Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Akhlaghi, Shahin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Degradation of acrylonitrile butadiene rubber and fluoroelastomers in rapeseed biodiesel and hydrogenated vegetable oil2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Biodiesel and hydrotreated vegetable oil (HVO) are currently viewed by the transportation sector as the most viable alternative fuels to replace petroleum-based fuels. The use of biodiesel has, however, been limited by the deteriorative effect of biodiesel on rubber parts in automobile fuel systems. This work therefore aimed at investigating the degradation of acrylonitrile butadiene rubber (NBR) and fluoroelastomers (FKM) on exposure to biodiesel and HVO at different temperatures and oxygen concentrations in an automated ageing equipment and a high-pressure autoclave. The oxidation of biodiesel at 80 °C was promoted by an increase in the oxygen partial pressure, resulting in the formation of larger amounts of hydroperoxides and acids in the fuel. The fatty acid methyl esters of the biodiesel oxidized less at 150 °C on autoclave aging, because the termination reactions between alkyl and alkylperoxyl radicals dominated over the initiation reactions. HVO consists of saturated hydrocarbons, and remained intact during the exposure. The NBR absorbed a large amount of biodiesel due to fuel-driven internal cavitation in the rubber, and the uptake increased with increasing oxygen partial pressure due to the increase in concentration of oxidation products of the biodiesel. The absence of a tan δ peak (dynamical mechanical measurements) of the bound rubber and the appearance of carbon black particles devoid of rubber suggested that the cavitation was caused by the detachment of bound rubber from particle surfaces. A significant decrease in the strain-at-break and in the Payne-effect amplitude of NBR exposed to biodiesel was explained as being due to the damage caused by biodiesel to the rubber-carbon-black network. During the high-temperature autoclave ageing, the NBR swelled less in biodiesel, and showed a small decrease in the strain-at-break due to the cleavage of rubber chains. The degradation of NBR in the absence of carbon black was due only to biodiesel-promoted oxidative crosslinking. The zinc cations released by the dissolution of zinc oxide particles in biodiesel promoted reduction reactions in the acrylonitrile part of the NBR. Heat-treated star-shaped ZnO particles dissolved more slowly in biodiesel than the commercial ZnO nanoparticles due to the elimination of inter-particle porosity by heat treatment. The fuel sorption was hindered in HVO-exposed NBR by the steric constraints of the bulky HVO molecules. The extensibility of NBR decreased only slightly after exposure to HVO, due to the migration of plasticizer from the rubber. The bisphenol-cured FKM co- and terpolymer swelled more than the peroxide-cured GFLT-type FKM in biodiesel due to the chain cleavage caused by the attack of biodiesel on the double bonds formed during the bisphenol curing. The FKM rubbers absorbed biodiesel faster, and to a greater extent, with increasing oxygen concentration. It is suggested that the extensive biodiesel uptake and the decrease in the strain-at-break and Young’s modulus of the FKM terpolymer was due to dehydrofluorination of the rubber by the coordination complexes of biodiesel and magnesium oxide and calcium hydroxide particles. An increase in the CH2-concentration of the extracted FKM rubbers suggested that biodiesel was grafted onto the FKM at the unsaturated sites resulting from dehydrofluorination.

  • 2.
    Akhlaghi, Shahin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Amir Masoud, Pourrahimi
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Christian, Sjöstedt
    Martin, Bellander
    Mikael S., Hedenqvist
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Ulf W., Gedde
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Degradation of fluoroelastomers in rapeseed biodiesel at different oxygen concentrations2017In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 136, p. 10-19Article in journal (Refereed)
    Abstract [en]

    The degradation of fluoroelastomers (FKM) based on different monomers, additives and curing systems was studied after exposure to rapeseed biodiesel at 100 °C and different oxygen partial pressures. The sorption of fuel in the carbon black-filled FKM terpolymer was promoted by the fuel-driven cavitation in the rubber. The bisphenol-cured rubbers swelled more in biodiesel than the peroxide-cured FKM, presumably due to the chain cleavage caused by the attack of biodiesel on the double bonds formed during the bisphenol curing. With any of the selected types of monomer, the FKM rubbers absorbed biodiesel faster and to a greater extent with increasing oxygen partial pressure due to the increase in concentration of the oxidation products of biodiesel. Water-assisted complexation of biodiesel on magnesium oxide and calcium hydroxide particles led to dehydrofluorination of FKM, resulting in an extensive fuel uptake and a decrease in the strain-at-break and the Young's modulus of the rubbers. An increase in the CH2-concentration determined by infrared spectroscopy, and the appearance of biodiesel flakes in scanning electron micrographs of the extracted rubbers, were explained as being due to the presence of insoluble biodiesel grafted onto FKM on the unsaturated sites resulting from dehydrofluorination. The extensibility of the GFLT-type FKM was the least affected on exposure to biodiesel because this rubber contained less unsaturation and metal oxide/hydroxide particles.

  • 3.
    Akhlaghi, Shahin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials. Scania CV AB, Sweden.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Brana, Maria T. Conde
    Bellander, Martin
    Deterioration of automotive rubbers in liquid biofuels: A review2015In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 43, p. 1238-1248Article, review/survey (Refereed)
    Abstract [en]

    Concerns over the fast depletion of fossil fuels, environmental issues and stringent legislation associated with petroleum-based fuels have triggered a shift to bio-based fuels, as an alternative to meet the growing energy demand in the transportation sector. However, since conventional automobile fuel systems are adapted to petroleum-based fuels, switching to biofuels causes a severe deterioration in the performance of currently used rubber components. The degradation of the rubber materials in biofuels is complicated by the presence of different additives in biofuels and rubber compounds, by oxidation of biofuels and by the effects of thermomechanical loadings in the engine. This paper presents a comprehensive review of the effects of different types of biofuels, particularly biodiesel and bioethanol, on the physical, mechanical, morphological and thermal properties of elastomers under different exposure conditions. In addition, the literature data available on the variation of rubbers' resistance to biofuels with the changes in their monomer type and composition, cure system and additives content was also studied. The review essentially focuses on the compatibility of biofuels with acrylonitrile butadiene rubber, fluoroelastomers, polychloroprene rubber and silicon rubber, as the most commonly used automotive rubbers coming into contact with fuels during their service. The knowledge summarized in this study can help to develop a guideline on the selection of rubber for automotive parts designed to withstand biofuels.

  • 4.
    Akhlaghi, Shahin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Brana, M. T. Conde
    Bellander, M.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Deterioration of acrylonitrile butadiene rubber in rapeseed biodiesel2015In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 111, p. 211-222Article in journal (Refereed)
    Abstract [en]

    The deterioration of acrylonitrile butadiene rubber (NBR) exposed to rapeseed biodiesel at 90 degrees C was studied. The oxidation of biodiesel and NBR during ageing was monitored by H-1 NMR and infrared spectroscopy, HPLC and titration methods. The oxidation of biodiesel was impeded in the presence of NBR, but promoted in biodiesel-exposed rubber. This was explained as being due to the migration of stabilizer from the rubber to biodiesel, the diffusion of dissolved oxygen from biodiesel into NBR and the absorption of oxidation precursors of biodiesel by the rubber. The resemblance between the anomalous sorption kinetics of biodiesel in NBR and the equilibrium benzene uptake by the aged rubbers revealed that biodiesel caused a network defect in NBR, resulting in a gradual increase in the equilibrium swelling. The cleavage of crosslinks was implausible since the Young's modulus of the rubber at low strains, disregarding an initial decrease, increased with increasing exposure time. The appearance of 'naked' carbon black particles in the scanning electron micrographs of the aged rubbers and a drastic decrease in the strain-at-break of NBR after exposure to biodiesel suggests that internal cavitation was caused by the attack of biodiesel on the acrylonitrile units of NBR.

  • 5.
    Akhlaghi, Shahin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pourrahimi, A. M.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Christian, Sjöstedt
    Martin, Bellander
    Mikael S., Hedenqvist
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Ulf W., Gedde
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Effects of ageing conditions on degradation of acrylonitrile butadiene rubber filled with heat-treated ZnO star-shaped particles in rapeseed biodiesel2017In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321Article in journal (Refereed)
    Abstract [en]

    The degradation of acrylonitrile butadiene rubber (NBR) after exposure to biodiesel at different oxygen partial pressures in an automated ageing equipment at 80 °C, and in a high-pressure autoclave at 150 °C was studied. The oxidation of biodiesel was promoted by an increase in oxygen concentration, resulting in a larger uptake of fuel in the rubber due to internal cavitation, a greater decrease in the strain-at-break of NBR due to the coalescence of cavity, and a faster increase in the crosslinking density and carbonyl index due to the promotion of the oxidation of NBR. During the high-temperature autoclave ageing, less fuel was absorbed in the rubber, because the formation of hydroperoxides and acids was impeded. The extensibility of NBR aged in the autoclave decreased only slightly due to the cleavage of rubber chains by the biodiesel attack. The degradation of NBR in the absence of carbon black was explained as being due to oxidative crosslinking. The dissolution of ZnO crystals in the acidic components of biodiesel was retarded by removing the inter-particle porosity and surface defects through heat treating star-shaped ZnO particles. The rubber containing heat-treated ZnO particles swelled less in biodiesel than a NBR filled with commercial ZnO nanoparticles, and showed a smaller decrease in the strain-at-break and less oxidative crosslinking.

  • 6.
    Akhlaghi, Shahin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Sjöstedt, C.
    Bellander, M.
    Gedde, Ulf
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Degradation of carbon-black-filled acrylonitrile butadiene rubber in alternative fuels: Transesterified and hydrotreated vegetable oils2016In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 123, p. 69-79Article in journal (Refereed)
    Abstract [en]

    The deterioration of acrylonitrile butadiene rubber (NBR), a common sealing material in automobile fuel systems, when exposed to rapeseed biodiesel and hydrotreated vegetable oil (HVO) was studied. The fuel sorption was hindered in HVO-exposed rubber by the steric constraints of bulky HVO molecules, but it was promoted in biodiesel-exposed rubber by fuel-driven cavitation in the NBR and by the increase in diffusivity of biodiesel after oxidation. The absence of a tan δ peak of the bound rubber and the appearance of carbon black particles devoid of rubber suggested that the cavitation was made possible in biodiesel-aged rubber by the detachment of bound rubber from particle surfaces. The HVO-exposed NBR showed a small decrease in strain-at-break due to the migration of plasticizer from the rubber, and a small increase in the Young’s modulus due to oxidative crosslinking. A drastic decrease in extensibility and Payne-effect amplitude of NBR on exposure to biodiesel was explained as being due to the damage caused by biodiesel to the continuous network of bound rubber-carbon black. A decrease in the ZnO crystal size with increasing exposure time suggested that the particles are gradually dissolved in the acidic components of oxidized biodiesel. The Zn2+ cations released from the dissolution of ZnO particles in biodiesel promoted the hydrolysis of the nitrile groups of NBR.

  • 7. Amanizadeh, Farhad
    et al.
    Akhlaghi, Shahin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Mobarakeh, Hamid Salehi
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Starve fed emulsion copolymerization of vinyl acetate and 1-hexene at ambient pressure2014In: Polymer international, ISSN 0959-8103, E-ISSN 1097-0126, Vol. 63, no 10, p. 1850-1855Article in journal (Refereed)
    Abstract [en]

    A novel emulsion copolymer of vinyl acetate (VAc) and 1-hexene was synthesized at ambient pressure. The feeding technique, initiation system and reaction time of the copolymerization were optimized based on molecular characteristics such as the weight contribution of 1-hexene in the copolymer chains and glass transition temperature (T-g) as well as on bulk properties like minimum film-formation temperature (MFFT) and solid content. According to nuclear magnetic resonance spectroscopy and differential scanning calorimetry results, the combination of starve feeding and redox initiation, within a reaction time of 4h, effectively led to the copolymerization at ambient pressure between highly reactive polar VAc monomers and non-polar 1-hexene monomers of low reactivity. The copolymer showed a lower T-g and MFFT, and a reasonable solid content compared to the poly(vinyl acetate) (PVAc) homopolymer. The consumption rate, hydrolysis of acetate groups and chain transfer reactions during the polymerization were followed using infrared spectroscopy. Based on the results, the undesirable reactions between the VAc blocks were hindered by the neighbouring 1-hexene molecules. Tensile testing revealed an improvement in the toughness and elongation at break of VAc-1-hexene films compared to PVAc films.

  • 8. Arabasadi, Z.
    et al.
    Khorasani, M.
    Akhlaghi, Shahin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Fazilat, H.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Shiri, M. E.
    Prediction and optimization of fireproofing properties of intumescent flame retardant coatings using artificial intelligence techniques2013In: Fire safety journal, ISSN 0379-7112, E-ISSN 1873-7226, Vol. 61, p. 193-199Article in journal (Refereed)
    Abstract [en]

    A multi-structured architecture of artificial intelligence techniques including artificial neural network (ANN), adaptive neuro-fuzzy-inference-system (ANFIS) and genetic algorithm (GA) were developed to predict and optimize the fireproofing properties of a model intumescent flame retardant coating including ammonium polyphosphate, pentaerythritol, melamine, thermoplastic acrylic resin and liquid hydrocarbon resin. By implementing ANN on heat insulation results of coating samples, prepared based on a L16 orthogonal array, mean fireproofing time (MFPT) values were properly predicted. The predicted data were then proved to be valid through performing closeness examinations on fuzzy inference systems results regarding their experimental counterparts. However, the possible deviations tapped into phenomena like foam detachment and char cracking were alleviated by ANFIS modeling embedded with pertinent fuzzy rules based on the sole and associative practical role of used additives. The contribution of each intumescent coating component on the formulation with optimized fireproofing behavior was then explored using GA modeling. A similar optimization procedure was also conducted using conventional Taguchi experimental design but the GA based optimized intumescent coating was found to exhibit higher MFPT value than that suggested by the Taguchi method.

  • 9. Arasteh, Rouhollah
    et al.
    Naderi, Ali
    Kaptan, Navid
    Maleknia, Laleh
    Akhlaghi, Shahin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Nazockdast, Hosein
    Effects of Fiber Spinning on the Morphology, Rheology, Thermal, and Mechanical Properties of Poly(trimethylene terephthalate)/Poly(ethylene terephthalate) Blends2014In: Advances in Polymer Technology, ISSN 0730-6679, E-ISSN 1098-2329, Vol. 33, no S1, p. 21443-Article in journal (Refereed)
    Abstract [en]

    The morphology, thermal behavior, rheological, and mechanical properties of poly(trimethylene terephthalate) (PTT)/poly(ethylene terephthalate) (PET) blend fibers were investigated. The scanning electron microscopy studies revealed the formation of a microfibrillar network of the PET within the PTT matrix after the fiber-spinning process. Differential scanning calorimetry results demonstrated that although the thermal characteristics of the amorphous phase were unaffected by the fiber-spinning process, the melting and crystallization behavior of the blends was altered by the elongation flow imposed during the melt spinning. The viscoelastic behavior of the PTT/PET blends was also studied by a steady shear rate and dynamic sweep rheological experiments before and after the spinning process. The induced morphology and crystallization reordering resulting from the fibrillation process are shown to have a remarkable effect on the complex viscosity profile of the PTT/PET fibers, particularly in the blend containing 30 wt% PET. The mechanical testing showed that tenacity and Young's modulus of the PTT fibers increased with the addition of PET up to 30 wt%.

  • 10. Ghorbani, Fereshte Mohammad
    et al.
    Kaffashi, Babak
    Shokrollahi, Parvin
    Akhlaghi, Shahin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(Caprolactone)/chitosan blends2016In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 59, p. 980-989Article in journal (Refereed)
    Abstract [en]

    The effect of hydroxyapatite nano-particles (nHA) on morphology, and rheological and thermal properties of PCL/chitosan blends was investigated. The tendency of nHA to reside in the submicron-dispersed chitosan phase is determined using SEM and AFM images. The presence of electrostatic interaction between amide sites of chitosan and ionic groups on the nHA surface was proved by FTIR. It is shown that the chitosan phase is thermodynamically more favorable for the nano-particles to reside than the PCL phase. Lack of implementation of Cox-Merz theory for this system shows that the polymer-nano-particle network is destructed by the flow. Results from dynamic rheological measurements and Zeiler fractional model show that the presence of nHA increases the shear moduli and relaxation time of the PCL/chitosan blends. DSC measurements showed that nHA nano-particles are responsible for the increase in melting and crystallization characteristics of the PCL/chitosan blends. Based on thermogravimetric analysis, the PCL/chitosan/nHA nano-composites exhibited a greater thermal stability compared to the nHA-free blends.

  • 11. Kaptan, Navid
    et al.
    Jafari, Seyed Hassan
    Mazinani, Saeedeh
    Akhlaghi, Shahin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Fazilat, Hakimeh
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Naderi, Ali
    Monfared, Alireza
    Thermal Behavior and Degradation Kinetics of Compatibilized Metallocene-Linear Low Density Polyethylene/Nanoclay Nanocomposites2014In: Polymer-plastics technology and engineering (Softcover ed.), ISSN 0360-2559, E-ISSN 1525-6111, Vol. 53, no 9, p. 890-902Article in journal (Refereed)
    Abstract [en]

    Morphology, thermal degradation and kinetics of metallocene-linear-low-density polyethylene (m-LLDPE)/m-LLDPE-graft-maleic anhydride (m-LLDPE-g-MA)/nanoclay nanocomposites were compared with m-LLDPE/nanoclay, m-LLDPE-g-MA/nanoclay and m-LLDPE/m-LLDPE-g-MA systems. X-ray diffraction measurements revealed intercalated and "highly intercalated'' morphologies for the nanocomposites. Thermogravimetric analysis demonstrated that although thermal degradation of m-LLDPE systems were delayed upon the inclusion of nanoclay in air, an inverse effect was perceived for the nanoclay under inert atmosphere. This conclusion was supported by kinetic analysis in terms of reaction order and activation energy. The results obtained from kinetics models also put forward the contribution of m-LLDPE-g-MA, as a compatibilizer, to the thermal stability enhancement through intermolecular cross-linking augmentation.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf