Change search
Refine search result
1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Boström, Tove
    et al.
    KTH, School of Biotechnology (BIO), Protein Technology.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Johansson, Henrik J.
    Karlinska Institute, Cancer Proteomics Mass Spectrometry, Dep. of Oncology-Pathology.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lehtiö, Janne
    Karolinska Institute, Cancer Proteomics Mass Spectrometry, Dep. of Oncology-Pathology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Protein Technology.
    Ottosson Takanen, Jenny
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Investigating the correlation of protein and mRNA levels in human cell lines using quantitative proteomics and transcriptomicsManuscript (preprint) (Other academic)
    Abstract [en]

    An important topic of discussion in proteomics is the degree of correlation of RNA and protein levels in cells, tissues and organs. In this study, the difference in protein and mRNA levels for a number of selected gene targets were investigated across six human cell lines using quantitative proteomics and next generation sequencing-based transcriptomics. The copy numbers of 32 proteins were determined using an absolute quantitative proteomics approach (PrEST-SILAC), where heavy isotope-labeled protein fragments were used as internal standards. A cross evaluation of protein copy numbers determined by mass spectrometry and staining profiles using immunohistochemistry showed good correlation. The mRNA levels were determined using RNA sequencing based on digital counting of sequencing reads and the levels determined as FPKM values. Comparison of the relative variations in mRNA and protein levels for individual genes across the six cell lines showed correlation between protein and mRNA levels, including six genes with high variability in expression levels in the six cell lines resulting in an average correlation of 0.9 (Spearman's rank coefficient). In summary, the analysis of the selected protein targets supports the conclusion that the translation rate across cell lines correlates for a particular gene, suggesting that individual protein levels can be predicted from the respective mRNA levels by defining the relation between protein and mRNA, specific for each human gene.

  • 2.
    Edfors, Fredrik
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Boström, Tove
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. Atlas Antibodies AB.
    Maddalo, Gianluca
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Svensson, Anne-Sophie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Jochen, Schwenk
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. Technical University of Denmark, Denmark.
    A recombinant protein standard resource for targeted proteomicsManuscript (preprint) (Other academic)
    Abstract [en]

    Here, we have used a resource of 26,000 recombinant protein fragments to create custom libraries of standards for targeted proteomics based on parallel reaction monitoring (PRM). The recombinant fragments can be produced in a bacterial cell factory to generate heavy isotope labeled standards for absolute quantification of the corresponding protein targets and be used to produce high- quality spectral libraries. Altogether, coordinates for 25,684 unique proteotypic peptide assays have been experimentally defined covering 10,163 human proteins. The protocol allows for precise monitoring of digestion kinetics and thus enables to select peptides that behave quantitative during the sample preparation process. We show that the quantification tag of each recombinant protein fragment can be used for accurate retention time prediction and allows for assay standardization across different method parameters. The use of this resource was illustrated by determining the absolute concentrations of selected protein targets using multiplex targeted proteomics assays for determination of quantitative assessment of 49 protein targets in serum samples. 

  • 3.
    Edfors, Fredrik
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsström, Björn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Vunk, Helian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kotol, David
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fredolini, Claudia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Maddalo, Gianluca
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Svensson, Anne-Sophie
    KTH.
    Boström, Tove
    KTH.
    Tegel, Hanna
    KTH.
    Nilsson, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska Inst, Dept Neurosci, SE-17165 Solna, Sweden.;Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, DK-2970 Horsholm, Denmark..
    Screening a Resource of Recombinant Protein Fragments for Targeted Proteomics2019In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 18, no 7, p. 2706-2718Article in journal (Refereed)
    Abstract [en]

    The availability of proteomics resources hosting protein and peptide standards, as well as the data describing their analytical performances, will continue to enhance our current capabilities to develop targeted proteomics methods for quantitative biology. This study describes the analysis of a resource of 26,840 individually purified recombinant protein fragments corresponding to more than 16,000 human protein-coding genes. The resource was screened to identify proteotypic peptides suitable for targeted proteomics efforts, and we report LC-MS/MS assay coordinates for more than 25,000 proteotypic peptides, corresponding to more than 10,000 unique proteins. Additionally, peptide formation and digestion kinetics were, for a subset of the standards, monitored using a time-course protocol involving parallel digestion of isotope-labeled recombinant protein standards and endogenous human plasma proteins. We show that the strategy by adding isotope-labeled recombinant proteins before trypsin digestion enables short digestion protocols (<= 60 min) with robust quantitative precision. In a proof-of-concept study, we quantified 23 proteins in human plasma using assay parameters defined in our study and used the standards to describe distinct clusters of individuals linked to different levels of LPA, APOE, SERPINAS, and TFRC. In summary, we describe the use and utility of a resource of recombinant proteins to identify proteotypic peptides useful for targeted proteomics assay development.

  • 4.
    Edfors, Fredrik
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Andreas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Linderbäck, Klas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Maddalo, Gianluca
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Azimi, Alireza
    Karolinska Inst, Karolinska Univ Hosp, Dept Oncol Pathol, SE-17177 Stockholm, Sweden..
    Sivertsson, Åsa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tegel, Hanna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Sophia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Al-Khalili Szigyarto, Cristina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    von Feilitzen, Kalle
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, Cecilia
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Forsström, Björn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab. Biosustainabil, DK-2970 Horsholm, Denmark..
    Enhanced validation of antibodies for research applications2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, article id 4130Article in journal (Refereed)
    Abstract [en]

    There is a need for standardized validation methods for antibody specificity and selectivity. Recently, five alternative validation pillars were proposed to explore the specificity of research antibodies using methods with no need for prior knowledge about the protein target. Here, we show that these principles can be used in a streamlined manner for enhanced validation of research antibodies in Western blot applications. More than 6,000 antibodies were validated with at least one of these strategies involving orthogonal methods, genetic knockdown, recombinant expression, independent antibodies, and capture mass spectrometry analysis. The results show a path forward for efforts to validate antibodies in an application-specific manner suitable for both providers and users.

  • 5.
    Fagerberg, Linn
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kampf, C.
    Djureinovic, D.
    Odeberg, Jacob
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Habuka, Masato
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tahmasebpoor, S.
    Danielsson, A.
    Edlund, K.
    Asplund, A.
    Sjöstedt, E.
    Lundberg, E.
    Szigyarto, Cristina Al-Khalili
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ottosson Takanen, J.
    Berling, H.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Mulder, J.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, C.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, A.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Von Feilitzen, Kalle
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Forsberg, Mattias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Olsson, I.
    Navani, S.
    Huss, Mikael
    Nielsen, Jens
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics2014In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 13, no 2, p. 397-406Article in journal (Refereed)
    Abstract [en]

    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody- based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to 80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.

  • 6.
    Fagerberg, Linn
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Älgenäs, C.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    Sivertsson, Åsa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Odeberg, Jacob
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Klevebring, Daniel
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kampf, C.
    Asplund, A.
    Sjöstedt, E.
    Al-Khalili Szigyarto, C.
    Edqvist, P. -H
    Olsson, I.
    Rydberg, U.
    Hudson, P.
    Ottosson Takanen, J.
    Berling, H.
    Björling, Lisa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Rockberg, J.
    Nilsson, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Navani, S.
    Jirström, K.
    Mulder, J.
    Schwenk, Jochen M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Sophia
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsberg, Mattias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Von Feilitzen, Kalle
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Contribution of antibody-based protein profiling to the human chromosome-centric proteome project (C-HPP)2013In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 12, no 6, p. 2439-2448Article in journal (Refereed)
    Abstract [en]

    A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas (www.proteinatlas.org).

  • 7.
    Häussler, Ragna S.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bendes, Annika
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Iglesias, Maria Jesus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab. Division of Internal Medicine, University Hospital of North Norway, Tromsø, 9010, Norway.
    Sanchez-Rivera, Laura
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Dodig-Crnkovic, Tea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Byström, Sanna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fredolini, Claudia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Birgersson, Elin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Dale, Matilda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edfors, Fredrik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Rockberg, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Tegel, Hanna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Uhlèn, Mathias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, 2970, Denmark.
    Qundos, Ulrika
    Atlas Antibodies AB, Bromma, 168 69, Sweden.
    Schwenk, Jochen M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Systematic Development of Sandwich Immunoassays for the Plasma Secretome2019In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, article id 1900008Article in journal (Refereed)
    Abstract [en]

    The plasma proteome offers a clinically useful window into human health. Recent advances from highly multiplexed assays now call for appropriate pipelines to validate individual candidates. Here, a workflow is developed to build dual binder sandwich immunoassays (SIA) and for proteins predicted to be secreted into plasma. Utilizing suspension bead arrays, ≈1800 unique antibody pairs are first screened against 209 proteins with recombinant proteins as well as EDTA plasma. Employing 624 unique antibodies, dilution-dependent curves in plasma and concentration-dependent curves of full-length proteins for 102 (49%) of the targets are obtained. For 22 protein assays, the longitudinal, interindividual, and technical performance is determined in a set of plasma samples collected from 18 healthy subjects every third month over 1 year. Finally, 14 of these assays are compared with with SIAs composed of other binders, proximity extension assays, and affinity-free targeted mass spectrometry. The workflow provides a multiplexed approach to screen for SIA pairs that suggests using at least three antibodies per target. This design is applicable for a wider range of targets of the plasma proteome, and the assays can be applied for discovery but also to validate emerging candidates derived from other platforms.

  • 8.
    Lundqvist, Magnus
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Edfors, Fredrik
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hallström, Björn M
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hudson, Elton P.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Holmberg, Anders
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Solid-phase cloning for high-throughput assembly of single and multiple DNA parts2015In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 43, no 7, article id e49Article in journal (Refereed)
    Abstract [en]

    We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts at an average success rate above 80%. We report on several applications for SPC and we suggest it to be particularly suitable for high-throughput efforts using laboratory workstations.

  • 9. Neubauer, A.
    et al.
    Golson, R.
    Ukkonen, K.
    Krause, M.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Biochemistry (closed 20130101).
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Biochemistry (closed 20130101).
    Wittrup Larsen, Marianne
    KTH, School of Biotechnology (BIO), Biochemistry (closed 20130101).
    Hult, Karl
    KTH, School of Biotechnology (BIO), Biochemistry (closed 20130101).
    Neubauer, P.
    Vasala, A.
    Controlling nutrient release in cell cultivation2009In: Genetic Engineering and Biotechnology News, ISSN 1935-472X, Vol. 29, no 11, p. 50-51Article in journal (Refereed)
  • 10.
    Neubauer, P.
    et al.
    Tech Univ Berlin, Dept Biotechnol, Berlin, Germany..
    Golson, R.
    BioSilta Oy, Oulu, Finland..
    Neubauer, A.
    BioSilta Oy, Oulu, Finland..
    Ukkonen, K.
    BioSilta Oy, Oulu, Finland..
    Krause, M.
    BioSilta Oy, Oulu, Finland..
    Tegel, Hanna
    KTH, School of Biotechnology (BIO).
    Ottosson, J.
    KTH, School of Biotechnology (BIO).
    Larsen, M. Wittrup
    KTH, School of Biotechnology (BIO).
    Hult, Karl
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology.
    Vasala, A.
    BioSilta Oy, Oulu, Finland..
    Using EnBase (TM) to enhance recombinant protein production2009In: New Biotechnology, ISSN 1871-6784, E-ISSN 1876-4347, Vol. 25, p. S190-S190Article in journal (Other academic)
  • 11.
    Neubauer, P.
    et al.
    Tech Univ Berlin, Dept Biotechnol, Berlin, Germany.;BioSilta Oy, FI-90014 Oulu, Finland..
    Siurkus, J.
    Tech Univ Berlin, Dept Biotechnol, Berlin, Germany.;Fermentas UAB, Vilnius, Lithuania..
    Panula-Perala, J.
    Univ Oulu, Dept Proc & Environm Engn, Oulu, Finland..
    Neubauer, A.
    BioSilta Oy, FI-90014 Oulu, Finland..
    Ukkonen, K.
    BioSilta Oy, FI-90014 Oulu, Finland..
    Krause, M.
    BioSilta Oy, FI-90014 Oulu, Finland..
    Meyer, D.
    Brain AG, Zwingenberg, Germany..
    Pelzer, S.
    Brain AG, Zwingenberg, Germany..
    Eck, J.
    Brain AG, Zwingenberg, Germany..
    Tegel, Hanna
    KTH, School of Biotechnology (BIO).
    Ottosson, J.
    KTH, School of Biotechnology (BIO).
    Vasala, A.
    BioSilta Oy, FI-90014 Oulu, Finland..
    EnBase (TM) - MTP based high-cell-density fermentation for high-throughput and high-content screening2009In: New Biotechnology, ISSN 1871-6784, E-ISSN 1876-4347, Vol. 25, p. S161-S161Article in journal (Other academic)
  • 12.
    Ottosson, J.
    et al.
    KTH.
    Steen, J.
    Tegel, Hanna
    KTH.
    Konrad, A.
    KTH.
    Halimi, A.
    KTH.
    Wrethagen, U.
    KTH.
    Xu, L. Lan
    KTH.
    Pettersson, K.
    KTH.
    Widehammar, J.
    KTH.
    Dahlgren, L. -G
    KTH.
    Hober, Sophia
    KTH.
    High throughput protein production and purification in the Human Protein Atlas program2006In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 5, no 10, p. S40-S40Article in journal (Other academic)
  • 13.
    Ottosson, J.
    et al.
    KTH.
    Wernerus, H.
    KTH.
    Nilsson, P.
    KTH.
    Tegel, Hanna
    KTH.
    Larsson, K.
    KTH.
    Uhlén, Mathias
    KTH.
    Hober, S.
    KTH.
    High throughput antibody generation and validation for antibody proteomics2005In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 4, no 8, p. S64-S64Article in journal (Other academic)
  • 14.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Proteome wide protein production2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Over a decade after the completion of the human genome, researchers around the world are still wondering what information is hidden in the genome. Although the sequences of all human genes are known, it is still almost impossible to determine much more than the primary protein structure from the coding sequence of a gene. As a result of that, the need for recombinantly produced proteins to study protein structure and function is greater than ever. The main objective of this thesis has been to improve protein production, particularly using Escherichia coli. To improve protein production in Escherichia coli there are a number of different parameters to consider. Two very important parameters in the process of protein production are transcription and translation. To study the influence of differences in transcription rate, target proteins with different characteristics were produced under control of three promoters of different strength (lacUV5, trc and T7). Analyzing the total amount of target protein as well as the amount of soluble protein demonstrated the benefits of using a strong promoter such as T7. However, protein production is also highly dependent on translational efficiency, and a drawback associated with the use of Escherichia coli as host strain is that codons rarely used in this host can have a negative effect on the translation. The influence of using a strain supplied with genes for rare codon tRNAs, such as Rosetta(DE3), instead of the standard host strain BL21(DE3), was therefore evaluated. By using Rosetta(DE3) an improved protein yield for many of the poorly produced proteins was achieved, but more importantly the protein purity was significantly increased for a majority of the proteins. For further understanding of the underlying causes of the positive effects of Rosetta(DE3), the improved purity was thoroughly studied. The cause of this improvement was explained by the fact that Rosetta(DE3) has a significantly better read through of the full sequence during translation and thereby less truncated versions of the full-length protein is formed.  Moreover, the effect of supplementation of rare tRNAs was shown to be highly dependent on the target gene sequence. Surprisingly, it was not the total number of rare codons that determined the benefit of using Rosetta(DE3), instead it was shown that rare arginine codons and to some extent also rare codon clusters had a much bigger impact on the final outcome.

    As a result of the increased interest in large-scale studies in the field of proteomics, the need for high-throughput protein production pipelines is greater than ever. For that purpose, a protein production pipeline that allows handling of nearly 300 different proteins per week was set up within the Swedish Human Protein Atlas project. This was achieved by major and minor changes to the original protocol including protein production, purification and analysis. By using this standard setup almost 300 different proteins can be produced weekly, with an overall success rate of 81%. To further improve the success rate it has been shown that by adding an initial screening step, prior high-throughput protein production, unnecessary protein production can be avoided. A plate based micro-scale screening protocol for parallel production and verification of 96 proteins was developed. In that, protein production was performed using the EnBase® cultivation technology followed by purification based on immobilized metal ion affinity chromatography. The protein products were finally verified using matrix-assisted laser desorption ionization time-of-flight MS. By using this method, proteins that will be poorly produced can be sorted out prior high-throughput protein production.

  • 15.
    Tegel, Hanna
    et al.
    KTH.
    Hedhammar, My
    KTH.
    Uhlén, Mathias
    KTH.
    Ottosson, J.
    KTH.
    Hober, Sophia
    KTH.
    Novel flow cytometry-based method for analysis of protein production in Escherichia coli2005In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 4, no 8, p. S66-S66Article in journal (Other academic)
  • 16.
    Tegel, Hanna
    et al.
    KTH, School of Biotechnology (BIO).
    Hedhammar, My
    KTH, School of Biotechnology (BIO).
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO).
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO).
    Hober, Sophia
    KTH, School of Biotechnology (BIO).
    Flow cytometry-based analysis of promoter effects on solubility of recombinantly expressed proteins2007In: Journal of Biotechnology, ISSN 0168-1656, E-ISSN 1873-4863, Vol. 131, no 2, p. S9-S9Article in journal (Other academic)
  • 17.
    Tegel, Hanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Malm, Katarina
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Halldin, Anneli
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Älgenäs, Cajsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Protein Technology.
    Ottosson Takanen, Jenny
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    In-depth study of the positive effects of Escherichia coli Rosetta(DE3) on recombinant protein productionManuscript (preprint) (Other academic)
  • 18.
    Tegel, Hanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Enhancing the protein production levels in Escherichia coli with a strong promoter2011In: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 278, no 5, p. 729-739Article in journal (Refereed)
    Abstract [en]

    In biotechnology, the use of Escherichia coli for recombinant protein production has a long tradition, although the optimal production conditions for certain proteins are still not evident. The most favorable conditions for protein production vary with the gene product. Temperature and induction conditions represent parameters that affect total protein production, as well as the amount of soluble protein. Furthermore, the choice of promoter and bacterial strain will have large effects on the production of the target protein. In the present study, the effects of three different promoters (T7, trc and lacUV5) on E. coli production of target proteins with different characteristics are presented. The total amount of target protein as well as the amount of soluble protein were analyzed, demonstrating the benefits of using a strong promoter such as T7. To understand the underlying causes, transcription levels have been correlated with the total amount of target protein and protein solubility in vitro has been correlated with the amount of soluble protein that is produced. In addition, the effects of two different E. coli strains, BL21(DE3) and Rosetta(DE3), on the expression pattern were analyzed. It is concluded that the regulation of protein production is a combination of the transcription and translation efficiencies. Other important parameters include the nucleotide-sequence itself and the solubility of the target protein.

  • 19.
    Tegel, Hanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Steen, Johanna
    KTH, School of Biotechnology (BIO), Proteomics.
    Konrad, Anna
    KTH, School of Biotechnology (BIO), Proteomics.
    Nikidin, Hero
    KTH, School of Biotechnology (BIO), Proteomics.
    Pettersson, Katarina
    KTH, School of Biotechnology (BIO), Proteomics.
    Stenvall, Maria
    KTH, School of Biotechnology (BIO), Proteomics.
    Tourle, Samuel
    KTH, School of Biotechnology (BIO), Proteomics.
    Wrethagen, Ulla
    KTH, School of Biotechnology (BIO), Proteomics.
    Xu, Lan Lan
    KTH, School of Biotechnology (BIO), Proteomics.
    Yderland, Louise
    KTH, School of Biotechnology (BIO), Proteomics.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    High-throughput protein production--lessons from scaling up from 10 to 288 recombinant proteins per week2009In: Biotechnology Journal, ISSN 1860-6768, E-ISSN 1860-7314, Vol. 4, no 1, p. 51-57Article in journal (Refereed)
    Abstract [en]

    The demand for high-throughput recombinant protein production has markedly increased with the increased activity in the field of proteomics. Within the Human Protein Atlas project recombinantly produced human protein fragments are used for antibody production. Here we describe how the protein expression and purification protocol has been optimized in the project to allow for han- dling of nearly 300 different proteins per week. The number of manual handling steps has been significantly reduced (from 18 to 9) and the protein purification has been completely automated.

  • 20.
    Tegel, Hanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Tourle, Samuel
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics.
    Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta(DE3)2010In: Protein Expression and Purification, ISSN 1046-5928, E-ISSN 1096-0279, Vol. 69, no 2, p. 159-167Article in journal (Refereed)
    Abstract [en]

    The effect of two Escherichia coli expression strains on the production of recombinant human protein fragments was evaluated. High-throughput protein production projects, such as the Swedish Human Protein Atlas project, are dependent on high protein yield and purity. By changing strain from E. coli BL21(DE3) to E. coli Rosetta(DE3) the overall success rate of the protein production has increased dramatically. The Rosetta(DE3) strain compensates for a number of rare codons. Here, we describe how the protein expression of human gene fragments in E. coli strains BL21(DE3) and Rosetta(DE3) was evaluated in two stages. Initially a test set of 68 recombinant proteins that previously had been expressed in BL21(DE3) was retransformed and expressed in Rosetta(DE3). The test set generated very positive results with an improved expression yield and a significantly better purity of the protein product which prompted us to implement the Rosetta(DE3) strain in the high-throughput protein production. Except for analysis of protein yield and purity the sequences were also analyzed regarding number of rare codons and rare codon clusters. The content of rare codons showed to have a significant effect on the protein purity. Based on the results of this study the atlas project permanently changed expression strain to Rosetta(DE3).

  • 21.
    Tegel, Hanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Yderland, Louise
    KTH, School of Biotechnology (BIO), Proteomics.
    Boström, Tove
    KTH, School of Biotechnology (BIO), Proteomics.
    Eriksson, Cecilia
    KTH, School of Biotechnology (BIO), Proteomics.
    Ukkonen, Kaisa
    Vasala, Antti
    Neubauer, Peter
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Parallel production and verification of protein products using a novel high-throughput screening method2011In: Biotechnology Journal, ISSN 1860-6768, E-ISSN 1860-7314, Vol. 6, no 8, p. 1018-1025Article in journal (Refereed)
    Abstract [en]

    Protein production and analysis in a parallel fashion is today applied in laboratories worldwide and there is a great need to improve the techniques and systems used for this purpose. In order to save time and money, a fast and reliable screening method for analysis of protein production and also verification of the protein product is desired. Here, a micro-scale protocol for the parallel production and screening of 96 proteins in plate format is described. Protein capture was achieved using immobilized metal affinity chromatography and the product was verified using matrix-assisted laser desorption ionization time-of-flight MS. In order to obtain sufficiently high cell densities and product yield in the small-volume cultivations, the EnBase (R) cultivation technology was applied, which enables cultivation in as small volumes as 150 mu L. Here, the efficiency of the method is demonstrated by producing 96 human, recombinant proteins, both in micro-scale and using a standard full-scale protocol and comparing the results in regard to both protein identity and sample purity. The results obtained are highly comparable to those acquired through employing standard full-scale purification protocols, thus validating this method as a successful initial screening step before protein production at a larger scale.

  • 22.
    Thul, Peter J.
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Åkesson, Lovisa
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Wiking, Mikaela
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mahdessian, Diana
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Geladaki, A.
    Ait Blal, Hammou
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Alm, Tove L.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Asplund, A.
    Björk, Lars
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Breckels, L. M.
    Bäckström, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fall, Jenny
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gatto, L.
    Gnann, Christian
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Protein Technology.
    Hjelmare, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Johansson, Fredric
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lee, Sunjae
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, C.
    Mulder, J.
    Mulvey, C. M.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Schutten, Rutger
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sjöstedt, E.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sullivan, Devin P.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Winsnes, Casper F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zhang, Cheng
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, Adil
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    von Feilitzen, Kalle
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lilley, K. S.
    Uhlén, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    A subcellular map of the human proteome2017In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 356, no 6340, article id 820Article in journal (Refereed)
    Abstract [en]

    Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map of subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles. Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution and localization of about half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell.

  • 23.
    Tourle, S.
    et al.
    KTH.
    Tegel, Hanna
    KTH.
    Ottosson, J.
    KTH.
    Persson, A.
    KTH.
    Increased levels of recombinant human proteins in E-Coli Rosetta that compensates for mammalian codon usage2006In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 5, no 10, p. S223-S223Article in journal (Other academic)
  • 24.
    Uhlén, Mathias
    et al.
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Björling, Erik
    KTH, School of Biotechnology (BIO).
    Agaton, Charlotta
    KTH, School of Biotechnology (BIO).
    Al-Khalili Szigyarto, Cristina
    KTH, School of Biotechnology (BIO).
    Amini, Bahram
    KTH, School of Biotechnology (BIO).
    Andersen, Elisabet
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Andersson, Ann-Catrin
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Angelidou, Pia
    KTH, School of Biotechnology (BIO).
    Asplund, Anna
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Asplund, Caroline
    KTH, School of Biotechnology (BIO).
    Berglund, Lisa
    KTH, School of Biotechnology (BIO).
    Bergström, Kristina
    KTH, School of Biotechnology (BIO).
    Brumer, Harry
    KTH, School of Biotechnology (BIO).
    Cerjan, Dijana
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Ekström, Marica
    KTH, School of Biotechnology (BIO).
    Elobeid, Adila
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Eriksson, Cecilia
    KTH, School of Biotechnology (BIO).
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO).
    Falk, Ronny
    KTH, School of Biotechnology (BIO).
    Fall, Jenny
    KTH, School of Biotechnology (BIO).
    Forsberg, Mattias
    KTH, School of Biotechnology (BIO).
    Gry Björklund, Marcus
    KTH, School of Biotechnology (BIO).
    Gumbel, Kristoffer
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Halimi, Asif
    KTH, School of Biotechnology (BIO).
    Hallin, Inga
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Hamsten, Carl
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Hansson, Marianne
    KTH, School of Biotechnology (BIO).
    Hedhammar, My
    KTH, School of Biotechnology (BIO).
    Hercules, Görel
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Kampf, Caroline
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Larsson, Karin
    KTH, School of Biotechnology (BIO).
    Lindskog, Mats
    KTH, School of Biotechnology (BIO).
    Lodewyckx, Wald
    KTH, School of Biotechnology (BIO).
    Lund, Jan
    KTH, School of Biotechnology (BIO).
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO).
    Magnusson, Kristina
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Malm, Erik
    KTH, School of Biotechnology (BIO).
    Nilsson, Peter
    KTH, School of Biotechnology (BIO).
    Ödling, Jenny
    KTH, School of Biotechnology (BIO).
    Oksvold, Per
    KTH, School of Biotechnology (BIO).
    Olsson, Ingmarie
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Öster, Emma
    KTH, School of Biotechnology (BIO).
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO).
    Paavilainen, Linda
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Rimini, Rebecca
    KTH, School of Biotechnology (BIO).
    Rockberg, Johan
    KTH, School of Biotechnology (BIO).
    Runeson, Marcus
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO).
    Sköllermo, Anna
    KTH, School of Biotechnology (BIO).
    Steen, Johanna
    KTH, School of Biotechnology (BIO).
    Stenvall, Maria
    KTH, School of Biotechnology (BIO).
    Sterky, Fredrik
    KTH, School of Biotechnology (BIO).
    Strömberg, Sara
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Sundberg, Mårten
    KTH, School of Biotechnology (BIO).
    Tegel, Hanna
    KTH, School of Biotechnology (BIO).
    Tourle, Samuel
    KTH, School of Biotechnology (BIO).
    Wahlund, Eva
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Waldén, Annelie
    KTH, School of Biotechnology (BIO).
    Wan, Jinghong
    KTH, School of Biotechnology (BIO), Molecular Biotechnology (closed 20130101).
    Wernérus, Henrik
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Westberg, Joakim
    KTH, School of Biotechnology (BIO).
    Wester, Kenneth
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Wrethagen, Ulla
    KTH, School of Biotechnology (BIO).
    Xu, Lan Lan
    KTH, School of Biotechnology (BIO).
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Pontén, Fredrik
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    A human protein atlas for normal and cancer tissues based on antibody proteomics2005In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 4, no 12, p. 1920-1932Article in journal (Refereed)
    Abstract [en]

    Antibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we report a new publicly available database containing, in the first version, similar to 400,000 high resolution images corresponding to more than 700 antibodies toward human proteins. Each image has been annotated by a certified pathologist to provide a knowledge base for functional studies and to allow queries about protein profiles in normal and disease tissues. Our results suggest it should be possible to extend this analysis to the majority of all human proteins thus providing a valuable tool for medical and biological research.

  • 25.
    Uhlén, Mathias
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Fagerberg, Linn
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lindskog, Cecilia
    Oksvold, Per
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, Adil
    Sivertsson, Åsa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kampf, Caroline
    Sjöstedt, Evelina
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Asplund, Anna
    Olsson, IngMarie
    Edlund, Karolina
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Navani, Sanjay
    Szigyarto, Cristina Al-Khalili
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Odeberg, Jacob
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Djureinovic, Dijana
    Takanen, Jenny Ottosson
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Alm, Tove
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edqvist, Per-Henrik
    Berling, Holger
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Mulder, Jan
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Nilsson, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hamsten, Marica
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    von Feilitzen, Kalle
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsberg, Mattias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Persson, Lukas
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Johansson, Fredric
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    von Heijne, Gunnar
    Nielsen, Jens
    Pontén, Fredrik
    Tissue-based map of the human proteome2015In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 347, no 6220, p. 1260419-Article in journal (Refereed)
    Abstract [en]

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf