Change search
Refine search result
12 1 - 50 of 51
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Afzal, Muhammad
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Wang, Baoyuan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Xia, Chen
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Zhang, Wei
    He, Yunjuan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Jayasuriya, Jeevan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Zhu, Binzhu
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-delta- Sm0.2Ce0.8O1.9) and Schottky barrier2016In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 328, p. 136-142Article in journal (Refereed)
    Abstract [en]

    Perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) is synthesized via a chemical co-precipitation technique for a low temperature solid oxide fuel cell (LTSOFC) (300-600 degrees C) and electrolyte-layer free fuel cell (EFFC) in a comprehensive study. The EFFC with a homogeneous mixture of samarium doped ceria (SDC): BSCF (60%:40% by weight) which is rather similar to the cathode (SDC: BSCF in 50%:50% by weight) used for a three layer SOFC demonstrates peak power densities up to 655 mW/cm(2), while a three layer (anode/ electrolyte/cathode) SOFC has reached only 425 mW/cm(2) at 550 degrees C. Chemical phase, crystal structure and morphology of the as-prepared sample are characterized by X-ray diffraction and field emission scanning electron microscopy coupled with energy dispersive spectroscopy. The electrochemical performances of 3-layer SOFC and EFFC are studied by electrochemical impedance spectroscopy (EIS). As-prepared BSCF has exhibited a maximum conductivity above 300 S/cm at 550 degrees C. High performance of the EFFC device corresponds to a balanced combination between ionic and electronic (holes) conduction characteristic. The Schottky barrier prevents the EFFC from the electronic short circuiting problem which also enhances power output. The results provide a new way to produce highly effective cathode materials for LTSOFC and semiconductor designs for EFFC functions using a semiconducting-ionic material.

  • 2. Battiston, S.
    et al.
    Boldrini, S.
    Saleemi, Mohsin
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Famengo, A.
    Fiameni, S.
    Toprak, Muhammet
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    Fabrizio, M.
    Influence of Al and Mg addition on thermoelectric properties of higher manganese silicides obtained by reactive sintering2017In: Journal of Nanoscience and Nanotechnology, ISSN 1533-4880, E-ISSN 1533-4899, Vol. 17, no 3, p. 1668-1673Article in journal (Refereed)
    Abstract [en]

    Higher manganese silicides (HMS), represented by MnSix (x = 1.71-1.75), are promising p-type candidates for thermoelectric (TE) energy harvesting systems at intermediate temperature range. The materials are very attractive as they may replace lead based compounds due to their non-toxicity, low cost of starting materials, and high thermal and chemical stability. Dense pellets were obtained through fast reactive sintering by spark plasma sintering (SPS). The addition -or nanoinclusion, of Al and Mg permitted the figure of merit enhancement of the material obtained with this technique, reaching the highest value of 0.40 at 600°C. Morphology, composition and crystal structure of the samples were characterized by electron microscopies, energy dispersive X-ray spectroscopy, and X-ray diffraction analyses, respectively.

  • 3. Battiston, S.
    et al.
    Fiameni, S.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Boldrini, S.
    Famengo, A.
    Agresti, F.
    Stingaciu, M.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Fabrizio, M.
    Barison, S.
    Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials2013In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 42, no 7, p. 1956-1959Article in journal (Refereed)
    Abstract [en]

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1:x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density > 95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600A degrees C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600A degrees C.

  • 4.
    Bitaraf Haghighi, Ehsan
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mirmohammadi, Seyed Aliakbar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Poth, H.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Shelf stability of nanofluids and its effect on thermal conductivity and viscosity2013In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 24, no 10, p. 105301-Article in journal (Refereed)
    Abstract [en]

    This study proposes a method and apparatus to estimate shelf stability of nanofluids. Nanofluids are fabricated by dispersion of solid nanoparticles in base fluids, and shelf stability is a key issue for many practical applications of these fluids. In this study, shelf stability is evaluated by measuring the weight of settled solid particles on a suspended tray in a colloid versus time and correlated with the performance change of some nanofluid systems. The effects of solid particle concentration and bath sonication time were investigated for selected nanofluids. The results show the applicability of this simple method and the apparatus to evaluate nanofluid shelf stability. Furthermore, it shows that Stokes' law is not valid for determining the settling time of the tested nanoparticles probably due to their complicated shape and presence of surface modifiers. The effect of shelf stability on thermal conductivity and viscosity was illustrated for some nanofluids. Experimental results show that water-based Al2O3 nanofluids have quite good shelf stability and can be good candidates for industrial applications.

  • 5.
    Bitaraf Haghighi, Ehsan
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Anwar, Zahid
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Lumbreras, Itziar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mirmohammadi, Seyed A.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Poth, Heiko
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Cooling performance of nanofluids in a small diameter tube2013In: Experimental Thermal and Fluid Science, ISSN 0894-1777, E-ISSN 1879-2286, Vol. 49, p. 114-122Article in journal (Refereed)
    Abstract [en]

    This article reports convective single-phase heat transfer performance in laminar flow for some selected nanofluids (NFs) in an open small diameter test section. A 0.50 mm inner diameter, 30 cm long stainless steel test section was used for screening single phase laminar convective heat transfer with water and five different water based NFs. Tested NFs were; Al2O3 (two types), TiO2 (two types) and CeO2 (one type), all 9 wt.% particle concentration. The effective thermal conductivity of the NFs were measured with Transient Plane Source (TPS) method and viscosity were measured with a rotating coaxial cylindrical viscometer. The obtained experimental results for thermal conductivity were in good agreement with the predicted values from Maxwell equation. The local Shah correlation, which is conventionally used for predicting convective heat transfer in laminar flow in Newtonian fluids with constant heat flux boundary condition, was shown to be valid for NFs. Moreover, the Darcy correlation was used to predict the friction factor for the NFs as well as for water. Enhancement in heat transfer for NFs was observed, when compared at equal Reynolds number, as a result of higher velocity or mass flow rate of the NFs at any given Reynolds number due to higher viscosity for NFs. However, when compared at equal pumping power no or only minor enhancement was observed.

  • 6.
    Bitaraf Haghighi, Ehsan
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Ghadamgahi, Mersedeh
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn E.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Measurement of temperature–dependent viscosity of nanofluids and its effect on pumping power in cooling systems2013Conference paper (Refereed)
    Abstract [en]

    Nanofluids are engineered colloids of nanoparticlesdispersed homogenously in a base fluid, which theirthermophysical properties are changed by adding solidnanoparticles. Among the characteristic parameters,viscosity is one of the most important, as it directly affectsthe pumping power in cooling systems. In this study, theviscosity of water based Al2O3, ZrO2, and TiO2 (with 9wt%for all) nanofluids was measured and its impact on pressuredrop in a simple tubular pipe was estimated for bothlaminar and turbulent flow by classical correlations. Theeffect of temperature on the viscosity of these nanofluidswas also studied in the temperature range of 5˚C - 30˚C. Toassess the applicability of the classical correlations, pressuredrops across an open 30cm long, 0.50mm diameterstainless steel test section was measured for water andnanofluids by a differential pressure transducer. Theaverage viscosity increments compared to water in thetemperature range of 5˚C - 30˚C are 105%, 98% and 31% forAl2O3, ZrO2, and TiO2 nanofluids respectively. Moreover, theresults show that the viscosity of nanofluids decreases withthe increase of temperature; however the relative viscosity,which is defined as the viscosity ratio between a nanofluidand its base fluid is constant in 5˚C - 30˚C temperaturerange.

  • 7.
    Burks, Terrance
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Uheida, Abdusalam
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Eita, Mohamed
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Removal of Chromium(VI) Using Surface Modified Superparamagnetic Iron Oxide Nanoparticles2013In: Separation science and technology (Print), ISSN 0149-6395, E-ISSN 1520-5754, Vol. 48, no 8, p. 1243-1251Article in journal (Refereed)
    Abstract [en]

    This study describes the removal of Chromium(VI) from aqueous solutions using surface tailored superparamagnetic iron oxide nanoparticles (SPION) coated with bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex-301). The synthesized Cyanex-301 coated SPION has been characterized by Transmission Electron Microscopy (TEM), Fourier-Transfer Infrared Spectroscopy (FT-IR), X-ray Photonic Spectroscopy (XPS), and Thermogravimetric Analysis (TGA). The adsorption mechanism was proposed to be via complexation between the thiol group on Cyanex-301 and Cr(VI) ions based on the XPS and FTIR analysis. It has been found that the equilibrium can be attained in less than 2hr. The adsorption behavior of Cr(VI) on the Cyanex-301 coated SPION can be well described by the Langmuir model and the maximum adsorption capacity for Cr(VI) was estimated to be 30.8mg/g. The selectivity of the Cyanex-301 coated SPION adsorbent towards Cr(VI) ions was found to be high and the maximum loading capacity obtained is up to an order of magnitude higher than that of other adsorbents reported in the literature. The desorption studies showed that more than 70% of Cr(VI) can be recovered using HNO3 as eluting solution. Our findings suggest a high potential of the designed adsorbent material for the treatment of industrial wastewater containing Cr(VI).

  • 8.
    Doddapaneni, Venkatesh
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Ye, Fei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Gati, R.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    On the electrical arc interruption by using PMMA/iron oxide nanocomposites2016In: Materials Research Express, ISSN 2053-1591, Vol. 3, no 10, article id 105043Article in journal (Refereed)
    Abstract [en]

    An experimental study is undertaken on the fabrication of poly (methyl methacrylate) (PMMA)/iron oxide nanocomposites to determine their potential use for electrical arc interruption in the electrical switching applications such as circuit breakers. Monodisperse iron oxide nanoparticles of average size ¡«11 nmare synthesized via thermal decomposition method and then homogeneously dispersed in the PMMAmatrix by in situ polymerization.PMMA/iron oxide nanocomposites with different nanoparticle loading have been fabricated to study the effect of loading content on the thermal energy absorption. Detailed physicochemical characterizations on synthesized material are performed using X-ray powder diffraction, scanning electron microscopy, TEM, thermogravimetric analysis and differential scanning calorimetry at different processing stages. Atest-setup was designed to evaluate the quality of the nanocomposites for electric arc interruption capability. The results showed that PMMA/iron oxide nanocomposites have a clear impact on the electric arc interruption and therefore should be considered as promising candidates for electrical switching applications.

  • 9.
    Doddapaneni, Venkatesh
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Ye, Fei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Gati, R.
    Toprak, Muhammet Sadaka
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    Engineered PMMA-ZnO nanocomposites for improving the electric arc interruption capability in electrical switching applications: Unprecedented experimental insights2017In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 141, p. 113-119Article in journal (Refereed)
    Abstract [en]

    Polymer inorganic nanocomposites (PINCs) have been engineered for controlling the electrical arc and to improve the arc interruption capability of the electrical switching applications, like circuit breakers. Several PINCs are fabricated by formation of ZnO quantum dots (QDs) in a poly (methyl methacrylate) (PMMA) matrix via in-situ polymerization method to avoid agglomeration of QDs, leading to a good spatial distribution of QDs in the polymer matrix. These PINCs have been characterized in detail for the morphology of QDs, interaction between QDs and polymer matrix, and ultraviolet (UV) radiation absorption. ZnO QDs have been assessed to have particle diameter of 3.5 nm, and their presence in the PMMA is revealed by the unique luminescence characteristics of the QDs under UV light. The presence of ZnO QDs broadened the range of UV radiation absorption of PMMA and the absorption edge is gradually shifted from 270 nm to 338 nm with step-wise loading of ZnO QDs. The PINCs are tested to determine their reproducibility and impact on the electrical arcs of current 1.6 kA generated using a specially designed test-setup. Interaction of PINCs with the electrical arcs generates ablation of chemical species towards core of the electrical arc, resulting in increase of voltage leading to cool-down the arc temperature. This experimental study demonstrates for the first time that these PINCs are reproducible, reliable and provides superior arc interruption capability.

  • 10.
    Doddapaneni, Venkatesh
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Ye, Fei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Gati, Rudolf
    ABB Switzerland.
    Toprak, Muhammet Sadaka
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    New experimental insights for controlling the electrical arcs in electrical switching applications: a comparative study on PMMA nanocomposites of Au and ZnO2017In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050Article in journal (Other academic)
    Abstract [en]

    Polymer inorganic nanocomposites (PINCs) are developed, not only due to scientific interest but also improving theelectric arc interruption process in the electrical switching applications like circuit breakers. The novelty of this work isin integrating the current developments in PINCs into electrical switching application in order to extend the limits of thepower switching devices. Several PINCs are fabricated by using pre-synthesized Au nanoparticles (NPs) of size 2.75 ±0.4 nm and poly (methyl methacrylate) (PMMA) matrix via in-situ polymerization method. Six homogeneous PINCsamples with ultra-low wt% of Au NPs varying from 0.0003 to 0.005 wt% have been fabricated. We find that thepresence of Au NPs improved the convective heat transfer and visible optical radiation absorption of PMMA. Thefabricated PINCs are tested for their arc interruption performance and the results are compared with ZnO PINCs in ourearlier work. The results of the experiments insights demonstrate the impact of PINCs on the electrical arcs and theirpotential advantages of having PINCs for the electric arc interruption process in high power switching devices.

  • 11. Famengo, A.
    et al.
    Battiston, S.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Boldrini, S.
    Fiameni, S.
    Agresti, F.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Barison, S.
    Fabrizio, M.
    Phase Content Influence on Thermoelectric Properties of Manganese Silicide-Based Materials for Middle-High Temperatures2013In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 42, no 7, p. 2020-2024Article in journal (Refereed)
    Abstract [en]

    The higher manganese silicides (HMS), represented by MnSi (x) (x = 1.71 to 1.75), are promising p-type leg candidates for thermoelectric energy harvesting systems in the middle-high temperature range. They are very attractive as they could replace lead-based compounds due to their nontoxicity, low-cost starting materials, and high thermal and chemical stability. Dense pellets were obtained through direct reaction between Mn and Si powders during the spark plasma sintering process. The tetragonal HMS and cubic MnSi phase amounts and the functional properties of the material such as the Seebeck coefficient and electrical and thermal conductivity were evaluated as a function of the SPS processing conditions. The morphology, composition, and crystal structure of the samples were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction analyses, respectively. Differential scanning calorimetry and thermogravimetric analysis were performed to evaluate the thermal stability of the final sintered material. A ZT value of 0.34 was obtained at 600A degrees C for the sample sintered at 900A degrees C and 90 MPa with 5 min holding time.

  • 12. Fiameni, S.
    et al.
    Famengo, A.
    Agresti, F.
    Boldrini, S.
    Battiston, S.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Johnsson, M.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Fabrizio, M.
    Effect of Synthesis and Sintering Conditions on the Thermoelectric Properties of n-Doped Mg2Si2014In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 43, no 6, p. 2301-2306Article in journal (Refereed)
    Abstract [en]

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion in the middle-high temperature range. The detrimental effect of the presence of MgO on the TE properties of Mg2Si based materials is widely known. For this reason, the conditions used for synthesis and sintering were optimized to limit oxygen contamination. The effect of Bi doping on the TE performance of dense Mg2Si materials was also investigated. Synthesis was performed by ball milling in an inert atmosphere starting from commercial Mg2Si powder and Bi powder. The samples were consolidated, by spark plasma sintering, to a density > 95%. The morphology, and the composition and crystal structure of samples were characterized by field-emission scanning electronic microscopy and x-ray diffraction, respectively. Moreover, determination of Seebeck coefficients and measurement of electrical and thermal conductivity were performed for all the samples. Mg2Si with 0.1 mol% Bi doping had a ZT value of 0.81, indicative of the potential of this method for fabrication of n-type bulk material with good TE performance.

  • 13. Fiameni, S.
    et al.
    Famengo, A.
    Boldrini, S.
    Battiston, S.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Stingaciu, M.
    Jhonsson, M.
    Barison, S.
    Fabrizio, M.
    Introduction of Metal Oxides into Mg2Si Thermoelectric Materials by Spark Plasma Sintering2013In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 42, no 7, p. 2062-2066Article in journal (Refereed)
    Abstract [en]

    Oxide incorporation into thermoelectric Mg2Si-based materials was performed starting from commercial Mg2Si and commercial metal oxides by applying ball milling and spark plasma sintering (SPS) processing. The SPS conditions, such as sintering temperature, pressure, and holding time, were optimized with the aim of obtaining both full densification and oxide incorporation. Thermoelectric characterizations, such as Seebeck coefficient and electrical and thermal conductivity, were carried out and related to the pellet compositions. The morphology, composition, and crystallographic structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectrometry, and x-ray diffraction analyses, respectively.

  • 14.
    Haghighi, Ehsan Bitaraf
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Accurate basis of comparison for convective heat transfer in nanofluids2014In: International Communications in Heat and Mass Transfer, ISSN 0735-1933, E-ISSN 1879-0178, Vol. 52, p. 1-7Article in journal (Refereed)
    Abstract [en]

    Thermal conductivity and viscosity of alumina (Al2O3), zirconia (ZrO2), and titania (TiO2) nanofluids (NFs) were measured at 20°C. All the NF systems were water based and contained 9wt.% solid particles. Additionally, the heat transfer coefficients for these NFs were measured in a straight tube of 1.5m length and 3.7mm inner diameter. Based on the results, it can be stated that classical correlations, such as Shah and Gnielinski, for laminar and turbulent flow respectively, can be employed to predict convective heat transfer coefficients in NFs, if the accurate thermophysical properties are used in the calculations. Convective heat transfer coefficients for NFs were also compared with those of the base fluids using two different bases for the comparison, with contradictory results: while compared at equal Reynolds number, the heat transfer coefficients increased by 8-51%, whereas compared at equal pumping power the heat transfer coefficients decreased by 17-63%. As NFs have higher viscosity than the base fluids, equal Reynolds number requires higher volumetric flow, hence higher pumping power for the NFs. It is therefore strongly suggested that heat transfer results should be compared at equal pumping power and not at equal Reynolds number.

  • 15. Jacquot, A.
    et al.
    Rull, M.
    Moure, A.
    Fernandez-Lozano, J. F.
    Martin-Gonzalez, M.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Jaegle, M.
    Anisotropy and inhomogeneity measurement of the transport properties of spark plasma sintered thermoelectric materials2013In: Thermoelectric Materials Research and Device Development for Power Conversion and Refrigeration: symposium held November 25-30, 2012, Boston, Mass, Materials Research Society, 2013, p. 89-95Conference paper (Refereed)
    Abstract [en]

    We report on the development and capabilities of two new measurement systems developed at Fraunhofer-IPM. The first measurement system is based on an extension of the Van der Pauw method and is suitable for cube-shaped samples. A mapping of the electrical conductivity tensor of a Skutterudite-SPS samples produced at the Instituto de Microelectrónica de Madrid is presented. The second measurement system is a ZTmeter also developed at the Fraunhofer-IPM. It enables the simultaneous measurement of the electrical conductivity, Seebeck coefficient and thermal conductivity up to 900 K of cubes at least 5x5x5 mm 3 in size. The capacity of this measurement system for measuring the anisotropy of the transport properties of a (Bi,Sb)2Te3 SPS sample produced by KTH is demonstrated by simply rotating the samples.

  • 16. Jaffari, G. Hassnain
    et al.
    Rehman, Atiq ur
    Iqbal, Asad M.
    Awan, M. S.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Extrinsic contributions to the dielectric response in sintered BaTiO3 nanostructures in paraelectric and ferroelectric regimes2017In: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 525, p. 70-77Article in journal (Refereed)
    Abstract [en]

    Post sintering studies of BaTiO3 (BTO) nanoparticles are presented in detail. Bulk nanostructures were prepared via three different compaction processes, namely, uniaxial cold pressing (UCP), Cold Isostatic Pressing (CIP) and Spark Plasma Sintering (SPS). Effect of compaction technique on microstructures have been investigated and correlated with electrical response for each sample. In addition to the transport properties, temperature and frequency dependent dielectric response of variously sintered samples and bulk counterpart was recorded. Several aspects have been identified that are essential to be taken into account in order to completely understand physical processes. Drastically distinct features were observed in paraelectric (PE) regime well above ferroelectric (FE)-PE transition temperature. These features include intra grain conduction with a reduction in the magnitude of PE to FE peak dielectric constant magnitude. Role of strain, grain boundary conduction associated with observation of Maxwell Wagner relaxation and hopping conduction in dielectric and ferroelectric response have been observed and discussed. Densification with presence of oxygen vacancies, significantly enhances conductivity associated with the hopping of the carriers, in turn deteriorated ferroelectric response.

  • 17.
    Jarahnejad, Mariam
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Haghighi, Ehsan B.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids2015In: Rheologica Acta, ISSN 0035-4511, E-ISSN 1435-1528, Vol. 54, no 5, p. 411-422Article in journal (Refereed)
    Abstract [en]

    This article investigates the influence of temperature, concentration, and size of nanoparticles, and addition of surfactants on dynamic viscosity of water-based nanofluids containing alumina (Al2O3) and titania (TiO2) nanoparticles. Two viscometers, a capillary and a falling ball, were used for the measurements in the temperature range of 20-50 A degrees C and the particle concentration of 3-14.3 wt.%. The results indicate that the viscosity of nanofluids is reduced by increasing the temperature, similar to their base fluids. Moreover, surfactants, which are used to improve the shelf stability of nanofluids, most likely increase their viscosity. The correlations derived from the linear fluid theory such as Einstein and Batchelor, especially for solid concentration above 1.5 wt.% are not accurate to predict viscosity of nanofluids, while the modified Krieger-Dougherty equation estimates viscosity of nanofluids with acceptable accuracy in a specific range of solid particle size to aggregate size.

  • 18.
    Khan, Abdullah
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Johnsson, M.
    Han, L.
    Nong, N. V.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb32014In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 612, p. 293-300Article in journal (Refereed)
    Abstract [en]

    Nanostructured powders of thermoelectric (TE) CoSb3 compounds were synthesized using a chemical alloying method. This method involved co-precipitation of oxalate precursors in aqueous solution with controlled pH, followed by thermochemical treatments including calcination and reduction to produce stoichiometric nanostructured CoSb3. Moreover, CoSb3 nanoparticles were consolidated by spark plasma sintering (SPS) with a very brief processing time. Very high compaction densities (>95%) were achieved and the grain growth was almost negligible during consolidation. An iterative procedure was developed to maintain pre-consolidation particle size and to compensate Sb evaporation during reduction. Significant changes in particle size and morphology were observed, and the post-reduction cooling was found to be an important stage in the process. The spark plasma sintering (SPS) parameters were optimized to minimize the grain growth while achieving sufficient densification. Grain sizes in the range of 500 nm to 1 mu m, with compaction density of 95-98% were obtained. Preliminary measurements of thermal diffusivity and conductivity showed the dependence on grain size as well as on porosity. TE transport properties were measured in the temperature range of 300-650 K. Sample showed p-type behavior with a positive Seebeck coefficient, which increases with increasing temperature. Electrical conductivity measurements indicate metallic behavior and it decreases with increasing temperature. Thermal conductivity also decreases with increasing temperature and major contribution is due to the lattice component. A TE figure of merit of 0.15 was achieved for high purity CoSb3 nanostructured TE material at 650 K and these results are comparable with the values reported for the best unfilled/undoped CoSb3 in the literature.

  • 19.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Bitaraf Haghigh, Ehsan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Experimental study on preparation and base liquid effect on thermo-physical and heat transport characteristics of α-SiC nanofluids2014In: International Communications in Heat and Mass Transfer, ISSN 0735-1933, E-ISSN 1879-0178, Vol. 55, p. 38-44Article in journal (Refereed)
    Abstract [en]

    Nanostructured solid particles dispersed in a base liquid are a new class of nano-engineeredcolloidal solutions, defined with a coined name of nanofluids (NFs). These fluids have shownpotential to enhance heat transfer characteristics of conventional base liquids utilized in heattransfer application. We recently reported on the fabrication and thermo-physical propertyevaluation of SiC NFs systems, containing SiC particles with different crystal structure. In thisstudy, our aim is to investigate the heat transfer characteristics of a particular α-SiC NF withrespect to the effect of α-SiC particle concentration and different base liquids on the thermophysicalproperties of NFs. For this purpose, a series of NFs with various α-SiC NPsconcentration of 3, 6 and 9wt% were prepared in different base liquids of distilled water (DW)and distilled water/ethylene glycol mixture (DW/EG). Their thermal conductivity (TC) andviscosity were evaluated at 20 oC. NF with DW/EG base liquid and 9wt% SiC NPs loadingexhibited the best combination of thermo-physical properties, which was therefore selected forheat transfer coefficient (HTC) evaluation. Finally, HTC tests were performed and compared indifferent criteria, including equal Reynolds number, equal mass flow rate and equal pumpingpower for a laminar flow regime. The results showed HTC enhancement of NF over the baseliquid for all evaluation criteria; 13% at equal Reynolds number, 8.5% at equal volume flow and5.5% at equal pumping power. Our findings are among the few studies in the literature where theheat transfer enhancement for the NFs over its base liquid is noticeable and based on a realistic situation.

  • 20.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Ghanbarpour, Morteza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Haghighi, Ehsan Bitaraf
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Experimental investigation on thermo-physical properties of copper/diethylene glycol nanofluids fabricated via microwave-assisted route2014In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 65, no 1-2, p. 158-165Article in journal (Refereed)
    Abstract [en]

    This study investigates the fabrication, thermal conductivity and rheological characteristics evaluation of nanofluids consisting of copper nanoparticles in diethylene glycol base liquid. The fabricated Cu nanofluids displayed enhanced thermal conductivity over the base liquid. Copper nanoparticles were directly formed in diethylene glycol using microwave-assisted heating, which provides uniform heating of reagents and solvent, accelerating the nucleation of metal clusters, resulting in monodispersed nanostructures. Copper nanoparticles displayed an average primary particle size of 75 ± 25 nm from SEM micrographs, yet aggregated to form large spherical particles of about 300 nm. The physicochemical properties including thermal conductivity and viscosity of nanofluids were measured for the nanofluids with nanoparticle concentration between 0.4 wt% and 1.6 in the temperature range of 20-50 C. Proper theoretical correlations/models were applied to compare the experimental results with the estimated values for thermal conductivity and viscosity of nanofluids. For all cases, thermal conductivity enhancement was higher than the increase in viscosity showing the potential of nanofluids to be utilized as coolant in heat transfer applications. A thermal conductivity enhancement of ∼7.2% was obtained for nanofluids with 1.6 wt% nanoparticles while maximum increase in viscosity of ∼5.2% was observed for the same nanofluid.

  • 21.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Ghanbarpour, Morteza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Thermal and rheological properties of micro- and nanofluids of copper in diethylene glycol: as heat exchange liquid2013In: Nanoscale Thermoelectric Materials: Thermal and Electrical Transport, and Applications to Solid-state Cooling and Power Generation, Cambridge: Cambridge Scholars Publishing, 2013, , p. 6p. 165-170Conference paper (Refereed)
    Abstract [en]

    This study reports on the fabrication of nanofluids/microfluids (NFs/MFs) with experimental and theoretical investigation of thermal conductivity (TC) and viscosity of diethylene glycol (DEO) base NFs/MFs containing copper nanoparticles (Cu NPs) and copper microparticles (Cu MPs). For this purpose, Cu NPs (20-40 nm) and Cu MPs (0.5-1.5 urn) were dispersed in DEG with particle loading between 1 wt% and 3 wt%. Ultrasonic agitation was used for dispersion and preparation of stable NFs/MFs, and thus the use of surfactants was avoided. The objectives were investigation of impact of size of Cu particle and concentration on TC and viscosity of NFs/MFs on DEG as the model base liquid. The physicochemical properties of all particles and fluids were characterized by using various techniques including Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS) techniques. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed to study particles' surfaces. NFs and MFs exhibited a higher TC than the base liquid, while NFs outperformed MFs showing a potential for their use in heat exchange applications. The TC and viscosity of NFs and MFs were presented, along with a comparison with values from predictive models. While Maxwell model was good at predicting the TC of MFs, it underestimated the TC of NFs, revealing that the model is not directly applicable to the NF systems.

  • 22. Nikkam, Nader
    et al.
    Saleemi, Mohsin
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    Experimental investigation on the effect of SiO2 secondary phase on thermo-physical properties of SiC nanofluids2017In: International Communications in Heat and Mass Transfer, ISSN 0735-1933, E-ISSN 1879-0178, Vol. 87, p. 164-168Article in journal (Refereed)
    Abstract [en]

    Nanofluids (NFs), wherein solid nanoparticles (NPs) are dispersed in traditional heat exchange fluids, are recognized for improving the performance of traditional fluids by enhancing their thermal conductivity (TC). The presence of impurities or undesired phases in commercial NPs may influence the thermo-physical properties of NFs including TC and viscosity, which makes it difficult to understand the real effect of NPs on heat transport characteristics of NFs. Moreover, the presence of these impurities in commercial NPs is unavoidable and their removal from commercial NPs with no negative impact on composition of NPs is challenging. To study the impact of impurities on thermo-physical properties of NFs a systematic experimental work was performed using commercial alpha-SiC and SiO2 NPs as the secondary phase as it commonly co-exists in commercial SiC batches. For this purpose, a series of NFs containing 9 wt% of alpha-SiC/SiO2 NP mixture with different content of SiO2 NPs from 5 to 50% were fabricated and investigated. The results show that as the undesired impurity phase (SiO2) increases, TC of NFs decreases slightly while viscosity increases dramatically. This may be a sound path to tuning the viscosity of the NFs while the achieved high TC is mildly influenced by the secondary phase.

  • 23.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Bitaraf Haghighi, Ehsan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Ghanbarpour, Morteza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Design and Fabrication of Efficient Nanofluids Based on SiC Nanoparticles for Heat Exchange Applications2013Conference paper (Other academic)
  • 24.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Haghighi, Ehsan Bitaraf
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Ghanbarpour, Morteza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Fabrication, Characterization and Thermo-physical Property Evaluation of SiCNanofluids for Heat Transfer Applications2014In: Nano-Micro Letters, ISSN 2150-5551, Vol. 6, no 2, p. 178-189Article in journal (Refereed)
    Abstract [en]

    Nanofluids (NFs) are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles (NPs) in a base liquid. These fluids have shown potential to improve the heat transfer properties of conventional heat transfer fluids. In this study we report in detail on the fabrication, characterization and thermo-physical property evaluation of SiC NFs, prepared using SiC NPs with different crystal structure, for heat transfer applications.  For this purpose, a series of SiC NFs containing SiC NPs with different crystal structure (α-SiC and β-SiC) were fabricated in a water (W)/ethylene glycol (EG) mixture (50/50 wt % ratio). Physicochemical properties of NPs/NFs were characterized by using various techniques such as powder X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and Zeta Potential Analysis were performed. Thermo-physical properties including thermal conductivity (TC) and viscosity for NFs containing SiC particles (α- and β- phase) were measured. The results showed among all suspensions, NF fabricated with α-SiC particles have more favorable thermo-physical properties compared to the NFs fabricated with β-SiC; the observed difference was attributed to combination of several factors, including crystal structure (β- vs. α-), sample purity, and residual chemicals exhibited on SiC nanoparticles. A TC enhancement of ~20% while 14% increased viscosity were obtained for a NF containing 9wt% of particular type of α-SiC NPs indicating promising capability of these kind of NFs for further heat transfer characteristics investigations. 

  • 25.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Li, S
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Bitaraf Haghighi, Ehsan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Palm, Björn E
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Novel Nanofluids Based on Mesoporous Silica for Enhanced Heat Transfer2011In: Journal of nanoparticle research, ISSN 1388-0764, E-ISSN 1572-896X, Vol. 13, no 11, p. 6201-6206Article in journal (Refereed)
    Abstract [en]

    Nanofluids, which are liquids with engineered nanometer-sized particles suspensions, have drawn remarkable attraction from the researchers because of their enormous potential to enhance the efficiency in heat-transfer fluids. In the present study, water-based calcined mesoporous silica nanofluids were prepared and characterized. The commercial mesoporous silica (MPSiO2) nanoparticles were dispersed in deionized water by means of pH adjustment and ultrasonic agitation. MPSiO2 nanoparticles were observed to have an average particle size of 350 ± 100 nm by SEM analysis. The concentration of MPSiO2 was varied between 1 and 6 wt%. The physicochemical properties of nanofluids were characterized using various techniques, such as particle size analyzer, zeta-potential meter, TEM, and FT-IR. The thermal conductivity was measured by Transient Plane Source (TPS) method, and nanofluids showed a higher thermal conductivity than the base liquid for all the tested concentrations.

  • 26.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, M.S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Singh, S.P.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Effect of nanoparticle morphology on thermal conductivity and rheology of Zinc Oxide nanofluids2012Conference paper (Refereed)
    Abstract [en]

    Nanofluids are stable dispersions of engineered nanometer-sized particles which have shown potential to enhance heat transfer properties. Nanoparticle morphology might influence the heat transport properties of the nanofluid. In this work our aim is to investigate the influence of nanoparticle morphology in the heat transfer and rheological properties of  ZnO nanofluids. ZnO nanoparticles and nanorods were synthesized and dispersed in ethylene glycol, as the base fluid, to obtain nanofluids with different percentages of nanoparticle loading. Ultrasonic agitation was used for obtaining a stable suspension and the use of surfactants was avoided. The concentrations of ZnO nanofluids were varied between 1 wt% and 3 wt%. The physicochemical properties of nanofluids were characterized by using various techniques including particle size analyzer, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). The thermal conductivity of prepared nanofluids were measured by Transient Hot Wire (THW) method and our finding on the physicochemical, transport and rheological properties of the ZnO nanofluids, containing nanoparticles with different morphology, are presented in detail.

  • 27.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Nano-engineered SiC Heat Transfer Fluids for Effective Cooling2013Conference paper (Refereed)
  • 28.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Bitaraf Haghighi, Ehsan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Microwave-assisted Synthesis of Copper Nanofluids for Heat Transfer Applications2011Conference paper (Refereed)
  • 29.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Haghighi, E.B.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Khodabandeh, R.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Palm, B,
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Rheological Properties of Copper Nanofluids Synthesised by Using Microwave-Assisted Method2012In: Proceedings of the 4th International Conference on Nanostructures (ICNS4), 2012, p. 1555-1557Conference paper (Refereed)
  • 30.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Singh, Sathya Prakash
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    A comparative study of rheological properties and thermal conductivity of silver nanofluids in water and ethylene glycol base fluids2012Conference paper (Refereed)
  • 31.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Material Physics (Closed 20120101), Functional Materials, FNM (Closed 20120101).
    Användningen av en suspension omfattande mesoporösa kiseldioxidartiklar som värmeväxlarvätska2010Patent (Other (popular science, discussion, etc.))
  • 32.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM. mohsin.saleemi@mmk.su.
    Nano-EngineeredThermoelectric Materials for Waste Heat Recovery2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Energy crisis and thermal management related issues have been highlighted in the modern century due to escalating demands for energy consumption and global warming from fossil fuels. Sustainable and alternative energy sources are an ever growing global concern. Thermoelectric (TE) materials have gained significant interest, due to effective solid-state energy conversion from waste heat to useful electrical energy and vice versa.   Clean, noise-free, and environment-friendly operation of TE devices has triggered great attention in viable technologies including automotive, military equipment, aerospace, and industries to scavenge waste heat into power. To date, conventional TE materials have shown limited energy conversion efficiency, i.e. TE Figure of Merit (ZT). However, the concept of nanostructuring and development of novel TE materials have opened excellent avenues to improve significantly the ZT values. Nano-engineered bulk TE materials allow effective phonon scattering at the high density of grain boundaries, which offer a way of lowering the thermal conductivity. 

    Large-scale synthesis of TE nanomaterials is a challenge for the TE industry because of expensive fabrication processes involved. This thesis reports several nano-engineering approaches for fabricating large quantities of bulk nanostructured TE materials. We have developed bottom-up chemical synthesis routes, as well as top-down mechanical alloying methodologies, to produce highly pure, homogenous and highly crystalline TE nanomaterials. State of the art chalcogenide, iron antimonide, and silicide based TE materials have been investigated in this thesis. Chalcogenide are the best candidates for TE devices operating at temperature range up to 450 K.  Iron antimonide (FeSb2) have shown attractive performance below room temperature. Earth abundant and environment friendly, silicide based materials have better ZT performance in the range of 600-900 K.  Spark plasma sintering (SPS) was utilized to preserve the nanostructuring and to achieve the highest compaction density. Comprehensive physiochemical characterizations were performed on as-prepared and SPS compacted samples. Detailed TE evaluation of the fabricated materials showed significant improvement in ZT for all categories of TE materials.

  • 33.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Famengo, A.
    Fiameni, S.
    Boldrini, S.
    Battiston, S.
    Johnsson, M.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Thermoelectric performance of higher manganese silicide nanocomposites2015In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 619, p. 31-37Article in journal (Refereed)
    Abstract [en]

    Higher manganese silicides (HMS) are proven to be promising candidates as p-type thermoelectric material in the temperature range of 400-700 K. In this work, a series of nanostructured (NS) bulk MnSi1.73 with different levels of Ytterbium inclusions were fabricated via ball milling and the solid state reaction was completed by spark plasma sintering (SPS). Nanopowders and SPS consolidated Yb-HMS nanocomposites (NC) were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to reveal the crystal structure and morphology respectively. High resolution transmission electron microscopy (HRTEM) coupled with energy dispersive X-ray spectroscopy (EDS) was used to investigate the material composition in bulk grains. Yb was observed to stay as nanoinclusions at the grain boundaries. TE transport properties, including Seebeck coefficient, electrical resistivity, and thermal diffusivity as well as charge carrier concentrations were evaluated. Thermal conductivity decreased with increasing Yb content, while the electrical conductivity improved for the highest Yb content. A highest figure of merit (ZT) of 0.42 at 600 degrees C was achieved for 1% Yb-HMS NC sample.

  • 34.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Ghadami Yazdi, Milad
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Effect of particles size and surface modification on thermal conductivity and viscosity of alumina nanofluids2013Conference paper (Refereed)
    Abstract [en]

    Electronics industry growing faster and it demands ultrahigh performance cooling systems to manage the heat loses in terms of energy and money. Conventional cooling fluids are approaching to its limit due to the poor thermal transport performance and a new era for the heat transfer fluids had been initiated about two decades ago. When nanoparticles dispersed in conventional heat transfer fluid (like water, oil, glycols), the mixture is called as nanofluids. Alumina suspensions are well known class of nanofluids, which have been investigated in many recent studies to determine the non-classical behavior of the suspensions. The aim of this study is to investigate optimized particle size and suitable surface modification for the improved dispersion properties of nanofluids with enhanced thermal performance and low viscosity. We have utilized two different types of alumina crystal phases; one is Boehmite (γ-AlOOH) and clay type (α -Al2O3) and the nanofluids were prepare d by suspending different size of nanoparticles in water and water/ethylene glycol (EG) mixtures. Dynamic light scattering (DLS) was used to determine the agglomerate size and scanning electron microscope (SEM) used to study the particle size and morphology. Zeta potential was measured to determine the electrostatic stability for the dispersed nanoparticles. Thermal conductivity was estimated by using KD2 Pro setup and up to 10 % enhancement in TC was observed as compared to the base fluid. Viscosity was measured by capillary viscometer, which shows the significant effect from the addition of additives and surfactants. Possible mechanisms contributing in reducing the viscosity and increasing the thermal conductivity are described in details.

  • 35.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammad, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Aging, Thermal Cycling and Stability Studies for Nanofluids2015In: Aging, Thermal Cycling and Stability Studies for Nanofluids, 2015Conference paper (Refereed)
    Abstract [en]

    Stability of nanofluids is one of the critical assessments for the efficient systems that the solid content of nanofluid should be stable and well dispersed for longer time. Production of a homogenous dispersion is real technical challenge due to strong van der Waals attraction among the nanoparticles, which preferring the formation of aggregates. Stable nanofluids can be achieved via recommended physical and chemical treatments such as addition of additives and surfactants, surface-active agents to disperse hydrophobic materials, adjusting the pH value to provide electrochemical stability.Detailed investigations were carried out to identify the stability parameters, dispersion methods, application requirements, experimental investigation to determine the stability of nanofluids. Aluminum oxide (Al2O3), titanium oxide (TiO2) and cerium oxide (CeO2) were selected for these studies. Custom designed stability measurement setup was used to record the sedimentation rate. Aging test was performed in the heat transfer coefficient (HTC) setup to determine the erosion and corrosion properties. Thermal cycling was performed up to 80 oC with maximum heating cycles of 500 times. Dynamic light scattering (DLS) used to estimate the aggregate size before and after the thermal cycling and aging test. Results from the time depended DLS measurements, sedimentation rate and aging effects presents that Al2O3 nanofluids have better performance.

  • 36.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    One Step synthesis of Ceria (CeO2) Nanofluids with enhanced thermal transport Properties2011In: NanoTR VII: 7th Nanoscience and Nanotechnology Conference, 2011Conference paper (Refereed)
  • 37. Saleemi, Mohsin
    et al.
    Ruditskiy, A.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Stingaciu, M.
    Johnsson, M.
    Kretzschmar, I.
    Jacquot, A.
    Jaegle, M.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Evaluation of the Structure and Transport Properties of Nanostructured Antimony Telluride (Sb2Te3)2014In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 43, no 6, p. 1927-1932Article in journal (Refereed)
    Abstract [en]

    Antimony telluride, (Sb2Te3), and its doped derivatives are considered to be among the best p-type thermoelectric (TE) materials for room temperature (300-400 K) applications. However, it is still desirable to develop rapid and economical routes for large-scale synthesis of Sb2Te3 nanostructures. We report herein a high yield, simple and easily scalable synthetic method for polycrystalline Sb2Te3 nanostructures. Prepared samples were compacted into dense pellets by use of spark plasma sintering. The products were characterized by x-ray diffraction and scanning electron microscopy. To investigate the anisotropic behavior of Sb2Te3 TE transport property measurements were performed along and perpendicular to the direction of compaction. Thermal conductivity, electrical conductivity, and Seebeck coefficient measurement over the temperature range 350-525 K showed that the anisotropy of the material had a large effect on TE performance.

  • 38.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics. Stockholm University, Sweden.
    Tafti, Mohsen Yakhshi
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Jacquot, Alexandre
    Jaegle, Martin
    Johnson, Mats
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Chemical Synthesis of Iron Antimonide (FeSb2) and Its Thermoelectric Properties2016In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 55, no 4, p. 1831-1836Article in journal (Refereed)
    Abstract [en]

    Low temperature thermoelectric (TE) materials are in demand for more efficient cooling and power generation applications. Iron antimonide (FeSb2) draws great attention over the past few years because of its enhanced power factor values. Polycrystalline bulk FeSb2 nanopowder was prepared via a low-temperature molten salts approach followed by subsequent thermal treatment in synthetic air and hydrogen gas for calcination and reduction reactions, respectively. Structural analysis confirms the desired final phase with submicrometer grain size and high compaction density after consolidation using spark plasma sintering (SPS). TE transport properties revealed that the material is n-type below 150 K and p-type above this temperature; this suggests antimony vacancies in FeSb2. The electrical conductivity increased significantly, and the highest conductivity achieved was 6000 S/cm at 100 K. The maximum figure-of-merit, ZT, of 0.04 is achieved at 500 K, which is about 6 times higher than the earlier reported state-of-the art ZT value for the same material.

  • 39.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Material Physics (Closed 20120101), Functional Materials, FNM (Closed 20120101).
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Material Physics (Closed 20120101), Functional Materials, FNM (Closed 20120101).
    Li, Shanghua
    KTH, School of Information and Communication Technology (ICT), Material Physics (Closed 20120101), Functional Materials, FNM (Closed 20120101).
    Ma, Ying
    KTH, School of Information and Communication Technology (ICT), Material Physics (Closed 20120101), Functional Materials, FNM (Closed 20120101).
    Wang, Xiaodi
    KTH, School of Information and Communication Technology (ICT), Material Physics (Closed 20120101), Functional Materials, FNM (Closed 20120101).
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Material Physics (Closed 20120101), Functional Materials, FNM (Closed 20120101).
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics (Closed 20120101), Functional Materials, FNM (Closed 20120101).
    Haghighi, Ehsan Bitaraf
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Ceria Nanofluids for Efficient Heat Management2010Conference paper (Refereed)
  • 40.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Fiameni, S.
    Boldrini, S.
    Battiston, S.
    Famengo, A.
    Stingaciu, M.
    Johnsson, M.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Spark plasma sintering and thermoelectric evaluation of nanocrystalline magnesium silicide (Mg2Si)2013In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 48, no 5, p. 1940-1946Article in journal (Refereed)
    Abstract [en]

    Recently magnesium silicide (Mg2Si) has received great interest from thermoelectric (TE) society because of its non-toxicity, environmental friendliness, comparatively high abundance, and low production material cost as compared to other TE systems. It also exhibited promising transport properties, including high electrical conductivity and low thermal conductivity, which improved the overall TE performance (ZT). In this work, Mg2Si powder was obtained through high energy ball milling under inert atmosphere, starting from commercial magnesium silicide pieces (99.99 %, Alfa Aesar). To maintain fine microstructure of the powder, spark plasma sintering (SPS) process has been used for consolidation. The Mg2Si powder was filled in a graphite die to perform SPS and the influence of process parameters as temperature, heating rate, holding time and applied pressure on the microstructure, and densification of compacts were studied in detail. The aim of this study is to optimize SPS consolidation parameters for Mg2Si powder to achieve high density of compacts while maintaining the nanostructure. X-Ray diffraction (XRD) was utilized to investigate the crystalline phase of compacted samples and scanning and transmission electron microscopy (SEM & TEM) coupled with Energy-Dispersive X-ray Analysis (EDX) was used to evaluate the detailed microstructural and chemical composition, respectively. All sintered samples showed compaction density up to 98 %. Temperature dependent TE characteristics of SPS compacted Mg2Si as thermal conductivity, electrical resistivity, and Seebeck coefficient were measured over the temperature range of RT 600 A degrees C for samples processed at 750 A degrees C, reaching a final ZT of 0.14 at 600 A degrees C.

  • 41.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Fiameni, Stefania
    Boldrini, Stefano
    Battiston, Simone
    Famengo, Alessia
    Stingaciu, Marian
    Johnsson, Mats
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Thermoelectric performance of higher manganese silicides nanocompositesManuscript (preprint) (Other academic)
  • 42.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Li, Shanghua
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Johnsson, Mats
    Arrhenius Laboratory, Stockholm University.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Fabrication and Spark Plasma Sintering of Nanostructured Bismuth Telluride (Bi2Te3)2012In: 9Th European Conference On Thermoelectrics (ECT2011), American Institute of Physics (AIP), 2012, p. 115-118Conference paper (Refereed)
    Abstract [en]

    Thermoelectric (TE) devices can harvest residual low-grade waste heat energy. Bismuth telluride (Bi2Te3) and its alloys are mostly used TE materials in the bulk form for making TE modules. We report a simple, fast and very high yield synthetic process for the bulk Bi2Te3 nanopowders with hexagonal plate like morphology. Spark plasma sintering (SPS) process has been optimized in order to preserve nanostructure while achieving a high compaction density of the pellets. Electron microscopy analysis was used to determine the effect of SPS parameters during compaction on the grain growth. Optimal conditions for the fabricated nanopowder was determined as 673 K, 70 MPa pressure with no holding time, which resulted in average lateral grain size in the range of 165-190 nm for a compact density of 98%. About 50% reduction of thermal conductivity was observed as compared to its bulk counterparts, revealing the feasibility of suggested route in the preservation of nanostructure and enhanced phonon scattering.

  • 43.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Li, Shanghua
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Johnsson, Mats
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi(2)Te(3))2012In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, no 2, p. 725-730Article in journal (Refereed)
    Abstract [en]

    Bismuth telluride (Bi(2)Te(3)) is the best-known commercially used thermoelectric material in the bulk form for cooling and power generation applications at ambient temperature. However, its dimensionless figure-of-merit-ZT around 1 limits the large-scale industrial applications. Recent studies indicate that nanostructuring can enhance ZT while keeping the material form of bulk by employing an advanced synthetic process accompanied with novel consolidation techniques. Here, we report on bulk nanostructured (NS) undoped Bi(2)Te(3) prepared via a promising chemical synthetic route. Spark plasma sintering has been employed for compaction and sintering of Bi(2)Te(3) nanopowders, resulting in very high densification (>97%) while preserving the nanostructure. The average grain size of the final compacts was obtained as 90 +/- 5 nm as calculated from electron micrographs. Evaluation of transport properties showed enhanced Seebeck coefficient (-120 mu V K(-1)) and electrical conductivity compared to the literature state-of-the-art (30% enhanced power factor), especially in the low temperature range. An improved ZT for NS bulk undoped Bi(2)Te(3) is achieved with a peak value of similar to 1.1 at 340 K.

  • 44.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM. Stockholm University, Sweden.
    Vanapalli, S.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Classical Behavior of Alumina (Al2O3) Nanofluids in Antifrogen N with Experimental Evidence2015In: Journal of Nanomaterials, ISSN 1687-4110, E-ISSN 1687-4129, Vol. 2015, article id 256479Article in journal (Refereed)
    Abstract [en]

    A nanofluid is a suspension containing nanoparticles in conventional heat transfer fluids. This paper reports on an investigation of alumina (Al2O3) nanoparticles in Antifrogen N, also called AFN, which is a popular antifreeze coolant consisting primarily of ethylene glycol and other additives to impede corrosion. The base carrier fluid is 50% by weight of water and 50% by weight of AFN. We systematically measured the nanomaterials and heat transfer data of nanofluids for four different size particles, namely, 20, 40, 150, and 250 nm alumina particles. The pH of all the nanofluids is adjusted to have a stable dispersion. The material characterizations include SEM and DLS particle measurements. We measured thermal conductivity, viscosity, and heat transfer coefficient in developing flow of the nanofluids. We observed that these nanofluids behave as any other classical fluids in thermally developing flow and classical heat transfer correlations can be used to completely describe the characteristics of these nanofluids.

  • 45.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Yakhshi Tafti, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Johansson, M.
    Jacquot, A.
    Jägle, M.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Chemical synthesis of iron antimonide (FeSb2) and its thermoelectric propertiesManuscript (preprint) (Other academic)
  • 46.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Yakhshi Tafti, Mohsen
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Stingaciu, M.
    Johnsson, M.
    Jägle, M.
    Jacquot, A.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Fabrication of nanostructured bulk cobalt antimonide (CoSb3) based skutterudites via bottom-up synthesis2013In: Thermoelectric Materials Research and Device Development for Power Conversion and Refrigeration: symposium held November 25-30, 2012, Boston, Mass., Materials Research Society, 2013, p. 121-126Conference paper (Refereed)
    Abstract [en]

    Skutterudites are known to be efficient thermoelectric (TE) materials in the temperature range from 600 K to 900 K. Dimensionless figure of merit (ZT) for filled skutterudite TE materials have been reported as ca. 1 at 800 K. Novel nano- engineering approaches and filling of the skutterudites crystal can further improve the transport properties and ultimately the ZT. Although classified among the promising TE materials, research on their large-scale production via bottom up synthetic routes is rather limited. In this work, large quantity of cobalt antimonide (CoSb3) based skutterudites nanopowder (NP) was fabricated through a room temperature coprecipitation precursor method. Dried precipitates were process by thermo-chemical treatment steps including calcination (in air) and reduction (in hydrogen). CoSb3 NPs were then mixed with silver (Ag) nanopanicles at different weight percentages (1%, 5% and 10% by wt) to form nanocomposites. Skutterudite NP was then consolidated by Spark Plasma Sintering (SPS) technique to produce highly dense compacts while maintaining the nanostructure. Temperature dependent TE characteristics of SPS'd CoSb3 and Ag containing nanocomposite samples were evaluated for transport properties, including thermal conductivity, electrical conductivity and Seebeck coefficient over the temperature range of 300-900 K. Physicochemical, structural and microstructural evaluation results are presented in detail.

  • 47.
    Tafti, Mohsen Yakhshi
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics. Stockholm University, Sweden.
    Han, Li
    Nong, Ngo V.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    On the chemical synthesis route to bulk-scale skutterudite materials2016In: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 42, no 4, p. 5312-5318Article in journal (Refereed)
    Abstract [en]

    In this article an alternative high yield route for the synthesis of CoSb3-based unfilled skutterudites is presented. Using low-melting temperature salts of the constituents, melting and mixing them homogeneously in a hydrophobic liquid with postprocessing of the powders we achieve a more intimately mixed alloy compared to the conventional melting and metallurgical processes. The proposed method consists of a fast and low-temperature processing step followed by a thermochemical post-processing step, compared to the conventional methods of fabricating skutterudites, which require high temperatures and long processing times. Several structural characterization techniques were used to assess the mechanism of synthesis, verify the purity of the material as well as the reproducibility of the process. Detailed analysis and results are presented in support of the proposed process. Additionally, compaction of the powders with SPS technique provided a safe route to maintaining the nanopowder size and achieving low thermal conductivity (3 W/mK). The proposed method can easily be scaled up and adopted by the industry.

  • 48.
    Tafti, Mohsen Yakshi
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S
    KTH, School of Information and Communication Technology (ICT), Material Physics (Closed 20120101), Functional Materials, FNM (Closed 20120101).
    Johnsson, Mats
    Stockholm University.
    Jacquot, Alexandre
    Jägle, Martin
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Fabrication and characterization of nanostructured thermoelectric FexCo1-xSb32015In: Open Chemistry, E-ISSN 2391-5420, Vol. 13, no 1, p. 629-635Article in journal (Refereed)
    Abstract [en]

    A novel synthesis route for the fabrication of p-type nanostructured skutterudite, FexCo1-xSb3 in large quantity is reported. This scalable synthesis route provides nano-engineered material with less impact on the environment compared to conventional synthesis procedures. Several Fe substituted compositions have been synthesized to confirm the feasibility of the process. The process consists of a nano-sized precursor fabrication of iron and cobalt oxalate, and antimony oxides by chemical co-precipitation. Further thermochemical processes result in the formation of iron substituted skutterudites. The nanopowders are compacted by Spark Plasma Sintering (SPS) technique in order to maintain nanostructure. Detailed physicochemical as well as thermoelectric transport properties are evaluated. Results reveal strongly reduced thermal conductivity values compared to conventionally prepared counterparts, due to nanostructuring. P-type characteristic was observed from the Seebeck measurements while electrical conductivity is high and shows metallic behavior. The highest TE figure of merit of 0.25 at 800 K has been achieved, which is strongly enhanced with respect to the mother compound CoSb3. This suggests the promise of the utilized method of fabrication and processing for TE applications with improved performance.

  • 49.
    Yakhshi Tafti, Mohsen
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Ballikaya, Sedat
    Khachatourian, Adrine Malek
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Noroozi, Mohammad
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Han, Li
    Nong, Ngo V.
    Bailey, Trevor
    Uher, Ctirad
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesis2016In: RSC ADVANCES, ISSN 2046-2069, Vol. 6, no 112, p. 111457-111464Article in journal (Refereed)
    Abstract [en]

    A facile and high yield synthesis route was developed for the fabrication of bulk nanostructured copper selenide (Cu2Se) with high thermoelectric efficiency. Starting from readily available precursor materials and by means of rapid and energy-efficient microwave-assisted thermolysis, nanopowders of Cu2Se were synthesized. Powder samples and compacted pellets have been characterized in detail for their structural, microstructural and transport properties. alpha to beta phase transition of Cu2Se was confirmed using temperature dependent X-ray powder diffraction and differential scanning calorimetry analyses. Scanning electron microscopy analysis reveals the presence of secondary globular nanostructures in the order of 200 nm consisting of <50 nm primary particles. High resolution transmission electron microscopy analysis confirmed the highly crystalline nature of the primary particles with irregular truncated morphology. Through a detailed investigation of different parameters in the compaction process, such as applied load, heating rate, and cooling profiles, pellets with preserved nanostructured grains were obtained. An applied load during the controlled cooling profile was demonstrated to have a big impact on the final thermoelectric efficiency of the consolidated pellets. A very high thermoelectric figure of merit (ZT) above 2 was obtained at 900 K for SPS-compacted Cu2Se nanopowders in the absence of the applied load during the controlled cooling step. The obtained ZT exceeds the state of the art in the temperature ranges above phase transition, approaching up to 25% improvement at 900 K. The results demonstrate the prominent improvement in ZT attributed both to the low thermal conductivity, as low as 0.38 W m(-1) K-1 at 900 K, and the enhancement in the power factor of nanostructured Cu2Se. The proposed synthesis scheme as well as the consolidation could lead to reliable production of large scale thermoelectric nanopowders for niche applications.

  • 50.
    Yakhshi Tafti, Mohsen
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Jacquot, A.
    Jagle, M.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Fabrication and characterization of nanostructured bulk skutterudites2013In: 2013 MRS Spring Meeting - Symposium H/I/V – Nanoscale Thermoelectric Materials, Thermal and Electrical Transport, and Applications to Solid-State Cooling and Power Generation, Materials Research Society, 2013, p. 105-110Conference paper (Refereed)
    Abstract [en]

    Latest nanotechnology concepts applied in thermoelectric (TE) research have opened many new avenues to improve the ZT value. Low dimensional structures can improve the ZT value as compared to bulk materials by substantial reduction in the lattice thermal conductivity, κL. However, the materials were not feasible for the industrial scale production of macroscopic devices because of complicated and costly manufacturing processes involved. Bulk nanostructured (NS) TEs are normally fabricated using a bulk process rather than a nano- fabrication process, which has the important advantage of producing in large quantities and in a form that is compatible with commercially available TE devices. We developed fabrication strategies for bulk nanostructured skutterudite materials based on FexCo1-xSb3. The process is based on precipitation of a precursor material with the desired metal atom composition, which is then exposed to thermochemical processing of calcination followed by reduction. The resultant material thus formed maintains nanostructured particles which are then compacted using Spark Plasma Sintering (SPS) by utilizing previously optimized process parameters. Microstructure, crystallinity, phase composition, thermal stability and temperature dependent transport property evaluation has been performed for compacted NS Fe xCo1-xSb3. Evaluation results are presented in detail, suggesting the feasibility of devised strategy for bulk quantities of doped TE nanopowder fabrication.

12 1 - 50 of 51
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf