Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 71
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Atapour, Masoud
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Wei, Zheng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Chaudhary, Himanshu
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Lendel, Christofer
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Hedberg, Yolanda
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Metal release from stainless steel 316L in whey protein - And simulated milk solutions under static and stirring conditions2019Ingår i: Food Control, ISSN 0956-7135, E-ISSN 1873-7129, Vol. 101, s. 163-172Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Stainless steel is an important transport and processing contact material for bovine milk and dairy products. Release (migration) of metals, ions, complexes or wear debris/particles, and metal-induced protein aggregation in such environments are hence important to consider both from a corrosion and food safety perspective. This study aims on investigating the release of iron (Fe), chromium (Cr), and nickel (Ni) from AISI 316L stainless steel in contact with whey protein solutions relevant for protein drinks, and on how the whey proteins are influenced by stirring with a magnetic stir bar and metal release. Mechanistic insight is gained by parallel investigations of metal release from two reference non-protein containing solutions, a metal-complexing (citrate-containing) simulated milk solution (SMS) and a low complexing phosphate buffered saline solution (PBS). All immersion exposures were conducted at pH 6.8 for 0.5, 4, 24 and 48 hat room temperature at static and stirring conditions. All solutions and samples were investigated using different chemical, spectroscopic, microscopic, and electrochemical methods. Significantly higher amounts of Fe, Cr, and Ni were released into the whey protein solution (80 g/L) as compared to SMS and PBS. Strong enrichment of Cr in the surface oxide and reduction of the surface oxide thickness were associated with a higher amount of Ni release in the metal-complexing solutions (SMS and whey protein) compared with PBS. Stirring conditions resulted in higher amounts of metal release, enrichment of Cr in the surface oxide, and clear signs of wear of the 316L surface in all solutions compared to static conditions. The wear mechanism in the whey protein solution was different as compared to corresponding processes in SMS and PBS, involving an etching-like process and larger-sized wear debris. Electrochemical measurements at static conditions confirmed observed differences between the solutions, with the lowest corrosion resistance observed for coupons exposed in the whey protein solution, followed by SMS and PBS. Released metals in solution from the 316L coupons in contact with the whey protein solution resulted in enhanced rates of protein aggregation and precipitation of protein aggregates from solution. Further studies should be made to investigate other relevant test conditions and assess toxicological risks.

  • 2.
    Cappellini, Francesca
    et al.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Hedberg, Yolanda
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap. Karolinska Inst, Inst Environm Med, Stockholm, Sweden.
    McCarrick, Sarah
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Hedberg, Jonas
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Derr, Remco
    Toxys, Leiden, Netherlands..
    Hendriks, Giel
    Toxys, Leiden, Netherlands..
    Odnevall Wallinder, Inger
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Karlsson, Hanna L.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Mechanistic insight into reactivity and (geno)toxicity of well-characterized nanoparticles of cobalt metal and oxides2018Ingår i: Nanotoxicology, ISSN 1743-5390, E-ISSN 1743-5404, Vol. 12, nr 6, s. 602-620Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An increasing use of cobalt (Co)-based nanoparticles (NPs) in different applications and exposures at occupational settings triggers the need for toxicity assessment. Improved understanding regarding the physiochemical characteristics of Co metal NPs and different oxides in combination with assessment of toxicity and mechanisms may facilitate decisions for grouping during risk assessment. The aim of this study was to gain mechanistic insights in the correlation between NP reactivity and toxicity of three different Co-based NPs (Co, CoO, and Co3O4) by using various tools for characterization, traditional toxicity assays, as well as six reporter cell lines (ToxTracker) for rapid detection of signaling pathways of relevance for carcinogenicity. The results showed cellular uptake of all NPs in lung cells and induction of DNA strand breaks and oxidative damage (comet assay) by Co and CoO NPs. In-depth studies on the ROS generation showed high reactivity of Co, lower for CoO, and no reactivity of Co3O4 NPs. The reactivity depended on the corrosion and transformation/dissolution properties of the particles and the media highlighting the role of the surface oxide and metal speciation as also confirmed by in silico modeling. By using ToxTracker, Co NPs were shown to be highly cytotoxic and induced reporters related to oxidative stress (Nrf2 signaling) and DNA strand breaks. Similar effects were observed for CoO NPs but at higher concentrations, whereas the Co3O4 NPs were inactive at all concentrations tested. In conclusion, our study suggests that Co and CoO NPs, but not Co3O4, may be grouped together for risk assessment.

  • 3.
    Cha, Yingying
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Maskinkonstruktion (Inst.).
    Hedberg, Yolanda
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. Karolinska Institutet, Sweden.
    Mei, Nanxuan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Olofsson, Ulf
    KTH, Skolan för industriell teknik och management (ITM), Maskinkonstruktion (Inst.).
    Airborne Wear Particles Generated from Conductor Rail and Collector Shoe Contact: Influence of Sliding Velocity and Particle Size2016Ingår i: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 64, nr 3, artikel-id 40Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The mechanical wear of train components is one of the main sources of airborne particles in subway air. A certain contribution is suspected to derive from third-rail systems due to the sliding of two metallic surfaces between conductor rail and collector shoe during operation. In this study, a pin-on-disc apparatus was used to simulate the friction between such two sliding partners (shoe-to-rail). Airborne particles generated from the sliding contact were measured by particle counters (a fast mobility particle sizer spectrometer and an optical particle sizer) and were collected by an electrical low-pressure impactor for physical and chemical analysis. Interface temperature for each test was measured by a thermocouple. The influence of sliding velocity and temperature on particulate number concentration, size distribution, and chemical composition was investigated. Atomic absorption spectroscopy, cyclic voltammetry, and energy-dispersive spectroscopy measurements were carried out to determine the chemical compositions. Results show that increasing sliding velocity results in a higher temperature at the frictional interface and a higher concentration of ultrafine particles. The ratio of manganese to iron surface oxides increased strongly with smaller particle size. A copper compound was observed in some particle samples, probably gerhardite (Cu2NO3(OH)(3)) formed due to high temperature.

  • 4.
    Hedberg, Jonas
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Karlsson, Hanna L.
    Hedberg, Yolanda
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Blomberg, Eva
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. SP Technical Research Institute of Sweden, Sweden.
    Wallinder, Inger Odnevall
    The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity2016Ingår i: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 141, s. 291-300Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Copper nanoparticles (Cu NPs) are increasingly used in various biologically relevant applications and products, e.g., due to their antimicrobial and catalytic properties. This inevitably demands for an improved understanding on their interactions and potential toxic effects on humans. The aim of this study was to investigate the corrosion of copper nanoparticles in various biological media and to elucidate the speciation of released copper in solution. Furthermore, reactive oxygen species (ROS) generation and lung cell (A549 type II) membrane damage induced by Cu NPs in the various media were studied. The used biological media of different complexity are of relevance for nanotoxicological studies: Dulbecco's modified eagle medium (DMEM), DMEM+ (includes fetal bovine serum), phosphate buffered saline (PBS), and PBS + histidine. The results show that both copper release and corrosion are enhanced in DMEM+, DMEM, and PBS + histidine compared with PBS alone. Speciation results show that essentially no free copper ions are present in the released fraction of Cu NPs in neither DMEM+, DMEM nor histidine, while labile Cu complexes form in PBS. The Cu NPs were substantially more membrane reactive in PBS compared to the other media and the NPs caused larger effects compared to the same mass of Cu ions. Similarly, the Cu NPs caused much more ROS generation compared to the released fraction only. Taken together, the results suggest that membrane damage and ROS formation are stronger induced by Cu NPs and by free or labile Cu ions/complexes compared with Cu bound to biomolecules.

  • 5.
    Hedberg, Jonas
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Skoglund, Sara
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Karlsson, Maria-Elisa
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Wold, Susanna
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Hedberg, Yolanda
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Sequential Studies of Silver Released from Silver Nanoparticles in Aqueous Media Simulating Sweat, Laundry Detergent Solutions and Surface Water2014Ingår i: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 48, nr 13, s. 7314-7322Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    From an increased use of silver nanoparticles (Ag NPs) as an antibacterial in consumer products follows a need to assess the environmental interaction and fate of their possible dispersion and release of silver. This study aims to elucidate an exposure scenario of the Ag NPs potentially released from, for example, impregnated clothing by assessing the release of silver and changes in particle properties in sequential contact with synthetic sweat, laundry detergent solutions, and freshwater, simulating a possible transport path through different aquatic media. The release of ionic silver is addressed from a water chemical perspective, compared with important particle and surface characteristics. Released amounts of silver in the sequential exposures were significantly lower, approximately a factor of 2, than the sum of each separate exposure. Particle characteristics such as speciation (both of Ag ionic species and at the Ag NP surface) influenced the release of soluble silver species present on the surface, thereby increasing the total silver release in the separate exposures compared with sequential immersions. The particle stability had no drastic impact on the silver release as most of the Ag NPs were unstable in solution. The silver release was also influenced by a lower pH (increased release of silver), and cotransported zeolites (reduced silver in solution).

  • 6.
    Hedberg, Yolanda
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Environmental and health aspects of corrosion– importance of chemical speciation2010Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    During the last decades, the interest in corrosion of metals and alloys from an environmental and health perspective has increased rapidly as a consequence of stricter environmental and human exposure legislations, their extensive use as implant materials and an increasing understanding related to occupational and/or daily exposure to airborne particles. Corrosion-induced metal release, however, needs to be understood in detail and to include knowledge related to chemical speciation, i.e. the oxidation state, complexation and chemical form of released metals, parameters of high importance when considering toxicity.

    In this licentiate work, corrosion-induced metal runoff from roofing materials (copper, zinc, and chromium(III)-, and chromium(VI) surface treated galvanized steel) has been investigated from an environmental perspective with focus on chemical speciation of released metals (Papers I-II). From these papers it was evident that the total concentration measured in the runoff water is not sufficient for any environmental risk assessment. The environmental fate including changes in chemical speciation and hence metal precipitation has to be considered. For example, it was shown that the copper concentration decreased by three orders of magnitude already in the internal drainage system of a shopping centre with a copper roof, to a concentration lower than storm water collected from a nearby parking space (Paper I). Also, speciation measurements can explain corrosion, metal release and surface processes of chromium surface treated galvanized steel at different sites (urban and marine). Any environmental risk assessment has to be done by considering all metal species released, and compared with ecotoxic values. For example, when most chromium(VI) (the most toxic species) was released, significantly less zinc was released at the same time which decreased the overall ecotoxicity of the runoff water significantly (Paper II).

    When assessing environmental risks by standard laboratory tests, it is important to understand all mechanisms which are possibly influenced by individual experimental parameters and which often are different for different test substances. Some metals released, as seen in the case of iron, may precipitate with time and be pH-, solution- and buffering dependent. This behavior can lead to strongly underestimated measured metal concentrations (Paper III).

    When particles of metals or alloys are to be investigated (Papers III-VI), it is essential to conduct a thorough particle characterization, since the surface properties cannot be defined. In addition, the surface properties (oxide layer properties) change with varying particle size (Paper VI) and with other experimental parameters such as dispersion (Paper VI).

    All iron-, and chromium-based particles investigated (Papers III-VI) revealed large differences between alloy particles and pure metals. Particles of pure iron and nickel released significantly more metals compared with particles of the investigated alloys, whereas particles of pure chromium released less metals compared with the alloys. Particles of stainless steel (AISI 316L), ferro-chromium and ferro-silicon-chromium released very low amounts of metals (Papers III-VI). The released quantity increased with increased acidity (Papers III-VI) and also in the presence of complexing agents (ongoing research). The manufacturing process is of high importance, as observed for stainless steel particles when compared with a side product from stainless steel production with similar composition that released significantly more metals (Paper III). Particles of metal oxides, i.e. chromium(III)oxide and iron(II,III)oxide, released very low amounts of metals due to their thermodynamic stability.

    Ongoing research activities focus on the specific influence of complexing agents and proteins on the metal release process from massive sheet and particles of metals and alloys. The applicability and the possibility to use different analytical tools are investigated and elaborated for small-sized particles. A detailed understanding of the correlation between material and particle characteristics, the metal release process, the chemical speciation in interaction with proteins and/or cells, and the particle/cell interaction is essential to enable any correlation between material/particle characteristics and toxicity.

    The aim of this licentiate summary is – in contrast to the six included scientific papers – to explain the importance of chemical speciation for corrosion processes from a health and environmental perspective in a popular way to reach a broad non-academic audience. The summary is hence written as a guidance document for stakeholders and the regulatory community working with environmental and health risk assessment.

  • 7.
    Hedberg, Yolanda
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Stainless Steel in Biological Environments – Relation between Material Characteristics, Surface Chemistry and Toxicity2012Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Triggered by the regulatory need of the industry to demonstrate safe use of their alloy products from an environmental and health perspective, and by the significant lack of metal release data and its correlation to material and surface characteristics for iron- and chromium-based alloys, a highly interdisciplinary in-depth research effort was undertaken to assess the relation between material/surface characteristics and toxicity with main emphasis on stainless steel alloys. This thesis focuses predominantly on studies made on AISI 316L both as massive sheet and as powder particles, but includes also results for other stainless steel grades and reference metals and metal oxides.

     

    The work comprises multi-analytical bulk and surface characterizations combined with particle characterizations and corrosion investigations, all correlated with in-depth kinetic metal release (bioaccessibility) studies as a function of route of manufacture, powder particle characteristics, surface finish, stainless steel grade, solution composition, pH, acidity and complexation capacity, as well as the presence of proteins. Speciation (chemical form) measurements were in addition conducted of released chromium, and of metal species in the surface oxide. Protein interactions were investigated in terms of adsorption, protein-metal complexation both at the surface and in solution, and the relative strength of protein-stainless steel surface interaction was addressed. In vitro and in vivo toxicological studies were conducted for the same inert-gas-atomized 316L powder sized < 4µm.

     

    Bulk and surface oxide properties, such as phase, structure, morphology, chemical and electrochemical stability, protein-surface interactions, bioavailability of released metals, were all clearly evident to largely influence the metal release process and any induced toxicity. The route of manufacture was shown to strongly influence the bulk and surface oxide characteristics of stainless steel powders, hence also their electrochemical and catalytic properties, as well as the release/dissolution of metals from the powders (Papers VIII, XIII, XIV-XVII). The release of metals from both stainless steel sheets and powders was in general low compared to pure iron or nickel metal, and highly dependent on bulk and surface characteristics, the composition, complexation capacity and buffering capacity (and pH) of the solution, as well as on many experimental factors including time and sonication (Papers VI, VIII, XI, and XVII).

     

    Surface-protein interactions strongly enhanced the release of alloy constituents (Papers IX, XI, and XVII). Iron was preferentially released (manganese in the case of inert-gas-atomized stainless steel powders) (Papers VIII, XI, and XVII). Protein-stainless steel surface interactions were most probably governed by chemisorption at given experimental conditions (Papers XI-XII). A strong protein-adsorption was evident for all stainless steel surfaces investigated, independent of protein charge, size or structure (Paper IX). Protein-metal complexes were formed both at the surface and in solution (Papers X-XII). Differences in protein charge and type resulted in varying degrees of interaction with differences in the extent of enhanced metal release as a consequence (Papers XI-XII). The inert-gas-atomized stainless steel powder sized <4 µm induced neither any significant increase of lysis of erythrocytes (rupture of red blood cells) nor any cytotoxicity, but resulted in a slight DNA damage in in vitro toxicity measurements (Paper VI). No adverse effects were however observed in an in vivo 28-day repeated-dose inhalation study on rats using the same powder (Paper VII).

     

    The most important bulk, surface, particle, and experimental factors governing the bioaccessibility properties of stainless steel were identified and mechanistically elucidated. Detailed knowledge of all factors is essential for accurate hazard or risk assessment of metal alloys and enables read-across possibilities with materials of the same or similar characteristics. However, in cases where data is different from known systems for one factor or more, bioaccessibility data should be generated before any risk assessment is made.

  • 8.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Dobryden, Illia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Chaudhary, Himanshu
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Wei, Zheng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Claesson, Per M.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Lendel, Christofer
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Synergistic effects of metal-induced aggregation of human serum albumin2019Ingår i: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 173, s. 751-758Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Exposure to cobalt (Co), chromium (Cr), and nickel (Ni) occurs often via skin contact and from different dental and orthopedic implants. The metal ions bind to proteins, which may induce structural changes and aggregation, with different medical consequences. We investigated human serum albumin (HSA) aggregation in the presence of Co-II, Cr-III, and/or Ni-II ions and/or their nanoparticle precipitates by using scattering, spectroscopic, and imaging techniques, at simulated physiological conditions (phosphate buffered saline - PBS, pH 7.3) using metal salts that did not affect the pH, and at HSA:metal molar ratios of up to 1:8. Co ions formed some solid nano particles in PBS at the investigated conditions, as determined by nanoparticle tracking analysis, but the Cr-III anions and Ni-II ions remained fully soluble. It was found that all metal ions induced HSA aggregation, and this effect was significantly enhanced when a mixture of all three metal ions was present instead of any single type of ion. Thus, the metal ions induce aggregation synergistically. HSA aggregates formed linear structures on a mica surface in the presence of Cr-III ions. A clear tendency of aggregation and linearly aligned aggregates was seen in the presence of all three metal ions. Spectroscopic investigations indicated that the majority of the HSA molecules maintained their alpha helical secondary structure and conformation. This study highlights the importance of synergistic effects of metal ions and/or their precipitates on protein aggregation, which are highly relevant for implant materials and common exposures to metals.

  • 9.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Korrosionslära.
    Dromberg, P.
    Water and Sewage Network Investigations, Stockholm Vatten VA AB.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Korrosionslära.
    Die Bindekapazität von Entwässerungssystemen für Kupfer von Kupferdächern: Vergleich von Regenwasserkupferkonzentrationen in einem Kupferdachentwässerungssystem und einem Parkplatz2010Ingår i: Wasser- /Abwassertechnik, Vol. 3, s. 22-23Artikel i tidskrift (Övrig (populärvetenskap, debatt, mm))
  • 10.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap. Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
    Erfani, Behnaz
    Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
    Matura, Mihály
    Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden ; Unit of Occupational and Environmental Dermatology, Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden.
    Lidén, Carola
    Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
    Chromium(III) release from chromium-tanned leather elicits allergic contact dermatitis: a use test study.2018Ingår i: Contact Dermatitis, ISSN 0105-1873, E-ISSN 1600-0536, Vol. 78, nr 5, s. 307-314Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    BACKGROUND: Chromium (Cr) is a common skin sensitizer. The use of Cr(VI) in leather is restricted in the EU, but that of Cr(III) is not.

    OBJECTIVES: To assess whether prolonged exposure to Cr-tanned leather with mainly Cr(III) release may elicit allergic contact dermatitis in Cr-allergic individuals.

    METHOD: Ten Cr-allergic subjects and 22 controls were patch tested with serial dilutions of Cr(III) and Cr(VI), and with leather samples. They then conducted a use test with a Cr-tanned and a Cr-free leather bracelet over a period of 3 weeks, for 12 h per day. Cr deposited on the skin from the bracelets was measured in the controls, and the diphenylcarbazide test for Cr(VI) and extraction tests for Cr(III) and Cr(VI) were conducted for the different leathers.

    RESULTS: Four of 10 Cr-allergic subjects developed positive reactions to the Cr-tanned bracelet within 7-21 days, whereas only 1 of 10 had a positive patch test reaction to this leather. Cr released from the Cr-tanned leather was most probably entirely Cr(III), with a quantifiable amount being deposited on the skin.

    CONCLUSIONS: This study strongly suggests that prolonged and repeated exposure to Cr-tanned leather with mainly Cr(III) release is capable of eliciting allergic contact dermatitis in Cr-allergic individuals.

  • 11.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Gustafsson, Johanna
    Unit for Analytical Toxicology, Department of Biosciences and Nutrition, Novum, Karolinska Insitutet, SE-141 86 Huddinge, Stockholm, Sweden.
    Karlsson, Hanna L.
    Unit for Analytical Toxicology, Department of Biosciences and Nutrition, Novum, Karolinska Insitutet, SE-141 86 Huddinge, Stockholm, Sweden.
    Möller, Lennart
    Unit for Analytical Toxicology, Department of Biosciences and Nutrition, Novum, Karolinska Insitutet, SE-141 86 Huddinge, Stockholm, Sweden.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective2010Ingår i: Particle and Fibre Toxicology, ISSN 1743-8977, E-ISSN 1743-8977, Vol. 7, nr 23Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background

    Production of ferrochromium alloys (FeCr), master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr), ferrosiliconchromium (FeSiCr), stainless steel (316L), iron (Fe), chromium (Cr), and chromium(III)oxide (Cr2O3), in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549).

    Results

    The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF) of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III)-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III) from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death after 24 h exposure.

    Conclusion

    It is evident that particle and alloy characteristics such as particle size and surface composition are important aspects to consider when assessing particle toxicity and metal release from alloy particles compared to pure metal particles. Generated results clearly elucidate that neither the low released concentrations of metals primarily as a result of protective and poorly soluble surface oxides, nor non-bioavailable chromium complexes, nor the particles themselves of occupational relevance induced significant acute toxic response, with exception of DNA damage from stainless steel.

  • 12.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi.
    Hedberg, Jonas
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Isaksson, Sara
    KTH, Skolan för kemivetenskap (CHE).
    Mei, Nanxuan
    KTH, Skolan för kemivetenskap (CHE).
    Blomberg, Eva
    KTH, Skolan för kemivetenskap (CHE), Kemi.
    Wold, S.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi.
    Nanoparticles of WC-Co, WC, Co and Cu of relevance for traffic wear particles – Particle stability and reactivity in synthetic surface water and influence of humic matter2017Ingår i: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 224, s. 275-288Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Studded tyres made of tungsten carbide cobalt (WC-Co) are in the Northern countries commonly used during the winter time. Tungsten (W)-containing nano- and micron-sized particles have been detected close to busy roads in several European countries. Other typical traffic wear particles consist of copper (Cu). The aims of this study were to investigate particle stability and transformation/dissolution properties of nanoparticles (NPs) of WC-Co compared with NPs of tungsten carbide (WC), cobalt (Co), and Cu. Their physicochemical characteristics (primarily surface oxide and charge) are compared with their extent of sedimentation and metal release in synthetic surface water (SW) with and without two different model organic molecules, 2,3- and 3,4-dihydroxybenzoic acid (DHBA) mimicking certain sorption sites of humic substances, for time periods up to 22 days. The WC-Co NPs possessed a higher electrochemical and chemical reactivity in SW with and without DHBA molecules as compared with NPs of WC, Co, and Cu. Co was completely released from the WC-Co NPs within a few hours of exposure, although it remained adsorbed/bonded to the particle surface and enabled the adsorption of negatively charged DHBA molecules, in contrast with the WC NPs (no adsorption of DHBA). The DHBA molecules were found to rapidly adsorb on the Co and Cu NPs. The sedimentation of the WC and WC-Co NPs was not influenced by the presence of the 2,3- or 3,4-DHBA molecules. A slight influence (slower sedimentation) was observed for the Co NPs, and a strong influence (slower sedimentation) was observed for the Cu NPs in SW with 2,3-DHBA compared with SW alone. The extent of metal release increased in the order: WC < Cu < Co < WC-Co NPs. All NPs released more than 1 wt-% of their metal total mass. The release from the Cu NPs was most influenced by the presence of DHBA molecules.

  • 13.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Hedberg, Jonas
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Liu, Yi
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Complexation- and ligand-induced metal release from 316L particles: importance of particle size and crystallographic structure2011Ingår i: Biometals, ISSN 0966-0844, E-ISSN 1572-8773, Vol. 24, nr 6, s. 1099-1114Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Iron, chromium, nickel, and manganese released from gas-atomized AISI 316L stainless steel powders (sized < 45 and < 4 mu m) were investigated in artificial lysosomal fluid (ALF, pH 4.5) and in solutions of its individual inorganic and organic components to determine its most aggressive component, elucidate synergistic effects, and assess release mechanisms, in dependence of surface changes using atomic absorption spectroscopy, Raman, XPS, and voltammetry. Complexation is the main reason for metal release from 316L particles immersed in ALF. Iron was mainly released, while manganese was preferentially released as a consequence of the reduction of manganese oxide on the surface. These processes resulted in highly complexing media in a partial oxidation of trivalent chromium to hexavalent chromium on the surface. The extent of metal release was partially controlled by surface properties (e.g., availability of elements on the surface and structure of the outermost surface) and partially by the complexation capacity of the different metals with the complexing agents of the different media. In general, compared to the coarse powder (< 45 mu m), the fine (< 4 mu m) powder displayed significantly higher released amounts of metals per surface area, increased with increased solution complexation capacity, while less amounts of metals were released into non-complexing solutions. Due to the ferritic structure of lower solubility for nickel of the fine powder, more nickel was released into all solutions compared with the coarser powder.

  • 14.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Hedberg, Jonas
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Particle characteristics and metal release from natural rutile (TiO2) and zircon particles in synthetic body fluids2012Ingår i: Journal of Biomaterials and Nanobiotechnology, ISSN 2158-7027, E-ISSN 2158-7043, Vol. 3, nr 1, s. 37-49Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Titanium oxide (rutile, TiO2) and zircon (ZrSiO4), known insoluble ceramic materials, are commonly used for coatings of implant materials. We investigate the release of zirconium, titanium, aluminum, iron, and silicon from different micron-sized powders of 6 powders of natural rutile (TiO2) and zircon (ZrSiO4) from a surface perspective. The investiga- tion includes five different synthetic body fluids and two time periods of exposure, 2 and 24 hours. The solution chemi- cals rather than pH are important for the release of zirconium. When exceeding a critical amount of aluminum and sili- con in the surface oxide, the particles seem to be protected from selective pH-specific release at neutral or weakly alka- line pH. The importance of bulk and surface composition and individual changes between different kinds of the same material is elucidated. Changes in material properties and metal release characteristics with particle size are presented for zircon.

  • 15.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. Karolinska Institutet, Sweden.
    Herting, Gunilla
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Latvala, S.
    Elihn, K.
    Karlsson, H. L.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Surface passivity largely governs the bioaccessibility of nickel-based powder particles at human exposure conditions2016Ingår i: Regulatory toxicology and pharmacology, ISSN 0273-2300, E-ISSN 1096-0295, Vol. 81, s. 162-170Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The European chemical framework REACH requires that hazards and risks posed by chemicals, including alloys and metals, are identified and proven safe for humans and the environment. Therefore, differences in bioaccessibility in terms of released metals in synthetic biological fluids (different pH (1.5–7.4) and composition) that are relevant for different human exposure routes (inhalation, ingestion, and dermal contact) have been assessed for powder particles of an alloy containing high levels of nickel (Inconel 718, 57 wt% nickel). This powder is compared with the bioaccessibility of two nickel-containing stainless steel powders (AISI 316L, 10–12% nickel) and with powders representing their main pure alloy constituents: two nickel metal powders (100% nickel), two iron metal powders and two chromium metal powders. X-ray photoelectron spectroscopy, microscopy, light scattering, and nitrogen absorption were employed for the particle and surface oxide characterization. Atomic absorption spectroscopy was used to quantify released amounts of metals in solution. Cytotoxicity (Alamar blue assay) and DNA damage (comet assay) of the Inconel powder were assessed following exposure of the human lung cell line A549, as well as its ability to generate reactive oxygen species (DCFH-DA assay). Despite its high nickel content, the Inconel alloy powder did not release any significant amounts of metals and did not induce any toxic response. It is concluded, that this is related to the high surface passivity of the Inconel powder governed by its chromium-rich surface oxide. Read-across from the pure metal constituents is hence not recommended either for this or any other passive alloy.

  • 16.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE).
    Herting, Gunilla
    KTH, Skolan för kemivetenskap (CHE), Kemi, Korrosionslära.
    Wallinder, Inger Odnevall
    KTH, Skolan för kemivetenskap (CHE), Kemi, Korrosionslära.
    Risks of using membrane filtration for trace metal analysis and assessing the dissolved metal fraction of aqueous media - A study on zinc, copper and nickel2011Ingår i: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 159, nr 5, s. 1144-1150Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Membrane filtration is commonly performed for solid liquid separation of aqueous solutions prior to trace metal analysis and when assessing "dissolved" metal fractions. Potential artifacts induced by filtration such as contamination and/or adsorption of metals within the membrane have been investigated for different membrane materials, metals, applied pressures and pre-cleaning steps. Measurements have been conducted on aqueous solutions including well-defined metal standards, ultrapure water, and on runoff water from corroded samples. Filtration using both non-cleaned and pre-cleaned filters revealed contamination and adsorption effects, in particular pronounced for zinc, evident for copper but non-significant for nickel. The results clearly show these artifacts to be non-systematic both for non-cleaned and pre-cleaned membranes. The applied pressure was of minor importance. Measurements of the labile fraction by means of stripping voltammetry clearly elucidate that membrane filtration followed by total metal analysis cannot accurately assess the labile or the dissolved metal fraction.

  • 17.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Karlsson, M. -E
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Wei, Z.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Znidarsic, M.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Hedberg, Jonas
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Interaction of Albumin and Fibrinogen with Stainless Steel: Influence of Sequential Exposure and Protein Aggregation on Metal Release and Corrosion Resistance2017Ingår i: Corrosion, ISSN 0010-9312, E-ISSN 1938-159X, Vol. 73, nr 12Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Corrosion and metal release mechanisms of the biomedical stainless steel grade Type 316L are at human-relevant biological conditions not fully understood. This study focuses on its corrosion properties and release of iron (Fe), chromium (Cr), manganese (Mn), and nickel (Ni) into simulated physiological solutions at pH 7.4 in the presence of proteins. Parallel studies were performed on stainless steel Type 303 containing a substantial amount of MnS inclusions. Metal release studies were performed in phosphate buffered saline (PBS) for 4 h and 24 h at 37 degrees C with or without different concentrations of bovine serum albumin (BSA), fibrinogen from bovine plasma (Fbn), or mixtures of the same. Studies were in addition performed after 1, 4, 6, and 24 h in solutions that were partially replenished after 5 h in order to investigate whether any Vroman effect (exchange of adsorbed proteins by proteins of higher binding affinity) could influence the extent of released metals in solution. This was performed at physiological concentrations of BSA (40 g/L) and Fbn (2.67 g/L) in PBS, and for reference solutions of PBS, PBS with 40 g/L BSA, and PBS with 2.67 g/L Fbn. Changes in open-circuit potential and linear polarization resistance were investigated for the same conditions. After exposure, the exposed surfaces were rinsed and investigated ex situ by means of x-ray photoelectron spectroscopy and infrared reflection absorption spectroscopy. Metal-protein complexation-induced metal release mechanisms were found to be most pronounced for Type 316L and the release of Fe, Cr, and Ni. Fibrinogen adsorbed differently onto Type 303 (thicker conformation of adsorbed proteins) as compared with Type 316L and occasionally induced corrosion events for Type 303. Mn was mostly released from inclusions present in the Type 303 alloy, most probably via non-electrochemical mechanisms. A Vroman effect was observed for both grades. A significant extent of precipitation of metal-rich protein aggregates influenced the metal release measurements in solution and resulted in an underestimation of the total amount of released metals from the stainless steel grades.

  • 18.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Karlsson, Maria-Elisa
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Blomberg, Eva
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. SP Technical Research Institute of Sweden, Sweden.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Hedberg, Jonas
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media2014Ingår i: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 122, s. 216-222Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Stainless steel is widely used in biological environments, for example as implant material or in food applications, where adsorption-controlled ligand-induced metal release is of importance from a corrosion, health, and food safety perspective. The objective of this study was to elucidate potential correlations between surface energy and wettability of stainless steel surfaces and the release of iron in complexing biological media. This was accomplished by studying changes in surface energies calculated from contact angle measurements, surface oxide composition (X-ray photoelectron spectroscopy), and released iron (graphite furnace atomic absorption spectroscopy) for stainless steel grade AISI 304 immersed in fluids containing bovine serum albumin or citric acid, and non-complexing fluids such as NaCl, NaOH, and HNO3. It was shown that the surface wettability and polar surface energy components were all influenced by adventitious atmospheric carbon (surface contamination of low molecular weight), rather than differences in surface oxide composition in non-complexing solutions. Adsorption of both BSA and citrate, which resulted in ligand-induced metal release, strongly influenced the wettability and the surface energy, and correlated well with the measured released amount of iron.

  • 19.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Karlsson, Oskar
    Szakalos, Peter
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Wallinder, Inger Odnevall
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Ultrafine 316 L stainless steel particles with frozen-in magnetic structures characterized by means of electron backscattered diffraction2011Ingår i: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 65, nr 14, s. 2089-2092Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electron Backscatter Diffraction (EBSD) studies clearly revealed a different crystallographic structure of the smallest particle size fraction of gas-atomized AISI 316 L stainless steel powder (<4 mu m) compared with larger sized fractions of the same powder (<45 mu m). Despite similar chemical compositions, the predominating structure of the smallest particle size fraction was ferritic (i.e., has ferromagnetic properties) whereas the larger sized particle fractions and massive 316 L revealed an expected austenitic and non-magnetic structure. From these findings, it follows that direct magnetic separation can be applied to separate very fine sized particles. These structural differences explain previously observed dissimilarities from corrosion and metal release perspectives.

  • 20.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Killian, Manuela S.
    Department of Materials Science and Engineering 4, Chair for Surface Science and Corrosion, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstr.7, 91058 Erlangen, Germany.
    Blomberg, Eva
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Virtanen, Sannakaisa
    Department of Materials Science and Engineering 4, Chair for Surface Science and Corrosion, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstr.7, 91058 Erlangen, Germany.
    Schmuki, Patrik
    Department of Materials Science and Engineering 4, Chair for Surface Science and Corrosion, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstr.7, 91058 Erlangen, Germany.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Interaction of bovine serum albumin and lysozyme with stainless steel studied by time of flight secondary ion mass spectrometry and x-ray photoelectron spectroscopy2012Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 28, nr 47, s. 16306-16317Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An in-depth mechanistic understanding of the interaction between stainless steel surfaces and proteins is essential from a corrosion and protein-induced metal release perspective when stainless steel is used in surgical implants and in food applications. The interaction between lysozyme (LSZ) from chicken egg white and bovine serum albumin (BSA) and AISI 316L stainless steel surfaces was studied ex situ by means of X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) after different adsorption time periods (0.5, 24, and 168 h). The effect of XPS measurements, storage (aging), sodium dodecyl sulfate (SDS), and elevated temperature (up to 200 °C) on the protein layers, as well as changes in surface oxide composition, were investigated. Both BSA and LSZ adsorption induced an enrichment of chromium in the oxide layer. BSA induced significant changes to the entire oxide, while LSZ only induced a depletion of iron at the utmost layer. SDS was not able to remove preadsorbed proteins completely, despite its high concentration and relatively long treatment time (up to 36.5 h), but induced partial denaturation of the protein coatings. High-temperature treatment (200 °C) and XPS exposure (X-ray irradiation and/or photoelectron emission) induced significant denaturation of both proteins. The heating treatment up to 200 °C removed some proteins, far from all. Amino acid fragment intensities determined from ToF-SIMS are discussed in terms of significant differences with adsorption time, between the proteins, and between freshly adsorbed and aged samples. Stainless steel–protein interactions were shown to be strong and protein-dependent. The findings assist in the understanding of previous studies of metal release and surface changes upon exposure to similar protein solutions.

  • 21.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Liden, Carola
    Wallinder, Inger Odnevall
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Corrigendum to "Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI)" [J. Hazard. Mater. 280, (2014), 654-661], doi :10.1016/j.jhazmat.2014.08.0612015Ingår i: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 285, s. 542-542Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    [No abstract available]

  • 22.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Linhardt, P.
    Wallinder, Inger Odnevall
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Electrochemical testing of sub-micron sized stainless steel particles2011Ingår i: Eur. Corros. Congr., EUROCORR, 2011Konferensbidrag (Refereegranskat)
    Abstract [en]

    Electrochemical testing of corrosion properties such as passivity is well established for massive stainless steels but difficult to conduct for sub-micron particles. These particles need to be attached at an inert electrode surface without changing their corrosion properties. In order to electrochemically investigate passivity properties for AISI 316L stainless steel particles sized less than 45 and 4 μm, respectively, several experimental set-ups have been explored. A paraffin impregnated graphite electrode was found to be the most suitable, reliable and reproducible set-up. Differently produced particles (gas- and water-atomized) of varying size were investigated. In addition, the effect of artificial passivation was explored. Chloride-containing media and media of relevance for human exposure, such as artificial body fluids, were used as electrolytes. For comparison, measurements were also carried out with massive 316L stainless steel. The passive properties of stainless steel particles were shown to be significantly different compared to massive 316L. All particles revealed a significantly higher open circuit potential compared with massive 316L and no passivity breakdown up to 1.2 V vs. Ag/AgCl reference electrode in neutral chloride-rich solutions was observed. No or few transient current peaks related to corrosion processes were observed in neutral solutions, but such events were numerous in aggressive acidic solutions such as 0.7% HCl. Particle dissolution effects were dependent on the particle manufacturing process, on artificial passivation, and on particle size. The relatively high open circuit potential determined for these particles (up to 0.6 V vs. Ag/AgCl in neutral saline solution) is assumed to be the consequence of manganese oxides identified on the surface of the 316L particles, which are not present on the surface of massive 316L. The electrochemical results are compared with data from parallel studies assessing metal release and surface compositional properties of the 316L particles.

  • 23.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Lundin, Maria
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Jacksén, Johan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Analytisk kemi.
    Emmer, Åsa
    KTH, Skolan för kemivetenskap (CHE), Kemi, Analytisk kemi.
    Blomberg, Eva
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Wallinder, Inger Odnevall
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Chromium-protein complexation studies by adsorptive cathodic stripping voltammetry and MALDI-TOF-MS2012Ingår i: Journal of Applied Electrochemistry, ISSN 0021-891X, E-ISSN 1572-8838, Vol. 42, nr 5, s. 349-358Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A methodology using stripping voltammetry has been elaborated to enable sensitive and reliable protein-chromium complexation measurements. Disturbing effects caused by adsorption of proteins on the mercury electrode were addressed. At low concentrations of proteins (< 60-85 nM), chromium-protein complexation measurements were possible. Chromium(VI) complexation was quantitatively determined using differently sized, charged, and structured proteins: serum albumin (human and bovine), lysozyme, and mucin. Generated results showed a strong relation between complexation and protein size, concentration, and the number of amino acids per protein mass. Complexation increased nonlinearly with increasing protein concentrations. The nature of this complexation was based on weak interactions judged from combined results with MALDI-TOF-MS and adsorptive cathodic stripping voltammetry.

  • 24.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Mazinanian, Neda
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Metal release from stainless steel powders and massive sheets - comparison and implication for risk assessment of alloys2013Ingår i: Environmental Sciences: Processes and Impacts, ISSN 2050-7887, Vol. 15, nr 2, s. 381-392Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Industries that place metal and alloy products on the market are required to demonstrate them being safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in-vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheet in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in-vitro metal release data from alloys are elucidated.

  • 25.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Midander, Klara
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Size matters: Mechanism of metal release from 316L stainless steel particles is governed by size-dependent properties of the surface oxide2014Ingår i: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 122, s. 223-226Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Size-dependent health aspects due to exposure to micro- or nano-sized particles can only be fully understood if their physicochemical properties are well characterized. The aim of this study was to explain the process of metal release from well-characterized inert gas atomized stainless steel 316L particles, sized < 4 gm (fine) and < 45 gm (coarse), in aggressive environments of relevance for inhalation and cellular uptake. This was accomplished by correlating new results from real-time metal release measurements with particle- and surface oxide characteristics. In simulated biological media with complexing properties, a complexation (ligand)-induced dissolution mechanism is dominating the metal release from fine 316L particles (having a homogeneous and amorphous Mn-rich surface oxide due to rapid cooling). At similar conditions, the coarse 316L particles show a metal release mechanism dominated by fast dissolution of surface oxide nanoparticles (rich in Mn, Fe, and some S), acting as initiation sites for metastable pitting corrosion.

  • 26.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Midander, Klara
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Particles, sweat, and tears: A comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact2010Ingår i: Integrated Environmental Assessment and Management, ISSN 1551-3777, E-ISSN 1551-3793, ISSN 1551-3793, Vol. 6, nr 3, s. 456-468Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ferrochromium alloys are manufactured in large quantities and placed on the global market for use as master alloys (secondary raw materials), primarily for stainless steel production. Any potential human exposure to ferrochromium alloy particles is related to occupational activities during production and use, with 2 main exposure routes, dermal contact and inhalation and subsequent digestion. Alloy and reference particles exposed in vitro in synthetic biological fluids relevant for these main exposure routes have been investigated in a large research effort combining bioaccessibility; chemical speciation; and material, surface, and particle characteristics. In this paper, data for the dermal exposure route, including skin and eye contact, will be presented and discussed. Bioaccessibility data have been generated for particles of a ferrochromium alloy, stainless steel grade AISI 316L, pure Fe, pure Cr, iron(II,III)oxide, and chromium(III)oxide, upon immersion in artificial sweat (pH 6.5) and artificial tear (pH 8.0) fluids for various time periods. Measured released amounts of Fe, Cr, and Ni are presented in terms of average Fe and Cr release rates and amounts released per amount of particles loaded. The results are discussed in relation to bulk and surface composition of the particles. Additional information, essential to assess the bioavailability of Cr released, was generated by determining its chemical speciation and by providing information on its complexation and oxidation states in both media investigated. The effect of differences in experimental temperature, 30 °C and 37 °C, on the extent of metal release in artificial sweat is demonstrated. Iron was the preferentially released element in all test media and for all time periods and ironcontaining particles investigated. The extent of metal release was highly pH dependent and was also dependent on the medium composition. Released amounts of Cr and Fe were very low (close to the limit of detection, <0.008% of particles released or dissolved as iron or chromium) for the alloy particles (ferrochromium alloy and stainless steel), the pure Cr particles, and the metal oxide particles. The released fraction of Cr (Cr/[Cr + Fe]) varied with the material investigated, the test medium, and the exposure time and cannot be predicted from either the bulk or the surface composition. Chromium was released as noncomplexed Cr(III) and in addition in very low concentrations (<3 mg/L). Nickel released was under the limit of detection (0.5 mg/L), except for ultrafine stainless steel particles (<10 mg/L). It is evident that media chemistry and material properties from a bulk and surface perspective, as well as other particle characteristics, and the chemical speciation of released metals have to be considered when assessing any potential hazard or risk induced by sparingly soluble metal or alloy particles.

  • 27.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Norell, Mats
    Materials and Manufacturing Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Hedberg, Jonas
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Szakálos, Peter
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Linhardt, Paul
    Institute for Chemical Technologies and Analytics (CTA), Vienna University of Technology, Getreidemarkt 9/164, A-1060 Vienna, Austria.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Surface characterisation of fine inert-gas- and water-atomised stainless steel 316L powders - formation of thermodynamically unstable surface oxide phases2013Ingår i: Powder Metallurgy, ISSN 0032-5899, E-ISSN 1743-2901, Vol. 56, nr 2, s. 158-163Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    New insights are presented on the speciation of surface oxide phases on fine inert gas atomised (GA, <45 and <4 mu m) and water atomised (WA, <45 mu m) stainless steel AISI 316L powders. X-ray photoelectron and Auger electron spectroscopy, scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry were applied for the characterisation. Oxidised manganese was strongly enriched in the outermost surface oxide of the GA powders (13 and 47 wt-%), an effect increasing with reduced particle size. Manganese and sulphur were enriched in oxide nanoparticles on the surface. Oxidised silicon (59 wt-%) was enriched on the WA powder surface. Tri-or tetravalent manganese oxides were observed on the GA particles in addition to alpha-Fe2O3, and Cr2O3. The oxide of the WA powder revealed in addition the likely presence of a silicate rich phase, mainly consisting of tetravalent Si, di- and/or trivalent Fe, and hexavalent Cr, which was confirmed not present as chromate.

  • 28.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Norell, Mats
    Materials and Manufacturing Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Linhardt, Paul
    Institute for Chemical Technologies and Analytics (CTA), Vienna University of Technology, Getreidemarkt 9/164, A-1060 Vienna, Austria.
    Bergqvist, Hans
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Materialfysik (Stängd 20120101), Funktionella material, FNM (Stängd 20120101).
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Influence of Surface Oxide Characteristics and Speciation on Corrosion, Electrochemical Properties and Metal Release of Atomized 316L Stainless Steel Powders2012Ingår i: International Journal of Electrochemical Science, ISSN 1452-3981, E-ISSN 1452-3981, Vol. 7, nr 12, s. 11655-11677Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Surface oxide characteristics of powder particles are important to consider for any toxicological risk assessment based on in-vitro or in-vivo tests. This study focuses on a multi-analytical approach (X-ray photoelectron spectroscopy, Auger electron spectroscopy, scanning- and transmission electron microscopy, and different electrochemical techniques) for in-depth characterization of surface oxides of inert-gas-atomized (GA) AISI 316L stainless steel powder, compared with massive sheet and a water-atomized (WA) 316L powder. Implications of differences in surface oxide phases and their surface distribution on corrosion, electrochemical properties and metal release are systematically discussed. Cr was enriched in an inner surface layer for both GA powders, with Mn and S enriched in the outermost surface oxide. The surface oxide was 2-5 nm thick for both GA powder size fractions, amorphous for the GA powder sized <4 μm and partially crystalline for the powder sized <45 μm. A strong ennoblement, i.e. positive shift in open circuit potential, of up to 800 mV, depending on solution, was observed for the GA powders. This ennoblement was induced by catalytic oxygen reduction properties of tri- or tetravalent Mn-oxides, not present on the massive sheet or WA powder. In contrast to the predominant presence of a trivalent Cr-oxide in the surface oxide of the GA powder particles, the WA<45μm powder revealed oxidized Cr, most probably present in its hexavalent state (not chromate), within a silicate-rich surface oxide. This study clearly shows that the surface oxide composition and speciation of differently sized GA and WA powders are unique (strongly connected to the atomization process) and of large importance for their pitting corrosion and metal release properties. For the GA<45μm powder, Mn-rich oxide nanoparticles were proposed to account for its higher pitting corrosion susceptibility, a more stable surface ennoblement, and a shift of the MnO2 oxidation/reduction peaks in the cyclic voltammogram, compared with the GA particles sized <4μm. The thermodynamically unstable ferritic structure of the small sized particle fraction (GA <4μm), despite an austenitic composition, revealed a higher pitting corrosion susceptibility and higher nickel release compared with the austenitic particle fraction of the GA <45 μm powder.

  • 29.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Metal release and speciation of released chromium from a biomedical CoCrMo alloy into simulated physiologically relevant solutions2014Ingår i: Journal of Biomedical Materials Research. Part B - Applied biomaterials, ISSN 1552-4973, E-ISSN 1552-4981, Vol. 102, nr 4, s. 693-699Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The objective of this study was to investigate the extent of released Co, Cr(III), Cr(VI), and Mo from a biomedical high-carbon CoCrMo alloy exposed in phosphate-buffered saline (PBS), without and with the addition of 10 mu M H2O2 (PBS + H2O2), and 10 g L-1 bovine serum albumin (PBS + BSA) for time periods up to 28 days. Comparative studies were made on AISI 316L for the longest time period. No Cr(VI) release was observed for any of the alloys in either PBS or PBS + H2O2 at open-circuit potential (no applied potential). However, at applied potentials (0.7 V vs. Ag/AgCl), Cr was primarily released as Cr(VI). Co was preferentially released from the CoCrMo alloy at no applied potential. As a consequence, Cr was enriched in the utmost surface oxide reducing the extent of metal release over time. This passivation effect was accelerated in PBS + H2O2. As previously reported for 316L, BSA may also enhance metal release from CoCrMo. However, this was not possible to verify due to the precipitation of metal-protein complexes with reduced metal concentrations in solution as a consequence. This was particularly important for Co-BSA complexes after sufficient time and resulted in an underestimation of metals in solution.

  • 30.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Korrosionslära.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. KTH, Skolan för kemivetenskap (CHE), Kemi, Korrosionslära.
    Protective green patinas on copper in outdoor constructions2011Ingår i: Journal of Environmental Protection, ISSN 2152-2197, E-ISSN 2152-2219, Vol. 2, nr 7, s. 956-959Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The last 15 years of research related to atmospheric corrosion and the release of copper to the environment are shortly summarized. Brown and green patinas with high barrier properties for corrosion are gradually evolved on copper at atmospheric conditions. The corrosion process and repeated dry and wet cycles results in a partial dissolution of cor-rosion products within the patina. Dissolved copper can be released and dispersed into the environment via the action of rainwater, however the major part is rearranged within the patina during drying cycles. The majority of corrosion products formed have a poor solubility, very different from water soluble copper salts. The release process is very slow and takes place independent of patina color. Its extent has only a marginal effect on the adherent patina. Released cop-per rapidly interacts with organic matter and in contact with different surfaces already in the close vicinity of the building, such as drainage systems, storm water pipes, pavements, stone materials and soil systems. These surfaces all have high capacities to retain copper in the runoff water and to reduce its concentration and chemical form to non-available and non-toxic levels for aquatic organisms.

  • 31.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Transformation /dissolution studies on the release of iron and chromium from particles of alloys compared with their pure metals and selected metal oxides2012Ingår i: Materials and Corrosion, ISSN 0947-5117, Vol. 63, nr 6, s. 481-491Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Transformation/dissolution (T/D) data for different Cr- and Fe-based alloys (a FeCr alloy, stainless steel AISI 316L, an alloy side product (SP) from stainless steel production) compared with their pure metals (Cr, Fe) and selected metal oxides (Cr2O3, Fe3O4) was generated and is used throughout the entire REACH assessment documentation of chromium metal and ferrochromium alloys to derive conclusions regarding their acute and chronic ecotoxicity hazard classification. Short and long term tests were conducted to assess data for acute and chronic aquatic toxicity following the recognized standardized T/D protocol. Tests were performed in media of different pH (pH 6.0 and pH 8.0), time periods, and solution composition, also investigating the effect of different experimental parameters. Generated data elucidates the complexity of the metal release process and its dependence on many interacting material-, surface-, and experimental factors as well as on the chemistry of the metalwater system being metal species specific. It is evident that the extent of metal release cannot be predicted by either the bulk or the surface composition, and that metal speciation measurements of released metals are essential to assess aquatic toxicity induced by metal/alloy particles. Observed released Fe and Cr concentrations were significantly lower than reported acute and chronic ecotoxicological endpoints.

  • 32.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. Karolinska Institutet .
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Lidén, Carola
    Karolinska Institutet.
    Understanding chromium release from leather that causes contact dermatitis2014Ingår i: Contact Dermatitis, Vol. 70, s. 85-86Artikel i tidskrift (Refereegranskat)
  • 33.
    Hedberg, Yolanda S.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Goidanich, Sara
    Herting, Gunilla
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Surface rain interactions: Differences in copper runoff for copper sheet of different inclination, orientation, and atmospheric exposure conditions2015Ingår i: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 196, s. 363-370Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Predictions of the diffuse dispersion of metals from outdoor constructions such as roofs and facades are necessary for environmental risk assessment and management. An existing predictive model has been compared with measured data of copper runoff from copper sheets exposed at four different inclinations facing four orientations at two different urban sites (Stockholm, Sweden, and Milan, Italy) during a 4-year period. Its applicability has also been investigated for copper sheet exposed at two marine sites (Cadiz, Spain, for 5 years, and Brest, France, for 9 years). Generally the model can be used for all given conditions. However, vertical surfaces should be considered as surfaces inclined 60-80 degrees due to wind-driven effects. The most important parameters that influence copper runoff, and not already included in the model, are the wind and rain characteristics that influence the actual rainfall volume impinging the surface of interest. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  • 34.
    Hedberg, Yolanda S.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Gumulka, Martin
    Lind, Marie-Louise
    Matura, Mihaly
    Lidén, Carola
    Severe occupational chromium allergy despite cement legislation2014Ingår i: Contact Dermatitis, ISSN 0105-1873, E-ISSN 1600-0536, Vol. 70, nr 5, s. 321-U83Artikel i tidskrift (Refereegranskat)
  • 35.
    Hedberg, Yolanda S.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Hedberg, Jonas F.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Herting, Gunilla
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Goidanich, Sara
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Critical Review: Copper Runoff from Outdoor Copper Surfaces at Atmospheric Conditions2014Ingår i: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 48, nr 3, s. 1372-1381Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from. outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chloride, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  • 36.
    Hedberg, Yolanda S.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. Karolinska Institutet, Sweden.
    Liden, Carola
    Lindberg, Magnus
    Chromium Dermatitis in a Metal Worker Due to Leather Gloves and Alkaline Coolant2016Ingår i: Acta Dermato-Venereologica, ISSN 0001-5555, E-ISSN 1651-2057, Vol. 96, nr 1, s. 104-105Artikel i tidskrift (Refereegranskat)
  • 37.
    Hedberg, Yolanda S.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi. Karolinska Institutet, Sweden .
    Liden, Carola
    Wallinder, Inger Odnevall
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Chromium released from leather - I: exposure conditions that govern the release of chromium(III) and chromium(VI)2015Ingår i: Contact Dermatitis, ISSN 0105-1873, E-ISSN 1600-0536, Vol. 72, nr 4, s. 206-215Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background. Approximately 1-3% of the adult population in Europe is allergic to chromium (Cr). Anew restriction in REACH(Registration, Evaluation, Authorization and Restriction of Chemicals) based on the ISO 17075 standard has recently been adopted in the EU to limit Cr(VI) in consumer and occupational leather products. Objectives. The aim of this study was to critically assess key experimental parameters in this standard on the release of Cr(III) and Cr(VI) and their relevance for skin exposure. Material and methods. Four differently tanned, unfinished, leather samples were systematically investigated for their release of Cr(III) and Cr(VI) in relation to surface area, key exposure parameters, temperature, ultraviolet irradiation, and time. Results. Although the total release of Cr was largely unaffected by all investigated parameters, except exposure duration and temperature, the Cr oxidation state was highly dynamic, with reduced amounts of released Cr(VI) with time, owing to the simultaneous release of reducing agents from the leather. Significantly more Cr(III) than Cr(VI) was released from the Cr-tanned leather for all conditions tested, and it continued to be released in artificial sweat up to at least 1 week of exposure. Conclusions. Several parameters were identified that influenced the outcome of the ISO 17075 test.

  • 38.
    Hedberg, Yolanda S.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Lidén, Carola
    Chromium(III) and chromium(VI) release from leather during 8 months of simulated use2016Ingår i: Contact Dermatitis, ISSN 0105-1873, E-ISSN 1600-0536, Vol. 75, nr 2, s. 82-88Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background. Chromium ( Cr) release from Cr-tanned leather articles is amajor cause of Cr contact dermatitis. It has been suggested that Cr( VI) release from leather is not necessarily an intrinsic property of the leather, but is strongly dependent on environmental conditions. Objectives. To test this hypothesis for long-term ( 8 months) simulated use. Materials and methods. The release of total Cr and Cr( VI) from Cr-tanned, unfinished leather was analysed in subsequent phosphate buffer ( pH 8.0) immersions for a period of 7.5 months. The effect of combined ultraviolet treatment and alkaline solution ( pH 12.1) was tested. Dry storage [ 20% relative humidity ( RH)] was maintained between immersions. Atomic absorption spectroscopy, X-ray fluorescence and diphenylcarbazide tests were used. Results. Cr( VI) release was dependent on previous dry storage or alkaline treatment, but not on duration or number of previous immersions. Cr(III) release decreased with time. Fifty-two percent of the total Cr released during the last immersion period was Cr( VI). Cr( VI) release exceeded 9 mg/kg in all immersion periods except in the first 10-day immersion ( 2.6mg/kg). Conclusions. Cr( VI) release is primarily determined by environmental factors ( RH prior to immersion, solution pH, and antioxidant content). The RH should be kept low prior to testing Cr( VI) release from leather.

  • 39.
    Hedberg, Yolanda S.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. Karolinska Institutet, Sweden.
    Lidén, Carola
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI)2014Ingår i: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 280, s. 654-661Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH < 6.5) and phosphate buffer (PB, pH 7.5-8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB).

  • 40.
    Hedberg, Yolanda S.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Metal release from stainless steel in biological environments: A review2016Ingår i: Biointerphases, ISSN 1934-8630, E-ISSN 1559-4106, Vol. 11, nr 1, artikel-id 018901Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Due to its beneficial corrosion resistance, stainless steel is widely used in, e.g., biomedical applications, as surfaces in food contact, and for products intended to come into skin contact. Low levels of metals can be released from the stainless steel surface into solution, even for these highly corrosion resistant alloys. This needs to be considered in risk assessment and management. This review aims to compile the different metal release mechanisms that are relevant for stainless steel when used in different biological settings. These mechanisms include corrosion-induced metal release, dissolution of the surface oxide, friction-induced metal release, and their combinations. The influence of important physicochemical surface properties, different organic species and proteins in solution, and of biofilm formation on corrosion-induced metal release is discussed. Chemical and electrochemical dissolution mechanisms of the surface oxides of stainless steel are presented with a focus on protonation, complexation/ligand-induced dissolution, and reductive dissolution by applying a perspective on surface adsorption of complexing or reducing ligands and proteins. The influence of alloy composition, microstructure, route of manufacture, and surface finish on the metal release process is furthermore discussed as well as the chemical speciation of released metals. Typical metal release patterns are summarized.

  • 41.
    Hedberg, Yolanda S.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. Karolinska Inst, Sweden.
    Pettersson, M.
    Pradhan, S.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Rutland, Mark W.
    SP Tech Res Inst Sweden, Sweden.
    Persson, C.
    Can Cobalt(II) and Chromium(III) Ions Released from Joint Prostheses Influence the Friction Coefficient?2015Ingår i: ACS BIOMATERIALS-SCIENCE & ENGINEERING, ISSN 2373-9878, Vol. 1, nr 8, s. 617-620Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cobalt chromium molybdenum alloys (CoCrMo) are commonly used as articulating components in joint prostheses. In this tribocorrosive environment, wear debris and metal ionic species are released and interact with proteins, possibly resulting in protein aggregation. This study aimed to investigate whether this could have an effect on the friction coefficient in a typical material couple, namely CoCrMo-on-polyethylene. It was confirmed that both Co(II) and Cr(III) ions, and their combination, at concentrations relevant for the metal release situation, resulted in protein aggregation and its concomitant precipitation, which increased the friction coefficient. Future studies should identify the clinical importance of these findings.

  • 42.
    Hedberg, Yolanda S.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. Karolinska Inst, Sweden.
    Pradhan, Sulena
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Cappellini, F.
    Karlsson, Maria-Elisa
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Blomberg, Eva
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. SP Tech Res Inst Sweden, Sweden.
    Karlsson, H. L.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Hedberg, Jonas F.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Electrochemical surface oxide characteristics of metal nanoparticles (Mn, Cu and Al) and the relation to toxicity2016Ingår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 212, s. 360-371Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Most metal nanoparticles (NPs), except noble metal NPs, rapidly form a thin surface oxide in ambient conditions. The protective properties of these oxides improve or worsen depending on the environment, e.g., the human lung. Several properties, including the chemical/electrochemical stability and defect density, determine the capacity of these surface oxides to hinder the bulk metal from further oxidation (corrosion). The aim of this study was to investigate whether electrochemical surface oxide characterization of non-functionalized base metal NPs of different characteristics (Al, Mn and Cu) can assist in understanding their bioaccessibility (metal release) in cell media (DMEM+) and their cytotoxic properties following exposure in lung epithelial (A549) cells. The composition and valence states of surface oxides of metal NPs and their electrochemical activity were investigated using an electrochemical technique based on a graphite paste electrode to perform cyclic voltammetry in buffer solutions and open circuit potential measurements in DMEM+. The electrochemical surface oxide characterization was complemented and verified by Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The open circuit potential trends in DMEM+ correlated well with metal release results in the same solution, and provided information on the kinetics of oxide dissolution in the case of Cu NPs. Extensive particle agglomeration in cell medium (DMEM+) was observed by means of photon-cross correlation spectroscopy for all metal NPs, with sedimentation taking place very quickly. As a consequence, measurements of the real dose of added non-functionalized metal NPs to cell cultures for cytotoxicity testing from a sonicated stock solution were shown necessary. The cytotoxic response was found to be strongly correlated to changes in physico-chemical and electrochemical properties of the surface oxides of the metal NPs, the most potent being Cu NPs, followed by Mn NPs. No cytotoxicity was observed for Al NPs. The electrochemical surface oxide characterization corresponded well with other tools commonly used for nanotoxicological characterization and provided additional information.

  • 43.
    Hedberg, Yolanda S.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Qian, Bin
    Shen, Zhijian
    Virtanen, Sannakaisa
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting2014Ingår i: Dental Materials, ISSN 0109-5641, E-ISSN 1879-0097, Vol. 30, nr 5, s. 525-534Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objective. Selective laser melting (SLM) is increasingly used for the fabrication of customized dental components made of metal alloys such as CoCrMo. The main aim of the present study is to elucidate the influence of the non-equilibrium microstructure obtained by SLM on corrosion susceptibility and extent of metal release (measure of biocompatibility). Methods. A multi-analytical approach has been employed by combining microscopic and bulk compositional tools with electrochemical techniques and chemical analyses of metals in biologically relevant fluids for three differently SLM fabricated CoCrMo alloys and one cast CoCrMo alloy used for comparison. Results. Rapid cooling and strong temperature gradients during laser melting resulted in the formation of a fine cellular structure with cell boundaries enriched in Mo (Co depleted), and suppression of carbide precipitation and formation of a martensitic epsilon (hcp) phase at the surface. These features were shown to decrease the corrosion and metal release susceptibility of the SLM alloys compared with the cast alloy. Unique textures formed in the pattern of the melting pools of the three different laser melted CoCrMo alloys predominantly explain observed small, though significant, differences. The susceptibility for corrosion and metal release increased with an increased number (area) of laser melt pool boundaries. Significance. This study shows that integrative and interdisciplinary studies of microstructural characteristics, corrosion, and metal release are essential to assess and consider during the design and fabrication of CoCrMo dental components of optimal biocompatibility. The reason is that the extent of metal release from CoCrMo is dependent on fabrication procedures.

  • 44.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Stockmann-Juvala, Helene Helene
    Finnish Inst Occupat Hlth, Helsinki, Finland .
    Zitting, Antti
    Finnish Inst Occupat Hlth, Helsinki, Finland .
    Santonen, Tiina
    Finnish Inst Occupat Hlth, Helsinki, Finland .
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Relevance of in vitro studies for in vivo inhalation toxicity of 316L powder2012Ingår i: Toxicology Letters, ISSN 0378-4274, E-ISSN 1879-3169, Vol. 211, s. S125-S125Artikel i tidskrift (Övrigt vetenskapligt)
  • 45.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Uter, Wolfgang
    Univ Erlangen Nurnberg, Dept Med Informat Biometry & Epidemiol, Erlangen, Germany..
    Banerjee, Piu
    Guys Hosp, St Johns Inst Dermatol, London, England.;Lewisham & Greenwich NHS Trust, London, England..
    Lind, Marie-Louise
    Stockholm Cty Council, Ctr Occupat & Environm Med, Stockholm, Sweden..
    Steengaard, Sanne Skovvang
    Univ Hosp Herlev Gentofte, Natl Allergy Res Ctr, Hellerup, Denmark..
    Teo, Ying
    Guys Hosp, St Johns Inst Dermatol, London, England..
    Liden, Carola
    Karolinska Inst, Inst Environm Med, Box 210, SE-17177 Stockholm, Sweden..
    Non-oxidative hair dye products on the European market: What do they contain?2018Ingår i: Contact Dermatitis, ISSN 0105-1873, E-ISSN 1600-0536, Vol. 79, nr 5, s. 281-287Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Hair dyeing is very common and may cause allergic contact dermatitis. Oxidative (often termed permanent or semi-permanent) hair dye products have constituted the focus of market surveys and toxicological risk assessments, while non-oxidative (semi-permanent, temporary or direct) products have not been assessed. Objectives: To identify the hair dye substances presently used in non-oxidative hair dye products in Europe. Methods: Ingredient label data on eligible products in 5 European countries were collected, and 289 different non-oxidative hair dye products were included in this study. Results: Up to 9 hair dye substances were present in each product. Sixty-eight individual hair dye substances were identified on the 289 product labels, and their occurrence ranged from 0.3% to 34%. There were differences concerning substances used and their number per product between products of different consistency and colour. Conclusions: The hair dye substances in non-oxidative hair dye products are different from those in oxidative hair dye products, and are currently not covered by patch test series. The toxicological and skin-sensitizing profile of the substances in non-oxidative hair dye products, as well as their concentrations, should be further investigated.

  • 46.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Virtanen, Sannakaisa
    Department of Materials Science and Engineering 4, Chair for Surface Science and Corrosion, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstr.7, 91058 Erlangen, Germany.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Micro-Capillary Electrochemical and Microscopic Investigations of Massive and Individual Micrometer-Sized Powder Particles of Stainless Steel 316L2012Ingår i: International Journal of Electrochemical Science, ISSN 1452-3981, E-ISSN 1452-3981, Vol. 7, nr 12, s. 11678-11695Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Material properties, corrosion, and metal release from stainless steel powders are important factors to assess any occupational health hazards. This paper elucidates the corrosion behavior of stainless steel particles (inert-gas-atomized AISI 316L powders sized < 45μm, polished and non-polished) compared with corresponding massive low-sulfur bulk sheet material. Electrochemical measurements using a microcapillary technique are compared with ex-situ optical and scanning electron microscopy imaging and electron dispersive X-ray spectroscopy elemental analysis on the same area of individual particles. Non-polished 316L particles were significantly more passive compared to polished massive sheet and polished particles that in general showed a similar corrosion behavior. Corrosion was not induced by bulk compositional differences but could be attributed to surface inhomogeneities. The results are in agreement with the high passivity of non-polished particles in macroscopic studies, an effect caused by an unique surface oxide, characterized in part I of this paper series.

  • 47.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Wang, Xin
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Hedberg, Jonas
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Lundin, Maria
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Blomberg, Eva
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release2013Ingår i: Journal of materials science. Materials in medicine, ISSN 0957-4530, E-ISSN 1573-4838, Vol. 24, nr 4, s. 1015-1033Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed.

  • 48.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Wei, Zheng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Chevez, Federico Moncada
    Natl Autonomous Univ Honduras, Dept Publ Hlth, Fac Med Sci, Tegucigalpa, Honduras.;Cent Amer Network Informat & Advice Ctr Toxicol R, Tegucigalpa, Honduras.;Ctr Res & Dev Hlth Labour & Environm CIDSTA, Tegucigalpa, Honduras..
    Chromium(III), chromium(VI) and cobalt release from leathers produced in Nicaragua2019Ingår i: Contact Dermatitis, ISSN 0105-1873, E-ISSN 1600-0536, Vol. 80, nr 3, s. 149-155Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Leather exposure has been associated with chromium (Cr) and cobalt (Co) contact dermatitis. Cr(VI) in leather is now restricted to < 3 mg/kg in the EU. Cr(III) is not restricted. Objectives: To analyse 29 differently coloured Cr-tanned leather samples from two Nicaraguan tanneries, and to compare their release of Cr, Cr(VI) and Co with that of leathers produced in Europe. Methods: Cr, Cr(VI) and Co were extracted in phosphate buffer for 3 hours at 25 degrees C according to EN ISO 17075. Atomic absorption spectroscopy and spectrophotometry were used for detection of the metals in phosphate buffer. Results: There was no difference in total Cr or Cr(VI) release between European and Nicaraguan leathers. There was no association between Cr(VI) and total Cr release. Co was released primarily from leathers of one tannery. Cr(III) was released in significantly higher amounts than Cr(VI). Conclusions: Future investigations and regulations should focus on Cr(III) and Co as well as on Cr(VI).

  • 49.
    Hedberg, Yolanda
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Znidarsic, Monika
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap. Univ Ljubljana, Fac Chem & Chem Technol, Vecna Pot 113, SI-1000 Ljubljana, Slovenia.
    Herting, Gunilla
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Milosev, Ingrid
    Odnevall Wallinder, Inger
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Mechanistic insight on the combined effect of albumin and hydrogen peroxide on surface oxide composition and extent of metal release from Ti6Al4V2019Ingår i: Journal of Biomedical Materials Research - Part B Applied Biomaterials, ISSN 1552-4973, Vol. 107, nr 3, s. 858-867Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The titanium–aluminium (6 wt%)–vanadium (4 wt%) (Ti6Al4V) alloy is widely used as an orthopedic and dental implant material due to its high corrosion resistance in such environments. The corrosion resistance is usually determined by means of electrochemical methods, which may not be able to detect other chemical surface reactions. Literature findings report a synergistic effect of the combination of the abundant protein albumin and hydrogen peroxide (H 2 O 2 ) on the extent of metal release and corrosion of Ti6Al4V. The objectives of this study were to gain further mechanistic insight on the interplay of H 2 O 2 and albumin on the metal release process of Ti6Al4V with special focus on (1) kinetics and (2) H 2 O 2 and albumin concentrations. This was accomplished mainly by metal release and surface oxide composition investigations, which confirmed the combined effect of H 2 O 2 and albumin on the metal release process, although not detectable by electrochemical open circuit potential measurements. A concentration of 30 mM H 2 O 2 induced substantial changes in the surface oxide characteristics, an oxide which became thicker and enriched in aluminum. Bovine serum albumin (BSA) seemed to be able to deplete this aluminum content from the outermost surface or at least to delay its surface enrichment. This effect increased with increased BSA concentration, and for time periods longer than 24 h. This study hence suggests that short-term (accelerated) corrosion resistance measurements are not sufficient to predict potential health effects of Ti6Al4V alloys since also chemical dissolution mechanisms play a large role for metal release, possibly in a synergistic way.

  • 50. Karlsson, Hanna L.
    et al.
    Cronholm, Pontus
    Hedberg, Yolanda
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Tornberg, Malin
    De Battice, Laura
    Svedhem, Sofia
    Odnevall Wallinder, Inger
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Cell membrane damage and protein interaction induced by copper containing nanoparticles-Importance of the metal release process2013Ingår i: Toxicology, ISSN 0300-483X, E-ISSN 1879-3185, Vol. 313, nr 1, s. 59-69Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cu-containing nanoparticles are used in various applications in order to e.g. achieve antimicrobial activities and to increase the conductivity of fluids and polymers. Several studies have reported on toxic effects of such particles but the mechanisms are not completely clear. The aim of this study was to investigate the interactions between cell membranes and well-characterized nanoparticles of CuO, Cu metal, a binary Cu-Zn alloy and micron-sized Cu metal particles. This was conducted via in vitro investigations of the effects of the nanoparticles on (i) cell membrane damage on lung epithelial cells (A549), (ii) membrane rupture of red blood cells (hemolysis), complemented by (iii) nanoparticle interaction studies with a model lipid membrane using quartz crystal microbalance with dissipation monitoring (QCM-D). The results revealed that nanoparticles of the Cu metal and the Cu-Zn alloy were both highly membrane damaging and caused a rapid (within 1 h) increase in membrane damage at a particle mass dose of 20 mu g/mL, whereas the CuO nanoparticles and the micron-sized Cu metal particles showed no such effect. At similar nanoparticle surface area doses, the nano and micron-sized Cu particles showed more similar effects. The commonly used LDH (lactate dehydrogenase) assay for analysis of membrane damage was found impossible to use due to nanoparticle-assay interactions. None of the particles induced any hemolytic effects on red blood cells when investigated up to high particle concentrations (1 mg/mL). However, both Cu and Cu-Zn nanopartides caused hemoglobin aggregation/precipitation, a process that would conceal a possible hemolytic effect. Studies on interactions between the nanoparticles and a model membrane using QCM-D indicated a small difference between the investigated particles. Results of this study suggest that the observed membrane damage is caused by the metal release process at the cell membrane surface and highlight differences in reactivity between metallic nanoparticles of Cu and Cu-Zn and nanoparticles of CuO.

12 1 - 50 av 71
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf