and Gaussian Process Implicit Surfaces2016Ingår i: 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 582-589Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this work we study the problem of exploring surfaces and building compact 3D representations of the environment surrounding a robot through active perception. We propose an online probabilistic framework that merges visual and tactile measurements using Gaussian Random Field and Gaussian Process Implicit Surfaces. The system investigates incomplete point clouds in order to find a small set of regions of interest which are then physically explored with a robotic arm equipped with tactile sensors. We show experimental results obtained using a PrimeSense camera, a Kinova Jaco2 robotic arm and Optoforce sensors on different scenarios. We then demostrate how to use the online framework for object detection and terrain classification.

  • 49.
    Caccamo, Sergio
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Güler, Püren
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kjellström, Hedvig
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Active perception and modeling of deformable surfaces using Gaussian processes and position-based dynamics2016Ingår i: IEEE-RAS International Conference on Humanoid Robots, IEEE, 2016, s. 530-537Konferensbidrag (Refereegranskat)
    Abstract [en]

    Exploring and modeling heterogeneous elastic surfaces requires multiple interactions with the environment and a complex selection of physical material parameters. The most common approaches model deformable properties from sets of offline observations using computationally expensive force-based simulators. In this work we present an online probabilistic framework for autonomous estimation of a deformability distribution map of heterogeneous elastic surfaces from few physical interactions. The method takes advantage of Gaussian Processes for constructing a model of the environment geometry surrounding a robot. A fast Position-based Dynamics simulator uses focused environmental observations in order to model the elastic behavior of portions of the environment. Gaussian Process Regression maps the local deformability on the whole environment in order to generate a deformability distribution map. We show experimental results using a PrimeSense camera, a Kinova Jaco2 robotic arm and an Optoforce sensor on different deformable surfaces.

  • 50.
    Carvalho, J. Frederico
    et al.
    KTH. KTH, CAS, RPL, Royal Inst Technol, Stocholm, Sweden..
    Vejdemo-Johansson, Mikael
    CUNY Coll Staten Isl, Math Dept, Staten Isl, NY 10314 USA.;CUNY, Grad Ctr, Comp Sci, New York, NY USA..
    Kragic, Danica
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, CAS, RPL, Royal Inst Technol, Stocholm, Sweden..
    Pokorny, Florian T.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, CAS, RPL, Royal Inst Technol, Stocholm, Sweden..
    Path Clustering with Homology Area2018Ingår i: 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE Computer Society, 2018, s. 7346-7353Konferensbidrag (Refereegranskat)
    Abstract [en]

    Path clustering has found many applications in recent years. Common approaches to this problem use aggregates of the distances between points to provide a measure of dissimilarity between paths which do not satisfy the triangle inequality. Furthermore, they do not take into account the topology of the space where the paths are embedded. To tackle this, we extend previous work in path clustering with relative homology, by employing minimum homology area as a measure of distance between homologous paths in a triangulated mesh. Further, we show that the resulting distance satisfies the triangle inequality, and how we can exploit the properties of homology to reduce the amount of pairwise distance calculations necessary to cluster a set of paths. We further compare the output of our algorithm with that of DTW on a toy dataset of paths, as well as on a dataset of real-world paths.

123456 1 - 50 av 298
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf