Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Brolinson, Hanna
    et al.
    SCB.
    Palm, Viveka
    SCB.
    Wadeskog, Anders
    SCB.
    Sörme, Louise
    SCB.
    Arushanyan, Yevgeniya
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Environmental Strategies.
    Finnveden, Göran
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Environmental Strategies.
    Konsumtionsbaserade miljöindikatorer: Underlag för uppföljning av generationsmålet2012Report (Other (popular science, discussion, etc.))
  • 2.
    Fauré, Eléonore
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Finnveden, Göran
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Sustainability Assessment and Management.
    Palm, Viveka
    SCB, Department for Regions and environment, Statistics Sweden.
    Persson, Linn
    Stockholm Environment Institute.
    Schmidt, Sarah
    NTNU, Program for Industrial Ecology, Department of Energy and Process Engineering, Trondheim, Norway.
    Wood, Richard
    NTNU, Program for Industrial Ecology, Department of Energy and Process Engineering, Trondheim, Norway.
    Environmental pressure from Swedish consumption: - the largest contributing producer countries, products and servicesManuscript (preprint) (Other academic)
    Abstract [en]

    In order to produce goods and services that are consumed in Sweden, natural resources are extracted and pollutants are emitted in many other countries. This paper presents an analysis of which products and services cause the largest environmental pressures in terms of resource use and emissions and in which countries or regions these pressures occur. The results have been calculated using a hybrid model developed in the PRINCE project combining the multi-regional input-output database Exiobase with data from the Swedish economic and environmental accounts. The following environmental pressures are analysed: Use of Land, Water and Material resources, Emissions of Greenhouse gases (GHG), Sulphur dioxides (SO2), Nitrogen oxides (NOx), and Particulate Matters (PM 2.5 and 10). The product groups include a range of goods and services bought for private or public consumption and investments. The results show that Sweden is a net importer of all embodied environmental pressures, except for land use and material use. The most important product groups across environmental pressures are construction, food products and direct emissions from households (except for sulphur dioxide emissions and material use for the latter). Other recurrent product groups across several indicators are wholesale and retail services, architecture and engineering, dwellings, motor vehicles and machinery and equipment. However, for the three natural resource pressures Use of Water, Land and Material resources, agricultural products are a relatively important product group along with products from forestry for the last two indicators. The environmental pressures occur to a large degree in Sweden but also some other countries stand out as particularly important. One significant country is China, which is among the top ten countries for all indicators. Other highly relevant countries or regions are Rest of Asia and Pacific, Russia, Denmark, Germany and Spain. This variation indicates the need to work on policies at various levels: national, EU, bilateral and international.

  • 3.
    Finnveden, Göran
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Environmental Strategies (moved 20130630).
    Palm, Viveka
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment.
    Debatt: Pröva ekonomiska styrmedel i kemipolitiken.2012In: Miljöaktuellt, ISSN 0345-763X, no 2012-11-20Article in journal (Other (popular science, discussion, etc.))
  • 4. Nordborg, Maria
    et al.
    Arvidsson, Rickard
    Finnveden, Göran
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms).
    Cederberg, Christel
    Some, Louise
    Palm, Viveka
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms).
    Stamyr, Kristin
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms).
    Molander, Sverker
    Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2.012017In: ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, ISSN 0195-9255, Vol. 62, p. 110-114Article in journal (Refereed)
    Abstract [en]

    In a recent paper, Sorme et al. (Environ. Impact Assess. Rev., 56, 2016), took a first step towards an indicator of a national chemical footprint, and applied it to Sweden. Using USEtox 1.01, they calculated national impact potentials for human toxicity and ecotoxicity. The results showed that zinc dominated impacts, both for human toxicity and ecotoxicity. We calculated updated indicators of the Swedish national human toxicity and ecotoxicity footprint using USEtox 2.01. We also compared impact potentials based on USEtox with the mass of chemical emissions. The two model versions produced relatively consistent results. Zinc is still a major contributor to the human toxicity and ecotoxicity impact potentials when-characterized with USEtox 2.01. The mass-based indicator pinpoints somewhat different substances than the impact-based indicators.

  • 5. Sörme, L.
    et al.
    Palm, Viveka
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms).
    Finnveden, Göran
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Environmental Strategies Research (fms).
    Using E-PRTR data on point source emissions to air and water-First steps towards a national chemical footprint2016In: Environmental impact assessment review, ISSN 0195-9255, E-ISSN 1873-6432, Vol. 56, p. 102-112Article in journal (Refereed)
    Abstract [en]

    There is a great need for indicators to monitor the use and potential impacts of hazardous chemicals. Today there is a huge lack of data, methods and results and method development and studies should be given urgent priority. The aim of this paper was to develop and test an approach to calculate the potential environmental impacts of chemicals for awhole country using the E-PRTR (European Pollutant Release and Transfer Register) as a database and Sweden as an example. Swedish data from 2008 on emissions to air and water for 54 substances from point sources were retrieved from an open database. The data were transformed and aggregated using USEtox, a life-cycle impact assessment (LCIA) method for calculating potential human toxicity and ecotoxicity, both from industrial emissions directly and after input-output analysis (IO analysis) to reallocate emissions to product categories. Zinc to air and water contributed most to human toxicity followed by mercury to air. The largest contribution by industry to potential human toxicity came from the metal industry, followed by the paper and paper product industry. For potential ecotoxicity, zinc, fluoranthene and copper contributed themost. The largest contributions by industry came from the paper and paper products manufacturing sector, followed by the basic metals manufacturing sector. The approach used here can be seen as the first step towards a chemical footprint for nations. By adding data from other countries and other sources, a more complete picture can be gained in line with other footprint calculations. Furthermore, diffuse emissions from, for example, transport or emissions of pesticides could also be added for a more holistic assessment. Since the area of chemicals is complicated, it is probably necessary to develop and use several indicators that complement each other. It is suggested that the approach outlined here could be useful in developing a method for establishing a national chemical footprint.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf