Methods to describe the interaction between fluids and solids has been one of the biggest focus points for the research within the field of computationalengineering for the recent years. This area is of interest to a variety ofengineering problems, ranging from flow in blood vessels, aerodynamics andof course the interaction between water and civil engineering structures. Thetypical civil engineering application of fluid-structure interaction (FSI)encountered in a nuclear facilities is obtained at seismic loading, where the nuclear facilities consists of water filled pools of various sizes, for example the spent fuel and condensation pools. These water filled pools contribute with added mass to the structure, which lowers the natural frequency of thestructure as well as hydrostatic and hydrodynamic pressure that acts on thewalls of the pool due to wave propagation in the fluid. In addition, as the pools also have a free water surface towards the environment of thestructure, free surface wave propagation also has to be accounted for; i.e.sloshing. This introduces extra non-linearity to the problem, since a freesurface constitutes a boundary condition with an unknown location.
The main part of this report constitutes as a state-of-the-art summary whereconcepts important for FSI analyses are presented and important differencesare discussed. Due to the different interests of the numerous disciplinesengaged in this research area, a large number of methods have been developed, where each has different strengths and weaknesses suited for the problem in mind when developing the method. The focus of this report havebeen to describe the most important numerical techniques and the categories of methods that or of most interest for civil engineering problems, such as simplified analytical or mass-spring models, Acoustic Elements, ArbitraryLagrangian-Eulerian (ALE) and coupled Eulerian-Lagrangian (CEL).
Thereafter two benchmark examples are presented, intended to highlightdifferences between the different methods. In the first study, sloshing of aliquid tank is studied where the numerical methods are compared toexperimental results, regarding the movement of the free water surface. In addition, the hydrodynamic (fluid) pressures on the walls of the tanks arecompared between the different numerical methods. It was shown that mostanalysis methods give accurate results for the sloshing wave height whencompared with the experimental data. It should however be mentioned that the tank was only excited by a simple harmonic motion with a frequency thatdo not give rise to any resonance waves in the water body.
Also when it comes to fluid pressure good agreement between the differentanalysis methods was found, although no experimental data was available forthis parameter. It was also noticed that for the sloshing tank, most of the change in pressure occurred close to the free surface of the water, which indicates that it mainly consists of a convective pressure, i.e. from the sloshing. Thereby, finite element programs that account the impulsive mass incivil engineering FSI problems should not be used for this type of analysis. In the second study, the numerical methods are compared based on differenttypes of seismic input, such as a large earthquake with mainly low frequencycontent typically like an earthquake on the US west coast and one smallerearthquake with relatively higher degree of high frequency content typicallylike a Swedish type of earthquake. One important observation was that the relative increase in induced stresses in the structure, with and withoutconsideration of the water was significantly larger for the Swedish earthquakethan for the US earthquake. One possible reason for this may be that the Swedish earthquake is not large enough to excite the relatively stiff structurewithout any water, but it will induce significant dynamic effects in the waterwhich give rise to higher stresses in the concrete as well. However, this shows that it is very important to include water in seismic analyses.