Ändra sökning
Avgränsa sökresultatet
1 - 20 av 20
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Colmenares, Juan
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Peftitsis, Dimosthenis
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Rabkowski, Jacek
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling. Warsaw University of Technology, Poland .
    Sadik, Diane-Perle
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Dual-Function Gate Driver for a Power Module With SiC Junction Field-Effect Transistors2014Ingår i: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 29, nr 5, s. 2367-2379Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Silicon Carbide high-power modules populated with several parallel-connected junction field-effect transistors must be driven properly. Parasitic elements could act as drawbacks in order to achieve fast and oscillation-free switching performance, which are the main goals. These two requirements are related closely to the design of the gate-drive unit, and they must be kept under certain limits when high efficiencies are targeted. This paper deeply investigates several versions of gate-drive units and proposes a dual-function gate-drive unit which is able to switch the module with an acceptable speed without letting the current suffer from significant oscillations. It is experimentally shown that turn-on and turn-off switching times of approximately 130 and 185 ns respectively can be reached, while the magnitude of the current oscillations is kept at an adequate level. Moreover, using the proposed gate driver an efficiency of approximately 99.7% is expected for a three-phase converter rated at 125 kVA and having a switching frequency of 2 kHz.

  • 2.
    Colmenares, Juan
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Peftitsis, Dimosthenis
    Rabkowski, Jacek
    Sadik, Diane-Perle
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Tolstoy, Georg
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    High-Efficiency 312-kVA Three-Phase Inverter Using Parallel Connection of Silicon Carbide MOSFET Power Modules2015Ingår i: IEEE transactions on industry applications, ISSN 0093-9994, E-ISSN 1939-9367, Vol. 51, nr 6, s. 4664-4676Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents the design process of a 312-kVA three-phase silicon carbide inverter using ten parallel-connected metal-oxide-semiconductor field-effect-transistor power modules in each phase leg. The design processes of the gate-drive circuits with short-circuit protection and power circuit layout are also presented. Measurements in order to evaluate the performance of the gate-drive circuits have been performed using a double-pulse setup. Moreover, electrical and thermal measurements in order to evaluate the transient performance and steady-state operation of the parallel-connected power modules are shown. Experimental results showing proper steady-state operation of the power converter are also presented. Taking into account measured data, an efficiency of approximately 99.3% at the rated power has been measured for the inverter.

  • 3.
    Colmenares, Juan
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Peftitsis, Dimosthenis
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Tolstoy, Georg
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Sadik, Diane-Perle
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Rabkowski, Jacek
    High-efficiency three-phase inverter with SiC MOSFET power modules for motor-drive applications2014Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents the design process of a 312 kVA three-phase silicon carbide inverter using ten parallel-connected metal-oxide-semiconductor field-effect-transistor power modules in each phase-leg. The design processes of the gate-drive circuits with short-circuit protection and the power circuit layout are also presented. Electrical measurements in order to evaluate the performance of the gate-drive circuits have been performed using a double-pulse setup. Experimental results showing the electrical performance during steady-state operation of the power converter are also shown. Taking into account measured data, an efficiency of approximately 99.3% at the rated power has been estimated for the inverter.

  • 4.
    Colmenares, Juan
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Sadik, Diane-Perle
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Hilber, Patrik
    KTH, Skolan för elektro- och systemteknik (EES), Elektroteknisk teori och konstruktion.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Reliability Analysis of a High-Efficiency SiC Three-Phase Inverter2016Ingår i: IEEE Journal of Emerging and Selected Topics in Power Electronics, ISSN 2168-6777, E-ISSN 2168-6785, Vol. 4, nr 3, s. 996-1006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Silicon carbide as an emerging technology offers potential benefits compared with the currently used silicon. One of these advantages is higher efficiency. If this is targeted, reducing the on-state losses is a possibility to achieve it. Parallel-connecting devices decrease the on-state resistance and therefore reduce the losses. Furthermore, increasing the amount of components such as parallel connection of devices introduces an undesired tradeoff between efficiency and reliability, since an increased component count increases the probability of failure. A reliability analysis has been performed on a three-phase inverter rated at 312 kVA, using parallel-connected power modules. This analysis shows that the gate voltage stress has a high impact on the reliability of the complete system. Decreasing the positive gate-source voltage could, therefore, increase the reliability of the system approximately three times without affecting the efficiency significantly. Moreover, adding redundancy in the system could also increase the mean time to failure by approximately five times.

  • 5.
    Colmenares, Juan
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Sadik, Diane-Perle
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Hilber, Patrik
    KTH, Skolan för elektro- och systemteknik (EES), Elektroteknisk teori och konstruktion.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Reliability analysis of a high-efficiency SiC three-phase inverter for motor drive applications2016Ingår i: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 746-753, artikel-id 7467955Konferensbidrag (Refereegranskat)
    Abstract [en]

    Silicon Carbide as an emerging technology offers potential benefits compared to the currently used Silicon. One of these advantages is higher efficiency. If this is targeted, reducing the on-state losses is a possibility to achieve it. Parallel-connecting devices decrease the on-state resistance and therefore reducing the losses. Furthermore, increasing the amount of components introduces an undesired tradeoff between efficiency and reliability. A reliability analysis has been performed on a three-phase inverter for motor drive applications rated at 312 kVA. This analysis has shown that the gate voltage stress determines the reliability of the complete system. Nevertheless, decreasing the positive gate-source voltage could increase the reliability of the system approximately 8 times without affecting the efficiency significantly. Moreover, adding redundancy in the system could also increase the mean time to failure approximately 5 times.

  • 6.
    Lim, Jang-Kwon
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Mikro- och nanosystemteknik. Acreo Swedish ICT AB, Sweden.
    Peftitsis, Dimosthenis
    KTH, Skolan för elektro- och systemteknik (EES).
    Sadik, Diane-Perle
    KTH, Skolan för elektro- och systemteknik (EES).
    Bakowski, M.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Evaluation of buried grid JBS diodes2014Ingår i: 15th International Conference on Silicon Carbide and Related Materials, ICSCRM 2013, Trans Tech Publications Inc., 2014, s. 804-807Konferensbidrag (Refereegranskat)
    Abstract [en]

    The 4H-SiC Schottky barrier diodes for high temperature operation over 200 °C have been developed using buried grids formed by implantation. Compared to a conventional JBS-type SBD with surface grid (SG), JBS-type SBD with buried grid (BG) has significantly reduced leakage current at reverse bias due to a better field shielding of the Schottky contact. By introducing the BG technology, the 1.7 kV diodes with an anode area 0.0024 cm2 (1 A) and 0.024 cm2 (10 A) were successfully fabricated, encapsulated in TO220 packages, and electrically evaluated. Two types of buried grid arrangement with different grid spacing dimensions were investigated. The measured IV characteristics were compared with simulation. The best fit was obtained with an active area of approximately 60% and 70% of the anode area in large and small devices, respectively. The measured values of the device capacitances were 1000 pF in large devices and 100 pF in small devices at zero bias. The capacitance values are proportional to the device area. The recovery behavior of big devices was measured in a double pulse tester and simulated. The recovery charge, Qc, was 18 nC and 24 nC in simulation and measurement, respectively. The fabricated BG JBS-type SBDs have a smaller maximum reverse recovery current compared to the commercial devices. No influence of the different grid spacing on the recovery charge was observed.

  • 7.
    Nee, Hans-Peter
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Rabkowski, Jacek
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Peftitsis, Dimosthenis
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Tolstoy, Georg
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Colmenares, Juan
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Sadik, Diane
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Bakowski, Mietek
    Acreo Swedish ICT AB, Sweden.
    Lim, Jang-Kwon
    Acreo AB, Kista.
    Antonopoulos, Antonios
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Ängquist, Lennart
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Zdanowski, Mariusz
    Warsaw University of Technology.
    High-Efficiency Power Conversion Using Silicon Carbide Power Electronics2013Ingår i: Proc. of International Conference on silicon carbide and related materials (ICSCRM) 2013, Miyazaki, Japan, Sept. 29–Oct. 4, 2013, Trans Tech Publications Inc., 2013, s. 1083-1088Konferensbidrag (Refereegranskat)
    Abstract [en]

    The message of this paper is that the silicon carbide power transistors of today are good enough to design converters with efficiencies and switching speeds beyond comparison with corresponding technology in silicon. This is the time to act. Only in the highest power range the devices are missing. Another important step towards high powers is to find new solutions for multi-chip circuit designs that are adapted to the high possible switching speeds of unipolar silicon carbide power transistors.

  • 8.
    Sadik, Diane
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Ranstad, P.
    Nee, Hans-Peter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elkraftteknik.
    Effect of Parasitic Inductance in a Soft-Switching SiC Power Converter Topics: 1 b: New Materials and Active Devices 7b: High-voltage DC Power Supplies (U)2018Ingår i: 2018 20th European Conference on Power Electronics and Applications, EPE 2018 ECCE Europe, Institute of Electrical and Electronics Engineers Inc. , 2018Konferensbidrag (Refereegranskat)
    Abstract [en]

    Wide Bandgap power semiconductors such as SiC MOSFETs, have enabled compact and highly efficient power converters operated at higher frequencies. However, parasitic inductance of the package may significantly increase power losses and limit the operation. This paper aims to quantify experimentally these losses in a soft-switching converter. A 'removable' stray inductance is implemented in a setup consisting of discrete SiC MOSFET units. Thus, the power loss of the transistors with and without stray inductance can be compared. Similarly slower switching speeds are also implemented to fully emulate a 62-mm module. The power loss induced by the package can thus be evaluated.

  • 9.
    Sadik, Diane
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elkraftteknik.
    Ranstad, Per
    GE Power Sweden, Vaxjo, Sweden..
    Nee, Hans-Peter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elkraftteknik.
    Effect of Parasitic Inductance in a Soft-Switching SiC Power Converter2018Ingår i: 2018 20TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'18 ECCE EUROPE), IEEE , 2018Konferensbidrag (Refereegranskat)
    Abstract [en]

    Wide Bandgap power semiconductors such as SiC MOSFETs, have enabled compact and highly efficient power converters operated at higher frequencies. However, parasitic inductance of the package may significantly increase power losses and limit the operation. This paper aims to quantify experimentally these losses in a soft-switching converter. A "removable" stray inductance is implemented in a setup consisting of discrete SiC MOSFET units. Thus, the power loss of the transistors with and without stray inductance can be compared. Similarly slower switching speeds are also implemented to fully emulate a 62-mm module. The power loss induced by the package can thus be evaluated.

  • 10.
    Sadik, Diane-Perl
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Giezendanner, F.
    Ranstad, P.
    Humidity testing of SiC power MOSFETs2016Ingår i: 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 3131-3136, artikel-id 7512796Konferensbidrag (Refereegranskat)
    Abstract [en]

    Humidity and outdoor application are a challenge for Silicon (Si) and Silicon Carbide (SiC) applications. This paper investigates the effect of humidity on SiC power MOSFET modules in a real application where no acceleration factors such as pressure or high temperature are applied. Since SiC devices can operate at higher temperature than Si, the high-temperature acceleration factor may be obsolete. Moreover, the humidity might be more critical when the temperature inside the converter enclosure and modules housing is varying with daily temperature variations and weather constraints in harsh environments. The breakdown voltages of the humidity-exposed modules are monitored regularly over a extended period of time in order to detect any increase of leakage current which indicates humidity-induced degradation. After 630 hours, the modules operated outdoor presented an increased leakage current at 1.2 kV and over the whole range of applied voltage.

  • 11.
    Sadik, Diane-Perle
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    On Reliability of SiC Power Devices in Power Electronics2017Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    Kiselkarbid (SiC) är ett bredbandgapsmaterial (WBG) som har flera fördelar,såsom högre maximal elektrisk fältstyrka, lägre ON-state resitans, högreswitch-hastighet och högre maximalt tillåten arbetstemperatur jämförtmed kisel (Si). I spänningsområdet 1,2-1,7 kV förutses att effekthalvledarkomponenteri SiC kommer att ersätta Si Insulated-gate bipolar transistorer(IGBT:er) i tillämpningar där hög verkningsgrad, hög arbetstemperatur ellervolymreduktioner eftersträvas. Förstahandsvalet är en SiC Metal-oxidesemiconductor field-effect transistor (MOSFET) som är spänningsstyrd ochnormally-OFF, egenskaper som möjliggör enkel implementering i konstruktionersom använder Si IGBTer.I detta arbete undersöks tillförlitligheten av SiC komponenter, specielltSiC MOSFET:en. Först undersöks möjligheten att parallellkoppla tvådiskretaSiC MOSFET:ar genom statiska och dynamiska prov. Parallellkopplingbefanns vara oproblematisk. Sedan undersöks drift av tröskelspänning ochbody-diodens framspänning genom långtidsprov. Ocksådessa tillförlitlighetsaspekterbefanns vara oproblematiska. Därefter undersöks kapslingens inverkanpåchip:et genom modellering av parasitiska induktanser hos en standardmoduloch inverkan av dessa induktanser pågate-oxiden. Modellen påvisaren obalans mellan de parasitiska induktanserna, något som kan varaproblematiskt för snabb switchning. Ett långtidstest av inverkan från fuktpåkant-termineringar för SiC-MOSFET:ar och SiC-Schottky-dioder i sammastandardmodul avslöjar tidiga tecken pådegradering för vissa moduler somvarit utomhus. Därefter undersöks kortslutningsbeteende för tre typer (bipolärtransistor,junction-field-effect transistor och MOSFET) av 1.2 kV effekthalvledarswitchargenom experiment och simuleringar. Behovet att stänga avkomponenten snabbt stöds av detaljerade elektrotermiska simuleringar för allatre komponenter. Konstruktionsriktlinjer för ett robust och snabbt kortslutningsskyddtas fram. För var och en av komponenterna byggs en drivkrets medkortslutningsskydd som valideras experimentellt. Möjligheten att konstrueradiodlösa omvandlare med SiC MOSFET:ar undersöks med fokus påstötströmmargenom body-dioden. Den upptäckta felmekanismen är ett oönskat tillslagav den parasitiska npn-transistorn. Slutligen utförs en livscykelanalys(LCCA) som avslöjar att introduktionen av SiC MOSFET:ar i existerandeIGBT-konstruktioner är ekonomiskt intressant. Den initiala investeringensparas in senare pågrund av en högre verkningsgrad. Dessutom förbättrastillförlitligheten, vilket är fördelaktigt ur ett riskhanteringsperspektiv. Dentotala investeringen över 20 år är ungefär 30 % lägre för en omvandlare medSiC MOSFET:ar även om initialkostnaden är 30 % högre.

  • 12.
    Sadik, Diane-Perle
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Colmenares, Juan
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Kostov, Konstantin
    Giezendanner, Florian
    Ranstad, Per
    Analysis of Parasitic Elements of SiC Power Modules with Special Emphasis on Reliability Issues2016Ingår i: 31st Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 1018-1023Konferensbidrag (Refereegranskat)
    Abstract [en]

    Commercially available Silicon Carbide (SiC) MOSFET power modules often have a design based on existing packages previously used for silicon insulated-gate bipolar transistors. However, these packages are not optimized to take advantage of the SiC benefits, such as, high switching speeds and high-temperature operation. The package of a half-bridge SiC MOSFET module has been modeled and the parasitic elements have been extracted. The model is validated through experiments. An analysis of the impact of these parasitic elements on the gate-source voltage on the chip has been performed for both low switching speeds and high switching speeds. These results reveal potential reliability issues for the gate-oxide if higher switching speeds are targeted.

  • 13.
    Sadik, Diane-Perle
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Colmenares, Juan
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Peftitsis, Dimosthenis
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Lim, Jang-Kwon
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Rabkowski, Jacek
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Experimental investigations of static and transient current sharing of parallel-connected silicon carbide MOSFETs2013Ingår i: 2013 15th European Conference on Power Electronics and Applications, EPE 2013, 2013Konferensbidrag (Refereegranskat)
    Abstract [en]

    An Experimental performance analysis of a parallel connection of two 1200/80 MΩ silicon carbide SiC MOSFETs is presented. Static parallel connection was found to be unproblematic. The switching performance of several pairs of parallel-connected MOSFETs is shown employing a common simple totem-pole driver. Good transient current sharing and high-speed switching waveforms with small oscillations are presented. To conclude this analysis, a dc/dc boost converter using parallel-connected SiC MOSFETs is designed for stepping up a voltage from 50 V to 560 V. It has been found that at high frequencies, a mismatch in switching losses results in thermal unbalance between the devices.

  • 14.
    Sadik, Diane-Perle
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Colmenares, Juan
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Peftitsis, Dimosthenis
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Tolstoy, Georg
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Rabkowski, Jacek
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Analysis of short-circuit conditions for silicon carbide power transistors and suggestions for protection2014Ingår i: 2014 16th European Conference on Power Electronics and Applications, EPE-ECCE Europe 2014, IEEE , 2014, s. 6910789-Konferensbidrag (Refereegranskat)
    Abstract [en]

    An experimental analysis of the behavior under short-circuit conditions of three different Silicon Carbide (SiC) 1200 V power devices is presented. It is found that all devices take up a substantial voltage, which is favorable for detection of short-circuits. A suitable method for short-circuit detection without any comparator is demonstrated. A SiC JFET driver with an integrated short-circuit protection (SCP) is presented where a short-circuit detection is added to a conventional driver design in a simple way. Experimental tests of the SCP driver operating under short-circuit condition and under normal operation are performed successfully.

  • 15.
    Sadik, Diane-Perle
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Colmenares, Juan
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Tolstoy, Georg
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Peftitsis, Dimosthenis
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Bakowski, Mietek
    Rabkowski, Jacek
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Short-Circuit Protection Circuits for Silicon Carbide Power Transistors2016Ingår i: IEEE transactions on industrial electronics (1982. Print), ISSN 0278-0046, E-ISSN 1557-9948, ISSN 0278-0046, Vol. 63, nr 4, s. 1995-2004, artikel-id ITIEDArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    An experimental analysis of the behavior under short-circuit conditions of three different siliconcarbide (SiC) 1200-V power devices is presented. It is found that all devices take up a substantial voltage, which is favorable for detection of short circuits. A transient thermal device simulation was performed to determine the temperature stress on the die during a short-circuit event, for the SiC MOSFET. It was found that, for reliability reasons, the short-circuit time should be limited to values well below Si IGBT tolerances. Guidelines toward a rugged design for short-circuit protection (SCP) are presented with an emphasis on improving the reliability and availability of the overall system. A SiC device driver with an integrated SCP is presented for each device-type, respectively, where a shortcircuit detection is added to a conventional driver design in a simple way. The SCP driver was experimentally evaluated with a detection time of 180 ns. For all devices, short-circuit times well below 1 µs were achieved.

  • 16.
    Sadik, Diane-Perle
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Heinig, Stefanie
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Jacobs, Keijo
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Johannesson, Daniel
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik. ABB Corp Res, Sweden.
    Lim, Jan-Kwon
    Nawaz, Muhammad
    Dijkhuizen, Frans
    Bakowski, Mietek
    Norrga, Staffan
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Investigation of the Surge Current Capability of the Body Diode of SiC MOSFETs for HVDC Applications2016Ingår i: 2016 18TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'16 ECCE EUROPE), IEEE, 2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    The surge current capability of the body-diode of SiC MOSFETs is experimentally analyzed in order to investigate the possibility of using SiC MOSFETs for HVDC applications. SiC MOSFET discrete devices and modules have been tested with surge currents up to 10 times the rated current and for durations up to 2 ms. Although the presence of stacking faults cannot be excluded, the experiments reveal that the failure may occur due to the latch-up of the parasitic n-p-n transistor located in the SiC MOSFET.

  • 17.
    Sadik, Diane-Perle
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Kostov, Konstantin
    Colmenares, Juan
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Giezendanner, Florian
    Ranstad, Per
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Analysis of Parasitic Elements of SiC Power Modules With Special Emphasis on Reliability Issues2016Ingår i: IEEE Journal of Emerging and Selected Topics in Power Electronics, ISSN 2168-6777, E-ISSN 2168-6785, Vol. 4, nr 3, s. 988-995Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Commercially available silicon carbide (SiC) MOSFET power modules often have a design based on existing packages previously used for silicon insulated-gate bipolar transistors. However, these packages are not optimized to take advantage of the SiC benefits, such as high switching speeds and high-temperature operation. The package of a half-bridge SiC MOSFET module has been modeled and the parasitic elements have been extracted. The model is validated through experiments. An analysis of the impact of these parasitic elements on the gate-source voltage on the chip has been performed for both low switching speeds and high switching speeds. These results reveal potential reliability issues for the gate oxide if higher switching speeds are targeted.

  • 18.
    Sadik, Diane-Perle
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Lim, Jang-Kwon
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Ranstad, P.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.
    Investigation of long-term parameter variations of SiC power MOSFETs2015Ingår i: Power Electronics and Applications (EPE’15 ECCE-Europe), 2015 17th European Conference on, IEEE , 2015, s. 1-10Konferensbidrag (Refereegranskat)
    Abstract [en]

    Experimental investigations on the gate-oxide and body-diode reliability of commercially available Silicon Carbide (SiC) MOSFETs from the second generation are performed. The body-diode conduction test is performed with a current density of 50 A/cm2 in order to determine if the body-diode of the MOSFETs is free from bipolar degradation. The second test is stressing the gate-oxide. A negative bias is applied on the gate oxide in order to detect and quantify potential drifts.

  • 19.
    Sadik, Diane-Perle
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elkraftteknik.
    Ranstad, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elkraftteknik.
    Nee, Hans-Peter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elkraftteknik.
    Impact of blanking time on switching losses in a SiC MOSFET-based converter using capacitive snubbers2019Ingår i: 2019 21st European Conference on Power Electronics and Applications, EPE 2019 ECCE Europe, Institute of Electrical and Electronics Engineers (IEEE), 2019, artikel-id 8915564Konferensbidrag (Refereegranskat)
    Abstract [en]

    Wide Bandgap power semiconductors such as SiC MOSFETs, have enabled compact and highly efficient power converters operated at higher frequencies. In converters using SiC MOSFETs and capacitive snubbers, the blanking times may have a significant impact on switching losses. The power losses induced by unnecessary long blanking times have been quantified experimentally. It was found that, at 100 kHz, an adaptive blanking time can reduce the losses by more than 20 %. As those losses are directly proportional to the switching frequency, an adaptive blanking time is essential when designing for high operation frequencies. Doing so, higher operation frequencies are possible while maintaining a high efficiency.

  • 20. Velander, E.
    et al.
    Kruse, L.
    Meier, S.
    Lofgren, A.
    Wiik, T.
    Nee, Hans-Peter
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Sadik, Diane-Perle
    KTH, Skolan för elektro- och systemteknik (EES), Elkraftteknik.
    Analysis of short circuit type II and III of high voltage SiC MOSFETs with fast current source gate drive principle2016Ingår i: 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 3392-3397, artikel-id 7512839Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Silicon Carbide (SiC) MOSFET is considered to be the leading candidate for future 1.7 kV and 3.3 kV switches in 2-level voltage source converters (VSC) up to 2 MW. For those converters, short circuit (SC) in the dc-link loop can occur due to a number of reasons, e.g. faulty semiconductor modules, faulty gate drivers (GDs), or electro-magnetic interference (EMI). Termination of such SCs is important in order to protect components and reduce the damage in the converter box. This paper presents a new short circuit protection scheme based on a universal current-source GD principle without dedicated hardware components. The performance of the design is evaluated for SC in the dc-link loop under load conditions, called type II and type III. Moreover, measurement results are presented using the proposed GD connected to a 1700 V 300 A SiC MOSFET tested during SC type II and III at two different dc-link stray inductances, 30 nH and 100 nH, and at two different temperatures, 25 °C and 125 °C. The conclusions are that the proposed scheme is able to terminate both SC type II and III with fast reaction time, with low energy dissipation, with a margin of about 15 times below the destructive level for dc-link voltages and load currents up to 1050 V and 300 A respectively.

1 - 20 av 20
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf