kth.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 14 av 14
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Färm, Anna
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. Scania CV AB, Sweden.
    Absorption of Sound: On the effects of field interaction on absorber performance2016Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Environmental noise has for decades been a well known problem, especially in urban areas. As noise requirements for vehicles are sharpened, noise reducing concepts are needed in early design stages requiring accurate simulations to support the design. Specifically for optimization of noise treatments, the absorber performance must be simulated correctly.

    So called noise encapsulations are placed below the powertrain on heavy vehicles to enclose the engine and reduce noise radiation. The attenuation of the absorbers on these shields must be represented correctly in simulations, even in environments with complex sound field, cooling flow and high temperature variations which may affect the absorber performance. This thesis studies the performance variation due to different absorber representations and due to these factors and how to include this in simulations.

    It is shown that the material representation significantly affects the attenuation performance in the simulations. Assuming locally reacting absorbers neglects the full interaction between the sound field and the material, which was shown to affect the noise reduction considerably. A measurement method to determine the angular dependent surface impedance was evaluated. It was shown sensitive to small samples and a method to improve accuracy was suggested. Including the angular dependence, either by full resolution or an angular dependent impedance, the field-absorber interaction is included in the simulations and more accurate results are obtained. The influence of flow and temperature fields on the absorber performance was also investigated. A method to include these effects was developed and the attenuation performance shown significant, especially for materials with bulk reaction.

    In conclusion, thorough knowledge of the material behavior and the field in the applications is required to choose appropriate material representation to enable reliable simulation results.​

     

    Ladda ner fulltext (pdf)
    Thesis
  • 2.
    Färm, Anna
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strömningsakustik. Scania.
    Analysis of Acoustic Absorption with Extended Liner Reaction and Grazing Flow2013Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Acoustic absorbing liners are efficient and commonly used measures to reduce sound levels in many fields of application. The sound reducingperformance of the liners is dependent on the acoustic state, defined by e.g. the flow and sound field interacting with the liner. To enable liner optimization the impact of these factors on the liner performance must be predictable. Studies of the impact of these factors were performed with existing experimental, analytical and numerical methods at low Mach number flows and material used in truck engine compartments. The study showed significant impact of both flow and sound field onthe liner performance. The size of the impact of the flow depends on which of the existing methods and models that was used, implying theneed of complementary methods. A new numerical method to model the boundary layer effect was for this reason developed in this work. The method was shown to predict the impact of flow correctly compared to the Pridmore-Brown solution and the method was computationally efficient. The sound reducing performance of a liner exposed to complex sound field and grazing flow can be predicted using existing methods together with the new proposed method. Extra care has to be taken when bulk reacting liners are considered since additional complications compared to locally reacting surfaces occur in presence the of grazing flow.

    Ladda ner fulltext (pdf)
    afarm_LicThesis
  • 3.
    Färm, Anna
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strömningsakustik.
    Boij, Susann
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    An Extended Transfer Matrix Approach to Model the Effect of Boundary Layers on Acoustic LiningsManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Sound absorbing materials exposed to grazing flow experience a change in the surface properties due to the boundary layer developed above the surface. The effect of this boundary layer is significant even for fairly low Mach numbers, and several attempts to find analytical models to describe this effect have previously been made. This paper proposes a numerical discretization method, based on the classic transfer matrix approach to model the boundary layer effect. The method includes the time averaged flow velocity gradients of the boundary layer, which is shown to be essential in order to obtain convergence to the correct solution. The method is found to predict the effect of the boundary layer on the surface properties correctly compared to previous numerical solutions. The proposed method is simple to implement, and benets from a fast convergence relative to other numerical methods.

    Ladda ner fulltext (pdf)
    afarm_JASA2013
  • 4.
    Färm, Anna
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strömningsakustik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design.
    Boij, Susann
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design.
    The Effect of Boundary Layers on Bulk Reacting Liners at Low Mach Number Flows2013Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Sound absorbing linings are effective noise treatments in many applications in order to meet noise emission requirements. Stricter noise requirements set harder demands on the performance of the liners, why better prediction models of their performance have to be developed. As of today, several models to predict the sound reducing properties in the presence of flow exist and are shown to give diverging absorption properties for locally reacting liners exposed to high Mach number flows. The effect of flow on absorption properties is often seen as an issue that only needs to be addressed at high Mach number flows. In this paper, the existing models are applied to bulk reacting liners exposed to low Mach number flows and the resulting absorption coefficients are compared. Predictions of absorption coefficients clearly show that the effect of flow needs to be considered also at low Mach number flows and that the difference between the prediction models is indeed significant at low Mach number flows. This shows the importance in choosing the correct model for a specific application in order to avoid introducing erroneous prediction on the effect of flow. This study thus gives well-grounded evidence of the importance to include flow effects in modeling of sound absorptive linings even at low Mach number flows.

    Ladda ner fulltext (pdf)
    afarm_AIAA2013
  • 5.
    Färm, Anna
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strömningsakustik.
    Boij, Susann
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Dazel, Olivier
    University of Maine, Acoustical Labratory, France.
    Prediction of acoustic surface impedance of bulk reacting lining with grazing flow2014Ingår i: 21st International Congress on Sound and Vibration 2014, ICSV 2014, International Institute of Acoustics and Vibrations , 2014, s. 2332-2339Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    A transfer matrix methodology to determine the acoustic properties of multi-layered absorbers in different environments is proposed in this paper. The methodology allows inclusion of grazing flow and the boundary layer effects on the surface properties, avoiding the need of several complementary methods to obtain the surface properties of a sound reducing material in a specific environment. The predicted surface properties are given as a function of angle of sound incidence, allowing for arbitrary sound fields to be simulated. This is a useful tool in for example automotive applications such as engine bays where multi-layered bulk reacting sound absorbing materials are exposed to flow and complex sound fields. Correct prediction of the acoustic performance of absorbing material where flow is present enables optimization of the noise reducing components for which conflicting requirements such as weight and space constraints are present as well.

  • 6.
    Färm, Anna
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Boij, Susann
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Glav, Ragnar
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    The influence of finite sample size on surface impedance determination of materials with low sound absorpsion at low frequencies2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    The most common noise reducing measure is to add sound absorbing material on the domain boundaries. The boundaries covered by the material may in sumilations be represented by the surface impedance of the material. The impedance can either be modeled or determined experimentally. The experimental determination can be done by the well known standing wave tube method or by a free field method. These free field methods enable impedance determination at any angle of incidence for bulk reacting materials, as opposed to the standing wave tube method that is restricted to normal incidence or locally reacting materials. The method prescribes a point source above the surface and measurements in two points close to the sample surface. From this, the surface impedance can be deduced through the known sound field formulation. Among other things, the impact on the accuracy of the method from the field formulation, signal conditioning and sensor type have been studied in previous work. One major concern is the finite size of the material sample, and its influence on the measurement accuracy. This has previously been investigated for highly absorbing materials and it was shown to be a low frequency problem. Therefore, we focus on the impact of the finite sample in frequencies below 2 kHz. In particular, we relate the magnitude of the impact to the properties of the tested material. Also, the influence of the mounting of the material is analyzed. The study is made through analyzing numerical simulations of the experiment for a variety of setups and materials. Theoretical discussion is provided for deeper understanding of the results. The impact of the finite sample is seen to depend on the material properties, not only the setup as previously shown. Materials with high absorption are shown to be more sensitive to these errors.

  • 7.
    Färm, Anna
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. Centre for ECO2 Vehicle Design.
    Boij, Susann
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. Centre for ECO2 Vehicle Design.
    Glav, Ragnar
    Scania CV AB, Södertälje, Sweden.
    The influence of finite sample size on surface impedance determination of materials with low sound absorption at low frequencies2015Ingår i: Euronoise 2015, DC/ConfOrg , 2015, s. 2165-2170Konferensbidrag (Refereegranskat)
    Abstract [en]

    The most common noise reducing measure is to add sound absorbing material on the domain boundaries. The boundaries covered by the material may in simulations be represented by the surface impedance of the material. The impedance can be either modeled or determined experimentally. The experimental determination can be done by the well known standing wave tube method or by a free field method. These free field methods enable impedance determination at any angle of incidence for bulk reacting materials, as opposed to the standing wave tube method that is restricted to normal incidence or locally reacting materials. The method prescribes a point source above the surface and measurements in two points close to the sample surface. From this, the surface impedance can be deduced through the known sound field formulation. Among other things, the impact on the accuracy of the method from the field formulation, signal conditioning and sensor type have been studied in previous work. One major concern is the finite size of the material sample, and its influence on the measurement accuracy. This has previously been investigated for highly absorbing materials and it was shown to be a low frequency problem. Therefore, we focus on the impact of the finite sample in frequencies below 2 kHz. In particular, we relate the magnitude of the impact to the properties of the tested material. Also, the influence of the mounting of the material is analyzed. The study is made through analyzing numerical simulations of the experiment for a variety of setups and materials. Theoretical discussion is provided for deeper understanding of the results. The impact of the finite sample is seen to depend on the material properties, not only the setup as previously shown. Materials with high absorption are shown to be more sensitive to these errors. 

  • 8.
    Färm, Anna
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. Scania CV AB, Sweden.
    Boij, Susann
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Glav, Ragnar
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. Scania CV AB, Sweden.
    Dazel, Olivier
    Absorption of sound at a surface exposed to flow and temperature gradients2016Ingår i: Applied Acoustics, ISSN 0003-682X, E-ISSN 1872-910X, Vol. 110, s. 33-42Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    In noise abatement using porous or fibrous materials, accurate determination of the surface impedance representing the absorber is decisive for simulation quality. The presence of grazing flow and non-homogeneous ambient temperature influence the reaction of the absorber and may suitably be included in a modified “effective” surface impedance. In this paper, this approach is applied to a generic case representative for the engine bay of a heavy truck, where porous shields suppress the radiated noise, e.g. during a pass-by noise test. The change in the absorption is determined numerically by solving the wave propagation through a layer of varying temperature and flow adjacent to the impedance surface for different angles of incidence. The study shows significant impact of both flow and temperature, especially for materials with low absorption. The diffuse field absorption coefficient is also derived and although the effect is less pronounced in this case, it is still important in lower frequencies and in the frequency range typical for IC engine noise. The proposed numerical method is shown to be accurate and efficient for determination of the effective impedance and moreover not limited to thin boundary layers.

  • 9.
    Färm, Anna
    et al.
    Scania CV AB, Sweden.
    Boij, Susann
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strömningsakustik.
    Glav, Regnar
    Scania CV AB, Sweden.
    On sound absorbing characteristics and suitable measurement methods2012Ingår i: SAE Technical Paper 2012-01-1534, 2012, Society of Automotive Engineers, 2012Konferensbidrag (Refereegranskat)
    Abstract [en]

    Noise encapsulations are widely used in automotive industry to enclose noise sources, such as e.g. the engine or the gearbox, to reduce externally radiated noise. The sound absorption factor of the material on the inside of the noise encapsulation is obviously vital for the sound attenuation. This parameter is in most cases determined experimentally for which there are several methods. The results received from the various methods may vary as different acoustic states are examined and thus influence the choice of method. The absorption factor is crucial since it is used in specifications to material manufacturers as well as being an input parameter in modeling the performance of the noise shield e.g. during a pass-by noise test.

    In this paper, two standardized measurement methods along with a third, non-standardized method, are applied to determine the properties of an absorbing material used in a commercial noise encapsulation. The methods are based on normal-, random- and oblique incident sound waves. The first and the last methods are based on measuring the acoustic impedance from which the absorption can be calculated while the random incidence method measures the absorption directly. The results retrieved from the three methods are compared and discussed in the light of the differences between them. This paper clarifies the differences and gives a practical guidance for the choice of measurement method and the use of the different absorption factors in modeling.

  • 10.
    Färm, Anna
    et al.
    Centre for ECO Vehicle Design, Scania CV, Södertälje, Sweden.
    Boij, Susann
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strömningsakustik.
    Göransson, Peter
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Numerisk akustik.
    Glav, Ragnar
    Scania CV, Södertälje, Sweden.
    On internal mean flow in porous absorbers and its effect on attenuation properties2013Ingår i: Proceedings of Meetings on Acoustics: Volume 19, 2013, Acoustical Society of America (ASA), 2013, Vol. 19, s. 1-6Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    In vehicle applications, absorbing materials are often used to attenuate sound. In, for example, exhaust systems and on noise encapsulations, the absorber is exposed to flow. This creates a boundary layer above the absorber, which affects the impedance of the surface, and hence alters the absorption properties. In addition to this effect, the flow itself may enter the absorbent material due to high pressure and forced flow paths. An investigation of the effects that internal flow in the absorber imposes on the acoustic properties is presented. One way to describe the effect is by a change in flow resistivity. The effect is investigated for typical absorbers used in noise encapsulations for trucks. The Transfer Matrix Method is applied to calculate the resulting absorption coefficient for an absorber with changed flow resistivity due to internal flow. The possibility to model the changed properties of the absorber with internal mean flow by means of Biot theory is also explored, together with a discussion on suitable experimental methods to verify and further investigate the effects.

  • 11.
    Färm, Anna
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Glav, Ragnar
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. Scania CV AB.
    Boij, Susann
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Edge scattering impact in free field estimation of surface impedanceManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Accurate experimental characterization of sound absorbing materials is important to ensure good quality in simulations of larger systems and to analyze materials with unknown acoustic properties. Free field methods allow characterization of material properties at arbitrary sound incidence, which is advantageous compared to standardized methods. The errors of these methods have been studied, in particular those related to the size of the test samples. These are typically seen as oscillations about the correct value, especially at lower frequencies. The errors have been related to the source position and the sample size, but the impact of the material properties has not been investigated. In this paper, the influence of these properties on the errors are investigated through measurements and numerical simulations. The studies show a dependance on the material properties. The error results both from the pressure scattered at the sample edges and the pressure reflected at the material surface. The scattered field is shown to be stronger for materials with high flow resistivity, although the impact of this field on the result is stronger on materials with low flow resistivity. In addition, a method to reduce these errors based on an analytical formulation of the scattering is proposed. The method is applied to numerical simulations and shown to signicantly reduce the impact of the scattered field on the accuracy of the surface impedance.

  • 12.
    Färm, Anna
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strömningsakustik. Acoustics department, Scania CV AB, Södertälje, Sweden.
    Glav, Ragnar
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. Acoustics department, Scania CV AB, Södertälje, Sweden.
    Boij, Susann
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    On variation of absorption factor due to measurement method and correction factors for conversion between methods2012Ingår i: 41st International Congress and Exposition on Noise Control Engineering 2012, INTER-NOISE 2012, Volume 11, 2012, Institute of noise control engineering , 2012, s. 9343-9350Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Sound absorbing materials are used in many applications to reduce sound, and their soundabsorbing characteristics are most often determined experimentally since theoreticaldetermination is difficult. Sound absorption factors are used in material specifications aswell as input to numerical simulations.Several methods for experimental determination of the absorption factor exist, two of themstandardized and frequently used. It is commonly known that the absorption factorobtained by these two methods differs as different sound fields are prescribed by thestandards. However, the size of the differences has not been so well described. Due to thisdifference, the choice of method is critical in order to avoid errors in simulations andspecifications of material properties.Experimental determination of absorption factors for three commonly used absorbers wasperformed, resulting in significant differences between the two methods. Correction factorsto compensate the absorption factor determined at one acoustic state and used in anotherare given. Theory verifying the differences is also presented.

    Ladda ner fulltext (pdf)
    afarm_Internoise2012
  • 13.
    Färm, Anna
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Glav, Ragnar
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet. Scania CV AB.
    Boij, Susann
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Pass-by noise simulation: - inuence of trim representationManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The necessity of accurate pass-by noise simulations of vehicles has increased as the requirements on noise levels is becoming stricter. Also, the design of noise reducing measures is needed early in the design process when measurements are not possible to perform. The impact of the sound absorbing materials representation on simulated pass-by noise levels from a truck is analysed in this paper. The material may be fully resolved in FEM, including bulk reaction, or represented by a surface impedance, either at normal or a specic angle of incidence. The first representation requires FEM simulations and more material data. This puts higher demands on input data, and more importantly, prevents the use of BEM simulations which signicantly would improve computational efficiency. The two latter representations may be implemented in BEM. The necessary assumption of local reaction may hold for some materials, but it is not always valid. The simulations presented in this paper show that the local reaction assumption underestimates the effect of sound absorption, giving up to 5 dB higher radiated sound power levels and pass-by noise levels up to 2 dB higher than obtained using the bulk-reacting representation. The difference is shown to depend on the material properties and the position of the source in relation to the noise shields and absorbing parts. The directivity of the radiated noise is not affected, although the regions of largest sound pressure levels are more pronounced. The choice of representation of the material is shown to be important for the simulated pass-by noise levels. To choose the level of complexity in the model, it is important to be aware of the effect this may have on the accuracy of the results in order to draw correct conclusions from the results.

  • 14.
    Glav, Ragnar
    et al.
    Scania AB, Sweden.
    Färm, Anna
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strömningsakustik.
    Analysis of a cylindrical micro-perforated resistive silencer2013Ingår i: 42nd International Congress and Exposition on Noise Control Engineering 2013, INTER-NOISE 2013: Noise Control for Quality of Life, OAL-Osterreichischer Arbeitsring fur Larmbekampfung , 2013, s. 5867-5876Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents an analytical wave decomposition model for predicting the transmission loss a cylindrical silencer with both annular and baffled micro-perforated screens. Numerical simulation shows the fundamental characteristics as well as the potential to achieve large attenuation using micro-perforations. The numerical model is verified by measurements using the 2-microphone technique and shown to be a useful tool in practical design. Clear from the analysis is the sensitivity of the micro-perforated silencer to changes in both porosity and overall layout.

1 - 14 av 14
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf