kth.sePublications
Change search
Refine search result
12345 1 - 50 of 232
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abarr, Quincy
    et al.
    Washington Univ, 1 Brookings Dr,CB 1105, St Louis, MO 63130 USA..
    Iyer, Nirmal
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Kiss, Mózsi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Maeda, Yoshitomo
    ISAS, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan..
    Pearce, Mark
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Stana, Theodor-Adrian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Yoshida, Yuto
    Tokyo Univ Sci, Dept Phys, Chiba 2788510, Japan..
    "XL-Calibur", the Next-Generation Balloon-Borne Hard X-ray Polarimeter2021In: Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray / [ed] DenHerder, JWA Nikzad, S Nakazawa, K, SPIE-Intl Soc Optical Eng , 2021, article id 114442XConference paper (Refereed)
    Abstract [en]

    This paper introduces a second-generation balloon-borne hard X-ray polarimetry mission, XL-Calibur.(1) The XL-Calibur will follow up on the X-Calibur mission which was flown from Dec. 29, 2018 for a 2.5 days balloon flight from McMurdo (the Antarctic). X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as pulsars and binary black hole systems. The XL-Calibur contains a grazing incidence X-ray telescope with a focal plane detector unit that is sensitive to linear polarization. The telescope is very similar in design to the ASTRO-H HXT telescopes that has the world's largest effective area above 10 keV. XL-Calibur will use the same type of mirror. The detector unit combines a low atomic number Compton scatterer with a CdZnTe detector assembly to measure the polarization making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. It also contains a CdZnTe imager at the bottom. The detector assembly is surrounded by a BGO anticoincidence shield. The pointing system with arcsecond accuracy will be achieved by the WASP (Wallops Arc Second Pointer) from NASA's Wallops Flight Facility. A first flight of the XL-Calibur is currently foreseen for 2022, flying from Sweden.

  • 2. Abdo, A. A.
    et al.
    Ackermann, M.
    Agudo, I.
    Ajello, M.
    Allafort, A.
    Aller, H. D.
    Aller, M. F.
    Antolini, E.
    Arkharov, A. A.
    Axelsson, Magnus
    Bach, U.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berdyugin, A.
    Berenji, B.
    Blandford, R. D.
    Blinov, D. A.
    Bloom, E. D.
    Boettcher, M.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buemi, C. S.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Carosati, D.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe
    Chekhtman, A.
    Chen, W. P.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    Corbel, S.
    Costamante, L.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Donato, D.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Forne, E.
    Fortin, P.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grove, J. E.
    Guiriec, S.
    Gurwell, M. A.
    Gusbar, C.
    Gomez, J. L.
    Hadasch, D.
    Hagen-Thorn, V. A.
    Hayashida, M.
    Hays, E.
    Horan, D.
    Hughes, R. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kimeridze, G.
    Knoedlseder, J.
    Konstantinova, T. S.
    Kopatskaya, E. N.
    Koptelova, E.
    Kovalev, Y. Y.
    Kurtanidze, O. M.
    Kuss, M.
    Lahteenmaki, A.
    Lande, J.
    Larionov, V. M.
    Larionova, E. G.
    Larionova, L. V.
    Larsson, S.
    Latronico, L.
    Lee, S. -H
    Leto, P.
    Lister, M. L.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Massaro, E.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    McHardy, I. M.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morozova, D. A.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Naumann-Godo, M.
    Nikolashvili, M. G.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Okumura, A.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pasanen, M.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Pushkarev, A. B.
    Raino, S.
    Raiteri, C. M.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reinthal, R.
    Ripken, J.
    Ritz, S.
    Roca-Sogorb, M.
    Rodriguez, A. Y.
    Roth, M.
    Roustazadeh, P.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sander, A.
    Scargle, J. D.
    Sgro, C.
    Sigua, L. A.
    Smith, P. D.
    Sokolovsky, K.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Takalo, L. O.
    Tanaka, T.
    Taylor, B.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Tornikoski, M.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Trigilio, C.
    Troitsky, I. S.
    Umana, G.
    Usher, T. L.
    Vandenbroucke, J.
    Vasileiou, V.
    Vilchez, N.
    Villata, M.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Z.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    FERMI Large Area Telescope and multi-wavelength observations of the flaring activity of PKS 1510-089 between 2008 september and 2009 june2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 721, no 2, p. 1425-1447Article in journal (Refereed)
    Abstract [en]

    We report on the multi-wavelength observations of PKS 1510-089 (a flat spectrum radio quasar (FSRQ) at z = 0.361) during its high activity period between 2008 September and 2009 June. During this 11 month period, the source was characterized by a complex variability at optical, UV, and gamma-ray bands, on timescales down to 6-12 hr. The brightest gamma-ray isotropic luminosity, recorded on 2009 March 26, was similar or equal to 2 x 1048 erg s-1. The spectrum in the Fermi Large Area Telescope energy range shows a mild curvature described well by a log-parabolic law, and can be understood as due to the Klein-Nishina effect. The. -ray flux has a complex correlation with the other wavelengths. There is no correlation at all with the X-ray band, a weak correlation with the UV, and a significant correlation with the optical flux. The. -ray flux seems to lead the optical one by about 13 days. From the UV photometry, we estimated a black hole mass of similar or equal to 5.4 x 10(8)M(circle dot) and an accretion rate of similar or equal to 0.5M(circle dot) yr(-1). Although the power in the thermal and non-thermal outputs is smaller compared to the very luminous and distant FSRQs, PKS 1510-089 exhibits a quite large Compton dominance and a prominent big blue bump (BBB) as observed in the most powerful gamma-ray quasars. The BBB was still prominent during the historical maximum optical state in 2009 May, but the optical/ UV spectral index was softer than in the quiescent state. This seems to indicate that the BBB was not completely dominated by the synchrotron emission during the highest optical state. We model the broadband spectrum assuming a leptonic scenario in which the inverse Compton emission is dominated by the scattering of soft photons produced externally to the jet. The resulting model-dependent jet energetic content is compatible with a scenario in which the jet is powered by the accretion disk, with a total efficiency within the Kerr black hole limit.

  • 3. Abdo, A. A.
    et al.
    Ackermann, M.
    Agudo, I.
    Ajello, M.
    Aller, H. D.
    Aller, M. F.
    Angelakis, E.
    Arkharov, A. A.
    Axelsson, Magnus
    Bach, U.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Benitez, E.
    Berdyugin, A.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Boettcher, M.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Burrows, D.
    Buson, S.
    Caliandro, G. A.
    Calzoletti, L.
    Cameron, R. A.
    Capalbi, M.
    Caraveo, P. A.
    Carosati, D.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe.
    Charles, E.
    Chaty, S.
    Chekhtman, A.
    Chen, W. P.
    Chiang, J.
    Chincarini, G.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Colafrancesco, S.
    Cominsky, L. R.
    Conrad, J.
    Costamante, L.
    Cutini, S.
    D'ammando, F.
    Deitrick, R.
    D'Elia, V.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    Donnarumma, I.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dultzin, D.
    Dumora, D.
    Falcone, A.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Forne, E.
    Fortin, P.
    Frailis, M.
    Fuhrmann, L.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gomez, J. L.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giuliani, A.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Gronwall, C.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Gurwell, M. A.
    Hadasch, D.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Healey, S. E.
    Heidt, J.
    Hiriart, D.
    Horan, D.
    Hoversten, E. A.
    Hughes, R. E.
    Itoh, R.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Jorstad, S. G.
    Kadler, M.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kennea, J.
    Kerr, M.
    Kimeridze, G.
    Knoedlseder, J.
    Kocian, M. L.
    Kopatskaya, E. N.
    Koptelova, E.
    Konstantinova, T. S.
    Kovalev, Y. Y.
    Kovalev, Yu. A.
    Kurtanidze, O. M.
    Kuss, M.
    Lande, J.
    Larionov, V. M.
    Latronico, L.
    Leto, P.
    Lindfors, E.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Marchegiani, P.
    Marscher, A. P.
    Marshall, F.
    Max-Moerbeck, W.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nestoras, I.
    Nilsson, K.
    Nizhelsky, N. A.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Ojha, R.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Osborne, J.
    Ozaki, M.
    Pacciani, L.
    Padovani, P.
    Pagani, C.
    Page, K.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pasanen, M.
    Pavlidou, V.
    Pelassa, V.
    Pepe, M.
    Perri, M.
    Pesce-Rollins, M.
    Piranomonte, S.
    Piron, F.
    Pittori, C.
    Porter, T. A.
    Puccetti, S.
    Rahoui, F.
    Raino, S.
    Raiteri, C.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Richards, J. L.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Ros, J. A.
    Roth, M.
    Roustazadeh, P.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sadun, A.
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sellerholm, A.
    Sgro, C.
    Shaw, M. S.
    Sigua, L. A.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Stevenson, M.
    Stratta, G.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Takalo, L. O.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Verrecchia, F.
    Vilchez, N.
    Villata, M.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zensus, J. A.
    Zhekanis, G. V.
    Ziegler, M.
    The spectral energy distribution of fermi bright blazars2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 716, no 1, p. 30-70Article in journal (Refereed)
    Abstract [en]

    We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log nu-log nu F-nu representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low-and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(ro), and optical to X-ray, alpha(ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (nu(S)(peak)) is positioned between 10(12.5) and 10(14.5) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(13) and 10(17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter gamma-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum gamma-ray sources, the correlation between nu(S)(peak) and gamma-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.

  • 4. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Antolini, E.
    Atwood, W. B.
    Axelsson, Magnus
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bogart, J. R.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Cannon, A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe.
    Celotti, A.
    Charles, E.
    Chekhtman, A.
    Chen, A. W.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    Costamante, L.
    Cotter, G.
    Cutini, S.
    D'Elia, V.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    De Rosa, A.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Escande, L.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grandi, P.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guiriec, S.
    Hadasch, D.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Healey, S. E.
    Hill, A. B.
    Horan, D.
    Hughes, R. E.
    Iafrate, G.
    Itoh, R.
    Johannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lavalley, C.
    Lemoine-Goumard, M.
    Garde, M. Llena
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Malaguti, G.
    Massaro, E.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    McGlynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piranomonte, S.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ripken, J.
    Ritz, S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Shaw, M. S.
    Siskind, E. J.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Stawarz, L.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Taylor, G. B.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Ubertini, P.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Villata, M.
    Vitale, V.
    Waite, A. P.
    Wallace, E.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Z.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    The first catalog of active galactic nuclei detected by the Fermi large area telescope2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 715, no 1, p. 429-457Article in journal (Refereed)
    Abstract [en]

    We present the first catalog of active galactic nuclei (AGNs) detected by the Large Area Telescope (LAT), corresponding to 11 months of data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 gamma-ray sources located at high Galactic latitudes (|b| > 10 degrees) that are detected with a test statistic greater than 25 and associated statistically with AGNs. Some LAT sources are associated with multiple AGNs, and consequently, the catalog includes 709 AGNs, comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs of other types, and 72 AGNs of unknown type. We also classify the blazars based on their spectral energy distributions as archival radio, optical, and X-ray data permit. In addition to the formal 1LAC sample, we provide AGN associations for 51 low-latitude LAT sources and AGN "affiliations" (unquantified counterpart candidates) for 104 high-latitude LAT sources without AGN associations. The overlap of the 1LAC with existing gamma-ray AGN catalogs (LBAS, EGRET, AGILE, Swift, INTEGRAL, TeVCat) is briefly discussed. Various properties-such as gamma-ray fluxes and photon power-law spectral indices, redshifts, gamma-ray luminosities, variability, and archival radio luminosities-and their correlations are presented and discussed for the different blazar classes. We compare the 1LAC results with predictions regarding the gamma-ray AGN populations, and we comment on the power of the sample to address the question of the blazar sequence.

  • 5. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Asano, K.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Camilo, F.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    den Hartog, P. R.
    Dermer, C. D.
    de Luca, A.
    de Palma, F.
    Dormody, M.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Gotthelf, E. V.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hays, E.
    Hobbs, G.
    Horan, D.
    Hughes, R. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Johnston, S.
    Kamae, T.
    Kanai, Y.
    Kanbach, G.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Keith, M.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Garde, M. Llena
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Manchester, R. N.
    Marelli, M.
    Mazziotta, M. N.
    McEnery, J. E.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Rea, N.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sander, A.
    Parkinson, P. M. Saz
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Thorsett, S. E.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Venter, C.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Weltevrede, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Z.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Detection of the energetic pulsar PSR B1509-58 and its pulsar wind nebula in MSH 15-52 using the Fermi-large area telescope2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 714, no 1, p. 927-936Article in journal (Refereed)
    Abstract [en]

    We report the detection of high-energy gamma-ray emission from the young and energetic pulsar PSR B1509-58 and its pulsar wind nebula (PWN) in the composite supernova remnant G320.4-1.2 (aka MSH 15-52). Using 1 yr of survey data with the Fermi-Large Area Telescope (LAT), we detected pulsations from PSR B1509-58 up to 1 GeV and extended gamma-ray emission above 1 GeV spatially coincident with the PWN. The pulsar light curve presents two peaks offset from the radio peak by phases 0.96 +/- 0.01 and 0.33 +/- 0.02. New constraining upper limits on the pulsar emission are derived below 1 GeV and confirm a severe spectral break at a few tens of MeV. The nebular spectrum in the 1-100 GeV energy range is well described by a power law with a spectral index of (1.57 +/- 0.17 +/- 0.13) and a flux above 1 GeV of (2.91 +/- 0.79 +/- 1.35) x 10(-9) cm(-2) s(-1). The first errors represent the statistical errors on the fit parameters, while the second ones are the systematic uncertainties. The LAT spectrum of the nebula connects nicely with Cherenkov observations, and indicates a spectral break between GeV and TeV energies.

  • 6. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    Dermer, C. D.
    de Luca, A.
    de Palma, F.
    Dormody, M.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hadasch, D.
    Harding, A. K.
    Hays, E.
    Hobbs, G.
    Horan, D.
    Hughes, R. E.
    Jackson, Miranda S.
    KTH, School of Engineering Sciences (SCI), Physics.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lee, S. -H
    Lemoine-Goumard, M.
    Garde, M. Llena
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Manchester, R. N.
    Marelli, M.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    McGlynn, Sinead
    KTH, School of Engineering Sciences (SCI), Physics.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Noutsos, A.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Pierbattista, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Ray, P. S.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sander, A.
    Parkinson, P. M. Saz
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Usher, T. L.
    Van Etten, A.
    Vasileiou, V.
    Venter, C.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Watters, K.
    Weltevrede, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics.
    Ziegler, M.
    THE VELA PULSAR: RESULTS FROM THE FIRST YEAR OF FERMI LAT OBSERVATIONS2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 713, no 1, p. 154-165Article in journal (Refereed)
    Abstract [en]

    We report on analysis of timing and spectroscopy of the Vela pulsar using 11 months of observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. The intrinsic brightness of Vela at GeV energies combined with the angular resolution and sensitivity of the LAT allows us to make the most detailed study to date of the energy-dependent light curves and phase-resolved spectra, using a LAT-derived timing model. The light curve consists of two peaks (P1 and P2) connected by bridge emission containing a third peak (P3). We have confirmed the strong decrease of the P1/P2 ratio with increasing energy seen with EGRET and previous Fermi LAT data, and observe that P1 disappears above 20 GeV. The increase with energy of the mean phase of the P3 component can be followed with much greater detail, showing that P3 and P2 are present up to the highest energies of pulsation. We find significant pulsed emission at phases outside the main profile, indicating that magnetospheric emission exists over 80% of the pulsar period. With increased high-energy counts the phase-averaged spectrum is seen to depart from a power law with simple exponential cutoff, and is better fit with a more gradual cutoff. The spectra in fixed-count phase bins are well fit with power laws with exponential cutoffs, revealing a strong and complex phase dependence of the cutoff energy, especially in the peaks. By combining these results with predictions of the outer magnetosphere models that map emission characteristics to phase, it will be possible to probe the particle acceleration and the structure of the pulsar magnetosphere with unprecedented detail.

  • 7. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et al,
    FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA-X PULSAR WIND NEBULA2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 713, no 1, p. 146-153Article in journal (Refereed)
    Abstract [en]

    We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45 using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degrees diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray, and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2 degrees x 3 degrees area south of the pulsar known as Vela-X. The LAT flux is significantly spatially extended with a best-fit radius of 0.degrees 88 +/- 0.degrees 12 for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) x 10(-7) cm(-2) s(-1). The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula system and favor a scenario with two distinct electron populations.

  • 8. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    McGlynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et al.,
    DISCOVERY OF PULSED gamma-RAYS FROM PSR J0034-0534 WITH THE FERMI LARGE AREA TELESCOPE: A CASE FOR CO-LOCATED RADIO AND gamma-RAY EMISSION REGIONS2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 712, no 2, p. 957-963Article in journal (Refereed)
    Abstract [en]

    Millisecond pulsars (MSPs) have been firmly established as a class of gamma-ray emitters via the detection of pulsations above 0.1 GeV from eight MSPs by the Fermi Large Area Telescope (LAT). Using 13 months of LAT data, significant gamma-ray pulsations at the radio period have been detected from the MSP PSR J0034-0534, making it the ninth clear MSP detection by the LAT. The gamma-ray light curve shows two peaks separated by 0.274 +/- 0.015 in phase which are very nearly aligned with the radio peaks, a phenomenon seen only in the Crab pulsar until now. The >= 0.1 GeV spectrum of this pulsar is well fit by an exponentially cutoff power law with a cutoff energy of 1.8 +/- 0.6 +/- 0.1 GeV and a photon index of 1.5 +/- 0.2 +/- 0.1, first errors are statistical and second are systematic. The near-alignment of the radio and gamma-ray peaks strongly suggests that the radio and gamma-ray emission regions are co-located and both are the result of caustic formation.

  • 9. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Ampe, J.
    Anderson, B.
    Johannesson, G.
    Johnson, A. S.
    Klamra, Wlodzimierz
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    McGlynn, Sinéad
    University College Dublin, Ireland.
    Ylinen, Tomi
    Hogskolan i Kalmar.
    Moretti, Elena
    Max-Planck-Institut-fur-Physik, Germany.
    The on-orbit calibration of the Fermi Large Area Telescope2009In: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 32, no 3-4, p. 193-219Article in journal (Refereed)
    Abstract [en]

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.

  • 10. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Anderson, B.
    Atwood, W. B.
    Johannesson, G.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    et al,
    Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT2009In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 325, no 5942, p. 840-844Article in journal (Refereed)
    Abstract [en]

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.

  • 11. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Anderson, B.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes2009In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 103, no 25Article in journal (Refereed)
    Abstract [en]

    The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater than or similar to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees <|b|< 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  • 12. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Antolini, E.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe.
    Chekhtman, A.
    Chen, A. W.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Colafrancesco, S.
    Conrad, J.
    Cutini, S.
    Dermer, C. D.
    de Palma, F.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Frailis, M.
    Fukazawa, Y.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grandi, P.
    Grenier, I. A.
    Guillemot, L.
    Guiriec, S.
    Hadasch, D.
    Harding, A. K.
    Hayashida, M.
    Horan, D.
    Hughes, R. E.
    Itoh, R.
    Jackson, Miranda S.
    KTH, School of Engineering Sciences (SCI), Physics.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McEnery, J. E.
    McGlynn, Sinead
    KTH, School of Engineering Sciences (SCI), Physics.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nestoras, I.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Okumura, A.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reyes, L. C.
    Rodriguez, A. Y.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sambruna, R.
    Sander, A.
    Sato, R.
    Sgro, C.
    Shaw, M. S.
    Siskind, E. J.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Stawarz, L.
    Stecker, F. W.
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibolla, O.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Villata, M.
    Vitale, V.
    von Kienlin, A.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Z.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics.
    Ziegler, M.
    Tavecchio, F.
    Sikora, M.
    Schady, P.
    Roming, P.
    Chester, M. M.
    Maraschi, L.
    SUZAKU OBSERVATIONS OF LUMINOUS QUASARS: REVEALING THE NATURE OF HIGH-ENERGY BLAZAR EMISSION IN LOW-LEVEL ACTIVITY STATES2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 716, no 1, p. 835-849Article in journal (Refereed)
    Abstract [en]

    We present the results from the Suzaku X-ray observations of five flat-spectrum radio quasars (FSRQs), namely PKS 0208-512, Q 0827+243, PKS 1127-145, PKS 1510-089, and 3C 454.3. All these sources were additionally monitored simultaneously or quasi-simultaneously by the Fermi satellite in gamma rays and the Swift UVOT in the UV and optical bands, respectively. We constructed their broadband spectra covering the frequency range from 10(14) Hz up to 10(25) Hz, and those reveal the nature of high-energy emission of luminous blazars in their low-activity states. The analyzed X-ray spectra are well fitted by a power-law model with photoelectric absorption. In the case of PKS 0208-512, PKS 1127-145, and 3C 454.3, the X-ray continuum showed indication of hardening at low energies. Moreover, when compared with the previous X-ray observations, we see a significantly increasing contribution of low-energy photons to the total X-ray fluxes when the sources are getting fainter. The same behavior can be noted in the Suzaku data alone. A likely explanation involves a variable, flat-spectrum component produced via inverse-Compton emission, plus an additional, possibly steady soft X-ray component prominent when the source gets fainter. This soft X-ray excess is represented either by a steep power-law (photon indices Gamma similar to 3-5) or a blackbody-type emission with temperatures kT similar to 0.1-0.2 keV. We model the broadband spectra of the five observed FSRQs using synchrotron self-Compton and/or external-Compton radiation models. Our modeling suggests that the difference between the low-and high-activity states in luminous blazars is due to the different total kinetic power of the jet, most likely related to varying bulk Lorentz factor of the outflow within the blazar emission zone.

  • 13. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Antolini, E.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Costamante, L.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guiriec, S.
    Hadasch, D.
    Hayashida, M.
    Hays, E.
    Healey, S. E.
    Horan, D.
    Hughes, R. E.
    Itoh, R.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Massaro, E.
    Mazziotta, M. N.
    McEnery, J. E.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Mueller, M.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Ritz, S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sander, A.
    Scargle, J. D.
    Sgro, C.
    Shaw, M. S.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wallace, E.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Z.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Gamma-ray light curves and variability of bright fermi-detected blazars2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 722, no 1, p. 520-542Article in journal (Refereed)
    Abstract [en]

    This paper presents light curves as well as the first systematic characterization of variability of the 106 objects in the high-confidence Fermi Large Area Telescope Bright AGN Sample (LBAS). Weekly light curves of this sample, obtained during the first 11 months of the Fermi survey (2008 August 4-2009 July 4), are tested for variability and their properties are quantified through autocorrelation function and structure function analysis. For the brightest sources, 3 or 4 day binned light curves are extracted in order to determine power density spectra (PDSs) and to fit the temporal structure of major flares. More than 50% of the sources are found to be variable with high significance, where high states do not exceed 1/4 of the total observation range. Variation amplitudes are larger for flat spectrum radio quasars and low/intermediate synchrotron frequency peaked BL Lac objects. Autocorrelation timescales derived from weekly light curves vary from four to a dozen of weeks. Variable sources of the sample have weekly and 3-4 day bin light curves that can be described by 1/f(alpha) PDS, and show two kinds of gamma-ray variability: (1) rather constant baseline with sporadic flaring activity characterized by flatter PDS slopes resembling flickering and red noise with occasional intermittence and (2)-measured for a few blazars showing strong activity-complex and structured temporal profiles characterized by long-term memory and steeper PDS slopes, reflecting a random walk underlying mechanism. The average slope of the PDS of the brightest 22 FSRQs and of the 6 brightest BL Lacs is 1.5 and 1.7, respectively. The study of temporal profiles of well-resolved flares observed in the 10 brightest LBAS sources shows that they generally have symmetric profiles and that their total duration vary between 10 and 100 days. Results presented here can assist in source class recognition for unidentified sources and can serve as reference for more detailed analysis of the brightest gamma-ray blazars.

  • 14. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Atwood, W. B.
    Axelsson, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bhat, P. N.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Briggs, M. S.
    Brigida, M.
    Bruel, P.
    Burgess, J. M.
    Burrows, D. N.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Celik, O.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Connaughton, V.
    Conrad, J.
    Cutini, S.
    d'Elia, V.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    Dingus, B. L.
    Silva, E. D. E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Finke, J.
    Fishman, G.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Goldstein, A.
    Granot, J.
    Greiner, J.
    Grenier, I. A.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Horan, D.
    Hughes, R. E.
    Jackson, M. S.
    Johannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Kippen, R. M.
    Knodlseder, J.
    Kocevski, D.
    Komin, N.
    Kouveliotou, C.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McBreen, S.
    McEnery, J. E.
    McGlynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics.
    Meegan, C.
    Meszaros, P.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Moretti, E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paciesas, W. S.
    Paneque, D.
    Panetta, J. H.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Porter, T. A.
    Preece, R.
    Raino, S.
    Rando, R.
    Rau, A.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Roming, P. W. A.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. W.
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. S.
    Scargle, J. D.
    Schalk, T. L.
    Sgro, C.
    Siskind, E. J.
    Smith, P. D.
    Spinelli, P.
    Stamatikos, M.
    Stecker, F. W.
    Stratta, G.
    Strickman, M. S.
    Suson, D. J.
    Swenson, C. A.
    Tajima, H.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Uehara, T.
    Usher, T. L.
    van der Horst, A. J.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    von Kienlin, A.
    Waite, A. P.
    Wang, P.
    Wilson-Hodge, C.
    Winer, B. L.
    Wood, K. S.
    Yamazaki, R.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics.
    Ziegler, M.
    FERMI OBSERVATIONS OF GRB 090902B: A DISTINCT SPECTRAL COMPONENT IN THE PROMPT AND DELAYED EMISSION2009In: Astrophysical Journal Letters, ISSN 2041-8205, Vol. 706, no 1, p. L138-L144Article in journal (Refereed)
    Abstract [en]

    We report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. This was one of the brightest GRBs to have been observed by the LAT, which detected several hundred photons during the prompt phase. With a redshift of z = 1.822, this burst is among the most luminous detected by Fermi. Time-resolved spectral analysis reveals a significant power-law component in the LAT data that is distinct from the usual Band model emission that is seen in the sub-MeV energy range. This power-law component appears to extrapolate from the GeV range to the lowest energies and is more intense than the Band component, both below similar to 50 keV and above 100 MeV. The Band component undergoes substantial spectral evolution over the entire course of the burst, while the photon index of the power-law component remains constant for most of the prompt phase, then hardens significantly toward the end. After the prompt phase, power-law emission persists in the LAT data as late as 1 ks post-trigger, with its flux declining as t(-1.5). The LAT detected a photon with the highest energy so far measured from a GRB, 33.4(-3.5)(+ 2.7) GeV. This event arrived 82 s after the GBM trigger and similar to 50 s after the prompt phase emission had ended in the GBM band. We discuss the implications of these results for models of GRB emission and for constraints on models of the extragalactic background light.

  • 15. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Atwood, W. B.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Johannesson, G.
    Johnson, A. S.
    McGlynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    et al.,
    Fermi detection of delayed GeV emission from the short gamma-ray burst 081024B2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 712, no 1, p. 558-564Article in journal (Refereed)
    Abstract [en]

    We report on the detailed analysis of the high-energy extended emission from the short gamma-ray burst (GRB) 081024B detected by the Fermi Gamma-ray Space Telescope. Historically, this represents the first clear detection of temporal extended emission from a short GRB. The light curve observed by the Fermi Gamma-ray Burst Monitor lasts approximately 0.8 s whereas the emission in the Fermi Large Area Telescope lasts for about 3 s. Evidence of longer lasting high-energy emission associated with long bursts has been already reported by previous experiments. Our observations, together with the earlier reported study of the bright short GRB 090510, indicate similarities in the high-energy emission of short and long GRBs and open the path to new interpretations.

  • 16. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Atwood, W. B.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Conrad, Jan
    Mc Glynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Moretti, Elena
    University and INFN of Trieste.
    A limit on the variation of the speed of light arising from quantum gravity effects2009In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 462, no 7271, p. 331-334Article in journal (Refereed)
    Abstract [en]

    A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximate to 1.62 x 10(-33) cm or E-Planck = M(Planck)c(2) approximate to 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy(1-7). Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves(2). Here we report the detection of emission up to similar to 31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories(3,6,7) in which the quantum nature of space-time on a very small scale linearly alters the speed of light.

  • 17. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Pushkarev, A. B.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    FERMI DISCOVERY OF GAMMA-RAY EMISSION FROM NGC 12752009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 699, no 1, p. 31-39Article in journal (Refereed)
    Abstract [en]

    We report the discovery of high-energy (E > 100 MeV) gamma-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the gamma-ray source is only approximate to 3' away from the NGC 1275 nucleus, well within the 95% LAT error circle of approximate to 5'. The spatial distribution of gamma-ay photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F-gamma = (2.10 +/- 0.23) x 10(-7) ph (>100 MeV) cm(-2) s(-1) and Gamma = 2.17 +/- 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F-gamma < 3.72 x 10(-8) ph (>100 MeV) cm(-2) s(-1) to the gamma-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  • 18. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Belfiore, A.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Camilo, F.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    de Angelis, A.
    de Luca, A.
    de Palma, F.
    Digel, S. W.
    Dormody, M.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Edmonds, Y.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Gwon, C.
    Hadasch, D.
    Harding, A. K.
    Hays, E.
    Horan, D.
    Hughes, R. E.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Johannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Kanai, Y.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Marelli, M.
    Mazziotta, M. N.
    McEnery, J. E.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Pierbattista, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Ransom, S. M.
    Ray, P. S.
    Razzano, M.
    Rea, N.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Thorsett, S. E.
    Tibaldo, L.
    Tibolla, O.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Usher, T. L.
    Van Etten, A.
    Vasileiou, V.
    Venter, C.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Watters, K.
    Winer, B. L.
    Wolff, M. T.
    Wood, K. S.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Fermi large area telescope observations of PSR J1836+59252010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 712, no 2, p. 1209-1218Article in journal (Refereed)
    Abstract [en]

    The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1 x 10(34) erg s(-1), and a large off-peak (OP) emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results, and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the OP emission indicate it is likely magnetospheric. Analysis of recent XMM-Newton observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission.

  • 19. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe
    Chaty, S.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Corbel, S.
    Corbet, R.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    do Couto E Silva, E.
    Drell, P. S.
    Dubois, R.
    Dubus, G.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hill, A. B.
    Horan, D.
    Hughes, R. E.
    Jackson, M. S.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kocian, M. L.
    Kuehn, F.
    Kuss, M.
    Lande, J.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Marelli, M.
    Mazziotta, M. N.
    McEnery, J. E.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Ray, P. S.
    Razzano, M.
    Rea, N.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Sierpowska-Bartosik, A.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Tanaka, Y.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Venter, C.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wallace, E.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Fermi/lat observations of LS 50392009In: Astrophysical Journal Letters, ISSN 2041-8205, Vol. 706, no 1, p. L56-L61Article in journal (Refereed)
    Abstract [en]

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 +/- 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux ( 100 MeV-300 GeV) of 4.9 +/- 0.5(stat) +/- 1.8(syst) x 10(-7) photon cm(-2) s(-1), with a cutoff at 2.1 +/- 0.3(stat) +/- 1.1(syst) GeV and photon index G = 1.9 +/- 0.1(stat) +/- 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

  • 20. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Battelino, Milan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Carlson, Per
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Moretti, Elena
    University and INFN of Trieste.
    Measurement of the Cosmic Ray e(+)+e(-) Spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope2009In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 102, no 18Article in journal (Refereed)
    Abstract [en]

    Designed as a high-sensitivity gamma-ray observatory, the Fermi Large Area Telescope is also an electron detector with a large acceptance exceeding 2 m(2) sr at 300 GeV. Building on the gamma-ray analysis, we have developed an efficient electron detection strategy which provides sufficient background rejection for measurement of the steeply falling electron spectrum up to 1 TeV. Our high precision data show that the electron spectrum falls with energy as E-3.0 and does not exhibit prominent spectral features. Interpretations in terms of a conventional diffusive model as well as a potential local extra component are briefly discussed.

  • 21. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Battelino, Milan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Mc Glynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Moretti, Elena
    University and INFN of Trieste.
    FERMI/LARGE AREA TELESCOPE BRIGHT GAMMA-RAY SOURCE LIST2009In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 183, no 1, p. 46-66Article in journal (Refereed)
    Abstract [en]

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the gamma-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than similar to 10 sigma) gamma-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) gamma-ray sources in the early mission data.

  • 22. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Carlson, Per
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tami
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope2009In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 325, no 5942, p. 848-852Article in journal (Refereed)
    Abstract [en]

    Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface.

  • 23. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi2009In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 325, no 5942, p. 845-848Article in journal (Refereed)
    Abstract [en]

    We report the detection of gamma-ray emissions above 200 megaelectron volts at a significance level of 17 sigma from the globular cluster 47 Tucanae, using data obtained with the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Globular clusters are expected to emit gamma rays because of the large populations of millisecond pulsars that they contain. The spectral shape of 47 Tucanae is consistent with gamma-ray emission from a population of millisecond pulsars. The observed gamma-ray luminosity implies an upper limit of 60 millisecond pulsars present in 47 Tucanae.

  • 24. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    FERMI LAT OBSERVATIONS OF LS I+61 degrees 303: FIRST DETECTION OF AN ORBITAL MODULATION IN GeV GAMMA RAYS2009In: The Astrophysical Journal Letters, ISSN 2041-8213, Vol. 701, no 2, p. L123-L128Article in journal (Refereed)
    Abstract [en]

    This Letter presents the first results from the observations of LS I + 61 degrees 303 using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope between 2008 August and 2009 March. Our results indicate variability that is consistent with the binary period, with the emission being modulated at 26.6 +/- 0.5 days. This constitutes the first detection of orbital periodicity in high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized by a broad peak after periastron, as well as a smaller peak just before apastron. The spectrum is best represented by a power law with an exponential cutoff, yielding an overall flux above 100 MeV of 0.82 +/- 0.03(stat) +/- 0.07(syst) 10(-6) ph cm(-2) s(-1), with a cutoff at 6.3 +/- 1.1(stat) +/- 0.4(syst) GeV and photon index Gamma = 2.21 +/- 0.04(stat) +/- 0.06(syst). There is no significant spectral change with orbital phase. The phase of maximum emission, close to periastron, hints at inverse Compton scattering as the main radiation mechanism. However, previous very high-energy gamma ray (>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to apastron. This and the energy cutoff seen with Fermi suggest that the link between HE and VHE gamma rays is nontrivial.

  • 25. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    FERMI OBSERVATIONS OF TeV-SELECTED ACTIVE GALACTIC NUCLEI2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 707, no 2, p. 1310-1333Article in journal (Refereed)
    Abstract [en]

    We report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the third EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Evidence for systematic evolution of the gamma-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.

  • 26. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, Magnus
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Camilo, F.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cognard, I.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Corbet, R.
    Cutini, S.
    den Hartog, P. R.
    Dermer, C. D.
    de Angelis, A.
    de Luca, A.
    de Palma, F.
    Digel, S. W.
    Dormody, M.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Espinoza, C.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Freire, P. C. C.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Gotthelf, E. V.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Gwon, C.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hughes, R. E.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Johannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, T. J.
    Johnson, W. N.
    Johnston, S.
    Kamae, T.
    Kanbach, G.
    Kaspi, V. M.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kocian, M. L.
    Kramer, M.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Livingstone, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Lyne, A. G.
    Madejski, G. M.
    Makeev, A.
    Manchester, R. N.
    Marelli, M.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    McGlynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Meurer, C.
    Michelson, P. F.
    Mineo, T.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Noutsos, A.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Ransom, S. M.
    Ray, P. S.
    Razzano, M.
    Rea, N.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Schalk, T. L.
    Sellerholm, A.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Stappers, B. W.
    Starck, J. -L
    Striani, E.
    Strickman, M. S.
    Strong, A. W.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Theureau, G.
    Thompson, D. J.
    Thorsett, S. E.
    Tibaldo, L.
    Tibolla, O.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Van Etten, A.
    Vasileiou, V.
    Venter, C.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Wang, N.
    Watters, K.
    Weltevrede, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    The first fermi large area telescope catalog of gamma-ray pulsars2010In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 187, no 2, p. 460-494Article in journal (Refereed)
    Abstract [en]

    The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range similar to 1-5 GeV. The rotational energy-loss rate ((E) over dot) of these neutron stars spans five decades, from similar to 3 x 10(33) erg s(-1) to 5 x 10(38) erg s(-1), and the apparent efficiencies for conversion to gammaray emission range from similar to 0.1% to similar to unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by greater than or similar to 0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer magnetosphere, while polar-cap emission remains plausible for a remaining few. Spatial associations imply that many of these pulsars power pulsar wind nebulae. Finally, these discoveries suggest that gamma-ray-selected young pulsars are born at a rate comparable to that of their radio-selected cousins and that the birthrate of all young gamma-ray-detected pulsars is a substantial fraction of the expected Galactic supernova rate.

  • 27. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, Magnus
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Conrad, Jan
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    FERMI LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M872009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 707, no 1, p. 55-60Article in journal (Refereed)
    Abstract [en]

    We report the Fermi Large Area Telescope (LAT) discovery of high-energy (MeV/GeV) gamma-ray emission positionally consistent with the center of the radio galaxy M87, at a source significance of over 10 sigma in 10 months of all-sky survey data. Following the detections of Cen A and Per A, this makes M87 the third radio galaxy seen with the LAT. The faint point-like gamma-ray source has a >100 MeV flux of 2.45 (+/-0.63) x 10(-8) photons cm(-2) s(-1) (photon index = 2.26 +/- 0.13) with no significant variability detected within the LAT observation. This flux is comparable with the previous EGRET upper limit (<2.18 x 10-8 photons cm(-2) s(-1), 2 sigma), thus there is no evidence for a significant MeV/GeV flare on decade timescales. Contemporaneous Chandra and Very Long Baseline Array data indicate low activity in the unresolved X-ray and radio core relative to previous observations, suggesting M87 is in a quiescent overall level over the first year of Fermi-LAT observations. The LAT gamma-ray spectrum is modeled as synchrotron self-Compton (SSC) emission from the electron population producing the radio-to-X-ray emission in the core. The resultant SSC spectrum extrapolates smoothly from the LAT band to the historical-minimum TeV emission. Alternative models for the core and possible contributions from the kiloparsec-scale jet in M87 are considered, and cannot be excluded.

  • 28. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, Magnus
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Yamashita, T.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et al.,
    PKS 1502+106: A new and distant gamma-ray blazar in outburst discovered by the fermi large area telescope2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 710, no 1, p. 810-827Article, review/survey (Refereed)
    Abstract [en]

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope discovered a rapid (similar to 5 days duration), high-energy (E > 100 MeV) gamma-ray outburst from a source identified with the blazar PKS 1502+106 (OR 103, S3 1502+10, z = 1.839) starting on 2008 August 5 (similar to 23 UTC, MJD 54683.95), and followed by bright and variable flux over the next few months. Results on the gamma-ray localization and identification, as well as spectral and temporal behavior during the first months of the Fermi all-sky survey, are reported here in conjunction with a multiwaveband characterization as a result of one of the first Fermi multifrequency campaigns. The campaign included a Swift ToO (followed up by a 16 day observation on August 7-22, MJD 54685-54700), VLBA (within the MOJAVE program), Owens Valley Radio Observatory (OVRO) 40 m, Effelsberg-100 m, Metsahovi-14 m, RATAN-600, and Kanata-Hiroshima radio/optical observations. Results from the analysis of archival observations by INTEGRAL, XMM-Newton, and Spitzer space telescopes are reported for a more complete picture of this new gamma-ray blazar. PKS 1502+106 is a sub-GeV peaked, powerful flat spectrum radio quasar (luminosity at E > 100 MeV, L-gamma, is about 1.1 x 10(49) erg s(-1), and black hole mass likely close to 10(9) M-circle dot), exhibiting marked gamma-ray bolometric dominance, in particular during the asymmetric outburst (L-gamma/L-opt similar to 100, and 5 day averaged flux F-E > 100MeV = 2.91 +/- 1.4 x 10(-6) ph cm(-2) s(-1)), which was characterized by a factor greater than 3 of flux increase in less than 12 hr. The outburst was observed simultaneously from optical to X-ray bands (F0.3-10keV = 2.18(-0.12)(+0.15) x 10(-12) erg cm(-2) s(-1), and hard photon index similar to 1.5, similar to past values) with a flux increase of less than 1 order of magnitude with respect to past observations, and was likely controlled by Comptonization of external-jet photons produced in the broad-line region (BLR) in the gamma-ray band. No evidence of a possible blue bump signature was observed in the optical-UV continuum spectrum, while some hints for a possible 4 day time lag with respect to the gamma-ray flare were found. Nonetheless, the properties of PKS 1502+106 and the strict optical/UV, X-, and gamma-ray cross-correlations suggest the contribution of the synchrotron self-Compton (SSC), in-jet, process should dominate from radio to X- rays. This mechanism may also be responsible for the consistent gamma-ray variability observed by the LAT on longer timescales, after the ignition of activity at these energies provided by the BLR-dissipated outburst. Modulations and subsequent minor, rapid flare events were detected, with a general fluctuation mode between pink-noise and a random-walk. The averaged gamma-ray spectrum showed a deviation from a simple power law, and can be described by a log-parabola curved model peaking around 0.4-0.5 GeV. The maximum energy of photons detected from the source in the first four months of LAT observations was 15.8 GeV, with no significant consequences on extragalactic background light predictions. A possible radio counterpart of the gamma-ray outburst can be assumed only if a delay of more than three months is considered on the basis of opacity effects at cm and longer wavelengths. The rotation of the electric vector position angle observed by VLBA from 2007 to 2008 could represent a slow field odering and alignment with respect to the jet axis, likely a precursor feature of the ejection of a superluminal radio knot and the high-energy outburst. This observing campaign provides more insight into the connection between MeV-GeV flares and the moving, polarized structures observed by the VLBI.

  • 29. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, Magnus
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Conrad, Jan
    FERMI OBSERVATIONS OF THE VERY HARD GAMMA-RAY BLAZAR PG 1553+1132010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 708, no 2, p. 1310-1320Article in journal (Refereed)
    Abstract [en]

    We report the observations of PG 1553+113 during the first similar to 200 days of Fermi Gamma-ray Space Telescope science operations, from 2008 August 4 to 2009 February 22 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in the GeV gamma-ray regime and it allows us to fill a gap of three decades in energy in its spectral energy distribution (SED). We find PG 1553+113 to be a steady source with a hard spectrum that is best fit by a simple power law in the Fermi energy band. We combine the Fermi data with archival radio, optical, X-ray, and very high energy (VHE) gamma-ray data to model its broadband SED and find that a simple, one-zone synchrotron self-Compton model provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all sources detected in that regime and, out of those with significant detections across the Fermi energy bandpass so far, the hardest spectrum in that energy regime. Thus, it has the largest spectral break of any gamma-ray source studied to date, which could be due to the absorption of the intrinsic gamma-ray spectrum by the extragalactic background light (EBL). Assuming this to be the case, we selected a model with a low level of EBL and used it to absorb the power-law spectrum from PG 1553+113 measured with Fermi (200 MeV-157 GeV) to find the redshift, which gave the best fit to the measured VHE data (90 GeV-1.1 TeV) for this parameterization of the EBL. We show that this redshift can be considered an upper limit on the distance to PG 1553+113.

  • 30. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, Magnus
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    et al.,
    Fermi large area telescope observations of the crab pulsar and nebula2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 708, no 2, p. 1254-1267Article in journal (Refereed)
    Abstract [en]

    We report on gamma-ray observations of the Crab Pulsar and Nebula using 8 months of survey data with the Fermi Large Area Telescope (LAT). The high quality light curve obtained using the ephemeris provided by the Nancay and Jodrell Bank radio telescopes shows two main peaks stable in phase with energy. The first gamma-ray peak leads the radio main pulse by (281 +/- 12 +/- 21) mu s, giving new constraints on the production site of non-thermal emission in pulsar magnetospheres. The first uncertainty is due to gamma-ray statistics, and the second arises from the rotation parameters. The improved sensitivity and the unprecedented statistics afforded by the LAT enable precise measurement of the Crab Pulsar spectral parameters: cut-off energy at E-c = (5.8 +/- 0.5 +/- 1.2) GeV, spectral index of Gamma = (1.97 +/- 0.02 +/- 0.06) and integral photon flux above 100 MeV of (2.09 +/- 0.03 +/- 0.18) x 10(-6) cm(-2) s(-1). The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Pulsed gamma-ray photons are observed up to similar to 20 GeV which precludes emission near the stellar surface, below altitudes of around 4-5 stellar radii in phase intervals encompassing the two main peaks. A detailed phase-resolved spectral analysis is also performed: the hardest emission from the Crab Pulsar comes from the bridge region between the two gamma-ray peaks while the softest comes from the falling edge of the second peak. The spectrum of the nebula in the energy range 100 MeV-300 GeV is well described by the sum of two power laws of indices Gamma(sync) = (3.99 +/- 0.12 +/- 0.08) and Gamma(IC) = (1.64 +/- 0.05 +/- 0.07), corresponding to the falling edge of the synchrotron and the rising edge of the inverse Compton (IC) components, respectively. This latter, which links up naturally with the spectral data points of Cherenkov experiments, is well reproduced via IC scattering from standard magnetohydrodynamic nebula models, and does not require any additional radiation mechanism.

  • 31. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, Magnus
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    FERMI LARGE AREA TELESCOPE DETECTION OF PULSED gamma-RAYS FROM THE VELA-LIKE PULSARS PSR J1048-5832 AND PSR J2229+61142009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 706, no 2, p. 1331-1340Article in journal (Refereed)
    Abstract [en]

    We report the detection of gamma-ray pulsations (>= 0.1GeV) from PSR J2229+ 6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the gamma-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the gamma-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar to the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 +/- 0.01 and 0.57 +/- 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+ 6114 presents a very broad peak at phase 0.49 +/- 0.01. The gamma-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 +/- 0.22 +/- 0.32) x 10(-7) cm(-2) s(-1) for PSR J1048-5832 and (3.77 +/- 0.22 +/- 0.44) x 10(-7) cm(-2) s(-1) for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources whichwere entangled together as 3EG J1048-5840. These detections add to the growing number of young gamma-ray pulsars that make up the dominant population of GeV gamma-ray sources in the Galactic plane.

  • 32. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Brandt, T. J.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Cannon, A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Colafrancesco, S.
    Cominsky, L. R.
    Conrad, J.
    Costamante, L.
    Davis, D. S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Falcone, A.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Finke, J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Georganopoulos, M.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grandi, P.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hadasch, D.
    Harding, A. K.
    Hase, Hayo
    Hayashida, M.
    Hays, E.
    Horan, D.
    Hughes, R. E.
    Itoh, R.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Kadler, M.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kishishita, T.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lee, S. -H
    Lemoine-Goumard, M.
    Garde, M. Llena
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Mueller, C.
    Nakamori, T.
    Naumann-Godo, M.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Ojha, R.
    Okumura, A.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Pagani, C.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Plotz, C.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ripken, J.
    Ritz, S.
    Rodriguez, A. Y.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sanchez, D.
    Sander, A.
    Scargle, J. D.
    Sgro, C.
    Siskind, E. J.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Stawarz, L.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vandenbroucke, J.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Yang, Z.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    FERMI LARGE AREA TELESCOPE VIEW OF THE CORE OF THE RADIO GALAXY CENTAURUS A2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 719, no 2, p. 1433-1444Article in journal (Refereed)
    Abstract [en]

    We present gamma-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the gamma-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum (Gamma = 2.67 +/- 0.10(stat) +/- 0.08(sys) where the photon flux is Phi alpha E-Gamma). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the gamma-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate ultra-high energy cosmic-rays, as hinted at by results from the Auger observatory.

  • 33. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Colafrancesco, S.
    Cominsky, L. R.
    Conrad, J.
    Costamante, L.
    Cutini, S.
    Davis, D. S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Famier, C.
    Favuzzi, C.
    Fegan, S. J.
    Finke, J.
    Focke, W. B.
    Fortin, P.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Georganopoulos, M.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hughes, R. E.
    Jackson, M. S.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kocian, M. L.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sambruna, R.
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Stawarz, L.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wallace, E.
    Wang, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics.
    Ziegler, M.
    Hardcastle, M. J.
    Kazanas, D.
    Fermi Gamma-Ray Imaging of a Radio Galaxy2010In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 328, no 5979, p. 725-729Article in journal (Refereed)
    Abstract [en]

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  • 34. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Battelino, Milan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    PULSED GAMMA-RAYS FROM PSR J2021+3651 WITH THE FERMI LARGE AREA TELESCOPE2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 700, no 2, p. 1059-1066Article in journal (Refereed)
    Abstract [en]

    We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 +/- 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 +/- 0.004 +/- 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 +/- 3 +/- 11) x 10(-8) cm(-2) s(-1). The photon spectrum is well described by an exponentially cut-off power law of the form dF/dE = kE(-Gamma)e((-E/Ec)), where the energy E is expressed in GeV. The photon index is Gamma = 1.5 +/- 0.1 +/- 0.1 and the exponential cut-off is E-c = 2.4 +/- 0.3 +/- 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is < 10% of the pulsed emission at the 95% confidence level. Radio polarization measurements yield a rotation measure of RM = 524 +/- 4 rad m(-2) but a poorly constrained magnetic geometry. Re-analysis of Chandra X-ray Observatory data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.

  • 35. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    et al,
    Observations of the Large Magellanic Cloud with Fermi2010In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 512Article in journal (Refereed)
    Abstract [en]

    Context. The Large Magellanic Cloud (LMC) is to date the only normal external galaxy that has been detected in high-energy gamma rays. High-energy gamma rays trace particle acceleration processes and gamma-ray observations allow the nature and sites of acceleration to be studied. Aims. We characterise the distribution and sources of cosmic rays in the LMC from analysis of gamma-ray observations. Methods. We analyse 11 months of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope and compare it to tracers of the interstellar medium and models of the gamma-ray sources in the LMC. Results. The LMC is detected at 33 sigma significance. The integrated >100 MeV photon flux of the LMC amounts to (2.6 +/- 0.2) x 10(-7) ph cm(-2) s(-1) which corresponds to an energy flux of (1.6 +/- 0.1) x 10(-10) erg cm(-2) s(-1), with additional systematic uncertainties of less than or similar to 16%. The analysis reveals the massive star forming region 30 Doradus as a bright source of gamma-ray emission in the LMC in addition to fainter emission regions found in the northern part of the galaxy. The gamma-ray emission from the LMC shows very little correlation with gas density and is rather correlated to tracers of massive star forming regions. The close confinement of gamma-ray emission to star forming regions suggests a relatively short GeV cosmic-ray proton diffusion length. Conclusions. The close correlation between cosmic-ray density and massive star tracers supports the idea that cosmic rays are accelerated in massive star forming regions as a result of the large amounts of kinetic energy that are input by the stellar winds and supernova explosions of massive stars into the interstellar medium.

  • 36. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    et al,
    Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived from First-Year Fermi Large Area Telescope Data2010In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 104, no 10Article in journal (Refereed)
    Abstract [en]

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extra-galactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission. We find the spectrum of the EGB is consistent with a power law with a differential spectral index gamma = 2.41 +/- 0.05 and intensity I(>100 MeV) = (1.03 +/- 0.17) x 10(-5) cm(-2) s(-1) sr(-1), where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  • 37. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Axelsson, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Angelakis, E.
    Battelino, Milan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    FERMI/LARGE AREA TELESCOPE DISCOVERY OF GAMMA-RAY EMISSION FROM A RELATIVISTIC JET IN THE NARROW-LINE QUASAR PMN J0948+00222009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 699, no 2, p. 976-984Article in journal (Refereed)
    Abstract [en]

    We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy. gamma-ray emission from the peculiar quasar PMN J0948+0022 (z = 0.5846). The optical spectrum of this object exhibits rather narrow H beta (FWHM(H beta) similar to 1500 km s(-1)), weak forbidden lines, and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at a high Eddington ratio. The radio loudness and variability of the compact radio core indicate the presence of a relativistic jet. Quasi-simultaneous radio/optical/X-ray and gamma-ray observations are presented. Both radio and gamma-ray emissions (observed over five months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broadband spectral energy distribution (SED) and, in particular, the gamma-ray spectrum measured by Fermi are similar to those of more powerful Flat-Spectrum Radio Quasars (FSRQs). A comparison of the radio and gamma-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and gamma-ray power with respect to other FSRQs. The physical parameters obtained from modeling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini. We suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.

  • 38. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Axelsson, Magnus
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sikora, M.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et al,
    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 2792010In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 463, no 7283, p. 919-923Article in journal (Refereed)
    Abstract [en]

    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight(1). The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma (gamma)-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10(5) gravitational radii.

  • 39. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Axelsson, Magnus
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Wagner, S.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Mc Glynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    MULTIWAVELENGTH MONITORING OF THE ENIGMATIC NARROW-LINE SEYFERT 1 PMN J0948+0022 IN 2009 MARCH-JULY2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 707, no 1, p. 727-737Article in journal (Refereed)
    Abstract [en]

    Following the recent discovery of gamma rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to gamma rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to gamma-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the gamma-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.

  • 40. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Axelsson, Magnus
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Conrad, Jan
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-32009In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 326, no 5959, p. 1512-1516Article in journal (Refereed)
    Abstract [en]

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  • 41. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastier, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bignami, G. F.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Brueli, P.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    Dermer, C. D.
    de Palma, F.
    Dormody, M.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Edmonds, Y.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Furazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hadasch, D.
    Hardino, A. K.
    Hays, E.
    Hughes, R. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Makeev, A.
    Marelli, M.
    Mazziotta, M. N.
    McEnery, J. E.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenk, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Rayi, P. S.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Strickman, M. S.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Usher, T. L.
    Van Etten, A.
    Vasileiou, V.
    Venter, C.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Watters, K.
    Winer, B. L.
    Wood, K. S.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Fermi-LAT observations of the Geminga pulsar2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 720, no 1, p. 272-283Article in journal (Refereed)
    Abstract [en]

    We report on the Fermi-LAT observations of the Geminga pulsar, the second brightest non-variable GeV source in the gamma-ray sky and the first example of a radio-quiet gamma-ray pulsar. The observations cover one year, from the launch of the Fermi satellite through 2009 June 15. A data sample of over 60,000 photons enabled us to build a timing solution based solely on gamma-rays. Timing analysis shows two prominent peaks, separated by Delta phi = 0.497 +/- 0.004 in phase, which narrow with increasing energy. Pulsed gamma-rays are observed beyond 18 GeV, precluding emission below 2.7 stellar radii because of magnetic absorption. The phase-averaged spectrum was fitted with a power law with exponential cutoff of spectral index Gamma = (1.30 +/- 0.01 +/- 0.04), cutoff energy E-0 = (2.46 +/- 0.04 +/- 0.17) GeV, and an integral photon flux above 0.1 GeV of (4.14 +/- 0.02 +/- 0.32) x 10(-6) cm(-2) s(-1). The first uncertainties are statistical and the second ones are systematic. The phase-resolved spectroscopy shows a clear evolution of the spectral parameters, with the spectral index reaching a minimum value just before the leading peak and the cutoff energy having maxima around the peaks. The phase-resolved spectroscopy reveals that pulsar emission is present at all rotational phases. The spectral shape, broad pulse profile, and maximum photon energy favor the outer magnetospheric emission scenarios.

  • 42. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Cannon, A.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    Costamante, L.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Focke, W. B.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Guiriec, S.
    Hayashida, M.
    Hays, E.
    Hill, A. B.
    Horan, D.
    Hughes, R. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Knoedlseder, J.
    Kuss, M.
    Lande, J.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Garde, M. Llena
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mansutti, O.
    Massaro, E.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Panetta, J. H.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Ritz, S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sander, A.
    Scargle, J. D.
    Schalk, T. L.
    Sgro, C.
    Siskind, E. J.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Wehrle, A. E.
    Winer, B. L.
    Wood, K. S.
    Yang, Z.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Fermi-large area telescope observations of the exceptional gamma-ray outbursts of 3C 273 in 2009 September2010In: ASTROPHYSICAL JOURNAL LETTERS, ISSN 2041-8205, Vol. 714, no 1, p. L73-L78Article in journal (Refereed)
    Abstract [en]

    We present the light curves and spectral data of two exceptionally luminous gamma-ray outbursts observed by the Large Area Telescope experiment on board the Fermi Gamma-ray Space Telescope from 3C 273 in 2009 September. During these flares, having a duration of a few days, the source reached its highest gamma-ray flux ever measured. This allowed us to study, in some details, their spectral and temporal structures. The rise and the decay are asymmetric on timescales of 6 hr, and the spectral index was significantly harder during the flares than during the preceding 11 months. We also found that short, very intense flares put out the same time-integrated energy as long, less intense flares like that observed in 2009 August.

  • 43. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    et al.,
    Fermi observations of cassiopeia and cepheus: Diffuse gamma-ray emission in the outer galaxy2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 710, no 1, p. 133-149Article in journal (Refereed)
    Abstract [en]

    We present the analysis of the interstellar gamma-ray emission measured by the Fermi Large Area Telescope toward a region in the second Galactic quadrant at 100 degrees <= l <= 145 degrees and -15 degrees <= b <= +30 degrees. This region encompasses the prominent Gould Belt clouds of Cassiopeia, Cepheus, and the Polaris flare, as well as atomic and molecular complexes at larger distances, like that associated with NGC 7538 in the Perseus arm. The good kinematic separation in velocity between the local, Perseus, and outer arms, and the presence of massive complexes in each of them, make this region well suited to probe cosmic rays (CRs) and the interstellar medium beyond the solar circle. The gamma-ray emissivity spectrum of the gas in the Gould Belt is consistent with expectations based on the locally measured CR spectra. The gamma-ray emissivity decreases from the Gould Belt to the Perseus arm, but the measured gradient is flatter than expectations for CR sources peaking in the inner Galaxy as suggested by pulsars. The X-CO = N(H-2)/W-CO conversion factor is found to increase from (0.87 +/- 0.05) x 10(20) cm(-2) (K km s(-1))(-1) in the Gould Belt to (1.9 +/- 0.2) x 10(20) cm(-2) (K km s(-1))(-1) in the Perseus arm. We derive masses for the molecular clouds under study. Dark gas, not properly traced by radio and microwave surveys, is detected in the Gould Belt through a correlated excess of dust and gamma-ray emission: its mass amounts to similar to 50% of the CO-traced mass.

  • 44. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    et al.,
    Gamma-Ray Emission from the Shell of Supernova Remnant W44 Revealed by the Fermi LAT2010In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 327, no 5969, p. 1103-1106Article in journal (Refereed)
    Abstract [en]

    Recent observations of supernova remnants (SNRs) hint that they accelerate cosmic rays to energies close to similar to 10(15) electron volts. However, the nature of the particles that produce the emission remains ambiguous. We report observations of SNR W44 with the Fermi Large Area Telescope at energies between 2 x 10(8) electron volts and 3 x 10(11) electron volts. The detection of a source with a morphology corresponding to the SNR shell implies that the emission is produced by particles accelerated there. The gamma-ray spectrum is well modeled with emission from protons and nuclei. Its steepening above similar to 10(9) electron volts provides a probe with which to study how particle acceleration responds to environmental effects such as shock propagation in dense clouds and how accelerated particles are released into interstellar space.

  • 45. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    et al.,
    OBSERVATION OF SUPERNOVA REMNANT IC 443 WITH THE FERMI LARGE AREA TELESCOPE2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 712, no 1, p. 459-468Article in journal (Refereed)
    Abstract [en]

    We report observation of the supernova remnant (SNR) IC 443 (G189.1+3.0) with the Fermi Gamma-ray Space Telescope Large Area Telescope (LAT) in the energy band between 200 MeV and 50 GeV. IC 443 is a shell-type SNR with mixed morphology located off the outer Galactic plane where high-energy emission has been detected in the X-ray, GeV and TeV gamma-ray bands. Past observations suggest IC 443 has been interacting with surrounding interstellar matter. Proximity between dense shocked molecular clouds and GeV-TeV gamma-ray emission regions detected by EGRET, MAGIC, and VERITAS suggests an interpretation that cosmic-ray (CR) particles are accelerated by the SNR. With the high gamma-ray statistics and broad energy coverage provided by the LAT, we accurately characterize the gamma-ray emission produced by the CRs accelerated at IC 443. The emission region is extended in the energy band with theta(68) = 0 degrees.27 +/- 0 degrees.01(stat) +/- 0 degrees.03(sys) for an assumed two-dimensional Gaussian profile and overlaps almost completely with the extended source region of VERITAS. Its centroid is displaced significantly from the known pulsar wind nebula (PWN) which suggests the PWN is not the major contributor in the present energy band. The observed spectrum changes its power-law slope continuously and continues smoothly to the MAGIC and VERITAS data points. The combined gamma-ray spectrum (200 MeV < E < 2 TeV) is reproduced well by decays of neutral pions produced by a broken power-law proton spectrum with a break around 70 GeV.

  • 46. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Tavecchio, F.
    Conrad, Jan
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    RADIO-LOUD NARROW-LINE SEYFERT 1 AS A NEW CLASS OF GAMMA-RAY ACTIVE GALACTIC NUCLEI2009Article in journal (Refereed)
    Abstract [en]

    We report the discovery with Fermi/LAT of gamma-ray emission from three radio-loud narrow-line Seyfert 1 galaxies: PKS 1502+036 (z = 0.409), 1H 0323+342 (z = 0.061), and PKS 2004-447 (z = 0.24). In addition to PMN J0948+0022 (z = 0.585), the first source of this type to be detected in gamma rays, they may form an emerging new class of gamma-ray active galactic nuclei (AGNs). These findings can have strong implications on our knowledge about relativistic jets and the unified model of the AGN.

  • 47. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et al,
    PSR J1907+0602: A RADIO-FAINT GAMMA-RAY PULSAR POWERING A BRIGHT TeV PULSAR WIND NEBULA2010In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 711, no 1, p. 64-74Article in journal (Refereed)
    Abstract [en]

    We present multiwavelength studies of the 106.6 ms gamma-ray pulsar PSR J1907+06 near the TeV source MGRO J1908+06. Timing observations with Fermi result in a precise position determination for the pulsar of R.A. = 19(h)07(m)54.(s)7(2), decl. = +06 degrees 02'16(2)'' placing the pulsar firmly within the TeV source extent, suggesting the TeV source is the pulsar wind nebula of PSR J1907+0602. Pulsed gamma-ray emission is clearly visible at energies from 100 MeV to above 10 GeV. The phase-averaged power-law index in the energy range E > 0.1 GeV is Gamma = 1.76 +/- 0.05 with an exponential cutoff energy E-c = 3.6 +/- 0.5 GeV. We present the energy-dependent gamma-ray pulsed light curve as well as limits on off-pulse emission associated with the TeV source. We also report the detection of very faint (flux density of similar or equal to 3.4 mu Jy) radio pulsations with the Arecibo telescope at 1.5 GHz having a dispersion measure DM = 82.1 +/- 1.1 cm(-3) pc. This indicates a distance of 3.2 +/- 0.6 kpc and a pseudo-luminosity of L-1400 similar or equal to 0.035 mJy kpc(2). A Chandra ACIS observation revealed an absorbed, possibly extended, compact (less than or similar to 4 '') X-ray source with significant nonthermal emission at R.A. = 19(h)07(m)54.(s)76, decl. = + 06 degrees 02'14.'' 6 with a flux of 2.3(-1.4)(+0.6) x 10(-14) erg cm(-2) s(-1). From archival ASCA observations, we place upper limits on any arcminute scale 2-10 keV X-ray emission of similar to 1 x 10(-13) erg cm(-2) s(-1). The implied distance to the pulsar is compatible with that of the supernova remnant G40.5-0.5, located on the far side of the TeV nebula from PSR J1907+0602, and the S74 molecular cloud on the nearer side which we discuss as potential birth sites.

  • 48. Abdo, A. A.
    et al.
    Ackermann, M.
    Asano, K.
    Atwood, W. B.
    Axelsson, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Mc Glynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 080825C2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 707, no 1, p. 580-592Article in journal (Refereed)
    Abstract [en]

    The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.

  • 49. Abdo, A. A.
    et al.
    Ackermann, M.
    Atwood, W. B.
    Axelsson, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Wagner, S.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Mc Glynn, Sinéad
    Ylinen, Tomi
    FERMI/LARGE AREA TELESCOPE DISCOVERY OF GAMMA-RAY EMISSION FROM THE FLAT-SPECTRUM RADIO QUASAR PKS 1454-3542009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 697, no 1, p. 934-941Article in journal (Refereed)
    Abstract [en]

    We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy gamma-ray (GeV) emission from the flat-spectrum radio quasar PKS 1454-354 (z = 1.424). On 2008 September 4, the source rose to a peak flux of (3.5 +/- 0.7) x 10(-6) ph cm(-2) s(-1) (E > 100 MeV) on a timescale of hours and then slowly dropped over the following 2 days. No significant spectral changes occurred during the flare. Fermi/LAT observations also showed that PKS 1454-354 is the most probable counterpart of the unidentified EGRET source 3EG J1500-3509. Multiwavelength measurements performed during the following days (7 September with Swift; 6-7 September with the ground-based optical telescope Automated Telescope for Optical Monitoring; 13 September with the Australia Telescope Compact Array) resulted in radio, optical, UV, and X-ray fluxes greater than archival data, confirming the activity of PKS 1454-354.

  • 50. Abdo, A. A.
    et al.
    Ackermann, M.
    Atwood, W. B.
    Axelsson, Magnus
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Battelino, Milan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    PULSED GAMMA RAYS FROM THE MILLISECOND PULSAR J0030+0451 WITH THE FERMI LARGE AREA TELESCOPE2009In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 699, no 2, p. 1171-1177Article in journal (Refereed)
    Abstract [en]

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar (MSP) PSR J0030+0451 with the Large Area Telescope on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second MSP to be detected in gamma rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma-Ray Observatory. The spin-down power (E) over dot = 3.5 x 10(33) erg s(-1) is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, 0.07 +/- 0.01 and 0.08 +/- 0.02 wide, respectively, separated by 0.44 +/- 0.02 in phase. The first gamma-ray peak falls 0.15 +/- 0.01 after the main radio peak. The pulse shape is similar to that of the "normal" gamma-ray pulsars. An exponentially cutoff power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 +/- 1.05 +/- 1.35) x 10(-8) cm(-2) s(-1) with cutoff energy (1.7 +/- 0.4 +/- 0.5) GeV. Based on its parallax distance of (300 +/- 90) pc, we obtain a gamma-ray efficiency L-gamma/E similar or equal to 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

12345 1 - 50 of 232
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf