kth.sePublications
Change search
Refine search result
12 1 - 50 of 57
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Benselfelt, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Nordenström, Malin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ion-induced assemblies of highly anisotropic nanoparticles are governed by ion-ion correlation and specific ion effects2019In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, no 8, p. 3514-3520Article in journal (Refereed)
    Abstract [en]

    Ion-induced assemblies of highly anisotropic nanoparticles can be explained by a model consisting of ion-ion correlation and specific ion effects: dispersion interactions, metal-ligand complexes, and local acidic environments. Films of cellulose nanofibrils and montmorillonite clay were treated with different ions, and their subsequent equilibrium swelling in water was related to important parameters of the model in order to investigate the relative importance of the mechanisms. Ion-ion correlation was shown to be the fundamental attraction, supplemented by dispersion interaction for polarizable ions such as Ca2+ and Ba2+, or metal-ligand complexes for ions such as Cu2+, Al3+ and Fe3+. Ions that form strong complexes induce local acidic environments that also contribute to the assembly. These findings are summarized in a comprehensive semi-quantitative model and are important for the design of nanomaterials and for understanding biological systems where specific ions are involved.

  • 2. Björk, Per
    et al.
    Herland, Anna
    Hamedi, Mahiar
    Inganäs, Olle
    Biomolecular nanowires decorated by organic electronic polymers2010In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 20, no 12Article in journal (Refereed)
    Abstract [en]

    We demonstrate the shaping and forming of organic electronic polymers into designer nanostructures using biomacromolecules. In order to create nanowires, nanohelixes and assemblies of these, we coordinate semiconducting or metallic polymers to biomolecular polymers in the form of DNA and misfolded proteins. Optoelectronic and electrochemical devices utilizing these shaped materials are discussed.

  • 3.
    Buchmann, Sebastian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden/ Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    Stoop, Pepijn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden/ Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    Roekevisch, Kim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden/ Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    Jain, Saumey
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.
    Kroon, Renee
    Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden.
    Müller, Christian
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Zeglio, Erica
    AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden/ Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden/ Wallenberg Initiative Materials Science for Sustainability, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
    Herland, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden/ Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    In situ functionalization of polar polythiophene based organic electrochemical transistor to interface in vitro modelsManuscript (preprint) (Other academic)
  • 4.
    Chondrogiannis, Georgios
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Khaliliazar, Shirin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Toldrà Filella, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Reu, Pedro
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Nitrocellulose-bound achromopeptidase for point-of-care nucleic acid tests2021In: Scientific Reports, E-ISSN 2045-2322, Vol. 11, no 1, article id 6140Article in journal (Refereed)
    Abstract [en]

    Enzymes are the cornerstone of modern biotechnology. Achromopeptidase (ACP) is a well-known enzyme that hydrolyzes a number of proteins, notably proteins on the surface of Gram-positive bacteria. It is therefore used for sample preparation in nucleic acid tests. However, ACP inhibits DNA amplification which makes its integration difficult. Heat is commonly used to inactivate ACP, but it can be challenging to integrate heating into point-of-care devices. Here, we use recombinase polymerase amplification (RPA) together with ACP, and show that when ACP is immobilized on nitrocellulose paper, it retains its enzymatic function and can easily and rapidly be activated using agitation. The nitrocellulose-bound ACP does, however, not leak into the solution, preventing the need for deactivation through heat or by other means. Nitrocellulose-bound ACP thus opens new possibilities for paper-based Point-of-Care (POC) devices.

  • 5.
    Chondrogiannis, Georgios
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Reu, Pedro
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Paper-Based Bacterial Lysis Enables Sample-to-Answer Home-based DNA Testing2023In: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 8, no 4, p. 2201004-, article id 2201004Article in journal (Refereed)
    Abstract [en]

    Nucleic acid amplification testing (NAAT) is the gold standard for infectious disease diagnostics. Currently NAATs are mainly limited to centralized laboratories, while paper-based antigen tests are used for rapid home-based diagnostics. DNA extraction, the initial sample preparation step in NAATs, remains a bottleneck that hinders its development toward home-based kits. This step requires the use of compounds detrimental to the enzymes in downstream DNA amplification. Here, this work overcomes this bottleneck by immobilizing the enzyme achromopeptidase (ACP) on nitrocellulose, to both store and enable the separation of the enzymes from the other steps. This work provides proof-of-concept that immobilized ACP is effective at lysis and release of amplifiable DNA from gram-positive Staphylococcus epidermidis and enables the use of the lysate directly for DNA amplification, without the need for heat deactivation of the enzyme. This sample preparation method requires only incubation at 37 °C and mild agitation, which allows to implement it with fully disposable and affordable equipment. Consequently, this work enables to combine the paper-based DNA extraction method with the isothermal recombinase polymerase amplification (RPA) followed by lateral flow detection to demonstrate a sample-to-answer NAAT packaged as an instrument free self-test kit expanding the capabilities of home-testing beyond antigen tests. 

  • 6.
    Chondrogiannis, Georgios
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Reu, Pedro
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Paper‐Based Bacterial Lysis Enables Sample‐to‐Answer Home‐based DNATestingManuscript (preprint) (Other academic)
  • 7.
    Cui, Yuxiao
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Subramaniyam, Chandrasekar M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Li, Lengwan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Han, Tong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Kang, Mina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Li, Jian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Zhao, Luyao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wei, Xin-Feng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Svagan, Anna Justina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hierarchical soot nanoparticle self-assemblies for enhanced performance as sodium-ion battery anodes2022In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, no 16, p. 9059-9066Article in journal (Refereed)
    Abstract [en]

    The drawbacks of amorphous hard carbon are its low conductivity and structural instability, due to its large volume change and the occurrence of side reactions with the electrolyte during cycling. Here, we propose a simple and rapid method to address these disadvantages; we used an emulsion solvent-evaporation method to create hierarchically structured microparticles of hard carbon nanoparticles, derived from soot, and multi-walled-carbon-nanotubes at a very low threshold of 2.8 wt%. These shrub-ball like microparticles have well-defined void spaces between different nanostructures of carbon, leading to an increased surface area, lower charge-resistance and side reactions, and higher electronic conductivity for Na+ insertion and de-insertion. They can be slurry cast to assemble Na+ anodes, exhibiting an initial discharge capacity of 713.3 mA h g(-1) and showing long-term stability with 120.8 mA h g(-1) at 500 mA g(-1) after 500 cycles, thus outperforming neat hard carbon nanoparticles by an order of magnitude. Our work shows that hierarchical self-assembly is attractive for increasing the performance of microparticles used for battery production.

  • 8. Darabi, Sozan
    et al.
    Hummel, Michael
    Rantasalo, Sami
    Rissanen, Marja
    Öberg Månsson, Ingrid
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hilke, Haike
    Byungil, Hwang
    Skrifvars, Mikael
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Sixta, Herbert
    Lund, Anja
    Müller, Christian
    Green Conducting Cellulose Yarns for Machine Sewn Electronic TextilesManuscript (preprint) (Other academic)
  • 9.
    Darabi, Sozan
    et al.
    Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden..
    Hummel, Michael
    Aalto Univ, Dept Bioprod & Biosyst, Espoo 02150, Finland..
    Rantasalo, Sami
    Aalto Univ, Dept Bioprod & Biosyst, Espoo 02150, Finland..
    Rissanen, Marja
    Aalto Univ, Dept Bioprod & Biosyst, Espoo 02150, Finland..
    Öberg Månsson, Ingrid
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hilke, Haike
    Univ Borås, Fac Text Engn & Business, S-50190 Borås, Sweden..
    Hwang, Byungil
    Chung Ang Univ, Sch Integrat Engn, Seoul 06974, South Korea..
    Skrifvars, Mikael
    Univ Borås, Fac Text Engn & Business, S-50190 Borås, Sweden..
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Sixta, Herbert
    Aalto Univ, Dept Bioprod & Biosyst, Espoo 02150, Finland..
    Lund, Anja
    Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden..
    Muller, Christian
    Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden..
    Green Conducting Cellulose Yarns for Machine-Sewn Electronic Textiles2020In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 12, no 50, p. 56403-56412Article in journal (Refereed)
    Abstract [en]

    The emergence of "green" electronics is a response to the pressing global situation where conventional electronics contribute to resource depletion and a global build-up of waste. For wearable applications, green electronic textile (e-textile) materials present an opportunity to unobtrusively incorporate sensing, energy harvesting, and other functionality into the clothes we wear. Here, we demonstrate electrically conducting wood-based yarns produced by a roll-to-roll coating process with an ink based on the biocompatible polymer:polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The developed e-textile yarns display a, for cellulose yarns, record-high bulk conductivity of 36 Scm(-)(1), which could be further increased to 181 Scm(-)(1) by adding silver nanowires. The PEDOT:PSS-coated yarn could be machine washed at least five times without loss in conductivity. We demonstrate the electrochemical functionality of the yarn through incorporation into organic electrochemical transistors (OECTs). Moreover, by using a household sewing machine, we have manufactured an out-of-plane thermoelectric textile device, which can produce 0.2 mu W at a temperature gradient of 37 K.

  • 10. Edberg, Jesper
    et al.
    Malti, Abdellah
    Granberg, Hjalmar
    Hamedi, Mahiar
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Crispin, Xavier
    Engquist, Isak
    Berggren, Magnus
    Electrochemical circuits from 'cut and stick' PEDOT: PSS-nanocellulose composite2017In: Flexible and Printed Electronics, ISSN 2058-8585, Vol. 2, no 4, article id 045010Article in journal (Refereed)
    Abstract [en]

    We report a flexible self-standing adhesive composite made from PEDOT:PSS and nanofibrillated cellulose. The material exhibits good combined mechanical and electrical characteristics (an elastic modulus of 4.4 MPa, and an electrical conductivity of 30 S cm(-1)). The inherent self-adhesiveness of the material enables it to be laminated and delaminated repeatedly to form and reconfigure devices and circuits. This modular property opens the door for a plethora of applications where reconfigurability and ease-of-manufacturing are of prime importance. We also demonstrate a paper composite with ionic conductivity and combine the two materials to construct electrochemical devices, namely transistors, capacitors and diodes with high values of transconductance, charge storage capacity and current rectification. We have further used these devices to construct digital circuits such as NOT, NAND and NORlogic.

  • 11.
    Enrico, Alessandro
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems. Synthetic Physiology lab, Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, Pavia, 27100 Italy.
    Buchmann, Sebastian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, Centres, Center for the Advancement of Integrated Medical and Engineering Sciences, AIMES.
    De Ferrari, Fabio
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.
    Lin, Yunfan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Wang, Yazhou
    Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China.
    Yue, Wan
    Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China.
    Mårtensson, Gustaf
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Mycronic AB Nytorpsvägen 9 Täby 183 53 Sweden.
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Niklaus, Frank
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.
    Herland, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, Centres, Center for the Advancement of Integrated Medical and Engineering Sciences, AIMES.
    Zeglio, Erica
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, Centres, Center for the Advancement of Integrated Medical and Engineering Sciences, AIMES. Wallenberg Initiative Materials Science for Sustainability, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 114 18 Sweden.
    Cleanroom‐Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors2024In: Advanced Science, E-ISSN 2198-3844Article in journal (Refereed)
    Abstract [en]

    Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 µm) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research.

  • 12.
    Hajian, Alireza
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH.
    Lindström, Stefan B.
    Linköping University.
    Pettersson, Torbjörn
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH.
    Hamedi, Mahiar M.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH.
    Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials2017In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, no 3, p. 1439-1447Article in journal (Refereed)
    Abstract [en]

    This work aims at understanding the excellent ability of nanocelluloses to disperse carbon nanomaterials (CNs) in aqueous media to form long-term stable colloidal dispersions without the need for chemical functionalization of the CNs or the use of surfactant. These dispersions are useful for composites with high CN content when seeking water-based, efficient, and green pathways for their preparation. To establish a comprehensive understanding of such dispersion mechanism, colloidal characterization of the dispersions has been combined with surface adhesion measurements using colloidal probe atomic force microscopy (AFM) in aqueous media. AFM results based on model surfaces of graphene and nanocellulose further suggest that there is an association between the nanocellulose and the CN. This association is caused by fluctuations of the counterions on the surface of the nanocellulose inducing dipoles in the sp2carbon lattice surface of the CNs. Furthermore, the charges on the nanocellulose will induce an electrostatic stabilization of the nanocellulose–CN complexes that prevents aggregation. On the basis of this understanding, nanocelluloses with high surface charge density were used to disperse and stabilize carbon nanotubes (CNTs) and reduced graphene oxide particles in water, so that further increases in the dispersion limit of CNTs could be obtained. The dispersion limit reached the value of 75 wt % CNTs and resulted in high electrical conductivity (515 S/cm) and high modulus (14 GPa) of the CNT composite nanopapers.

  • 13.
    Hajian, Alireza
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Berglund, Lars. A
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns2019In: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 5, no 3, article id 1800924Article in journal (Refereed)
    Abstract [en]

    This work presents a route to fabricate micropatterned conductive structures where the conductors are monolithically integrated with nanocellulose-based paper. To fabricate conductive features, microstructures are patterned on filter papers using wax-printing, followed by vacuum filtration of carbon nanotubes (CNTs) or silver nanowires (AgNWs) dispersed in aqueous cellulose nanofibrils (CNFs). These patterns are then laminated onto a pure CNF substrate (both in gel-state) and dried to form cellulose nanopapers with integrated conductive micropatterns. Resolutions of the conductive features are shown down to 400 µm wide, 250 nm thick, and with conductivity values of 115 ± 5 S cm −1 for the CNF–CNT and 3770 ± 230 S cm −1 for the CNF–AgNW micropatterns. The nanopaper and the conductive patterns both constitute random fibrous networks, and they display similar ductility and swelling behavior in water. Thus, the integrated conductive micropatterns can withstand folding, as well as wetting cycles. This stability of the micropatterns makes them useful in various devices based on nanocellulose substrates. As an example, an electroanalytical nanopaper device that operates in wet conditions is demonstrated.

  • 14.
    Hamedi, Mahiar
    et al.
    Linköping University, Sweden.
    Elfwing, Anders
    Gabrielsson, Roger
    Inganäs, Olle
    Electronic polymers and DNA self-assembled in nanowire transistors2013In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 9, no 3, p. 363-8Article in journal (Refereed)
    Abstract [en]

    Aqueous self-assembly of DNA and molecular electronic materials can lead to the creation of innumerable copies of identical devices, and inherently programmed complex nanocircuits. Here self-assembly of a water soluble and highly conducting polymer PEDOT-S with DNA in aqueous conditions is shown. Orientation and assembly of the conducting DNA/PEDOT-S complex into electrochemical DNA nanowire transistors is demonstrated.

  • 15.
    Hamedi, Mahiar
    et al.
    Linköping University, Sweden.
    Forchheimer, Robert
    Inganas, Olle
    Towards woven logic from organic electronic fibres2007In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 6, no 5, p. 357-362Article in journal (Refereed)
    Abstract [en]

    The use of organic polymers for electronic functions is mainly motivated by the low-end applications, where low cost rather than advanced performance is a driving force. Materials and processing methods must allow for cheap production. Printing of electronics using inkjets1 or classical printing methods has considerable potential to deliver this. Another technology that has been around for millennia is weaving using fibres. Integration of electronic functions within fabrics, with production methods fully compatible with textiles, is therefore of current interest, to enhance performance and extend functions of textiles2. Standard polymer field-effect transistors require well defined insulator thickness and high voltage3, so they have limited suitability for electronic textiles. Here we report a novel approach through the construction of wire electrochemical transistor (WECT) devices, and show that textile monofilaments with 10–100 m diameters can be coated with continuous thin films of the conducting polythiophene poly(3,4-ethylenedioxythiophene), and used to create micro-scale WECTs on single fibres. We also demonstrate inverters and multiplexers for digital logic. This opens an avenue for three-dimensional polymer micro-electronics, where large-scale circuits can be designed and integrated directly into the three-dimensional structure of woven fibres.

  • 16. Hamedi, Mahiar
    et al.
    Herland, Anna
    Karlsson, Roger H.
    Inganäs, Olle
    Electrochemical Devices Made from Conducting Nanowire Networks Self-Assembled from Amyloid Fibrils and Alkoxysulfonate PEDOT2008In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 8, no 6, p. 1736-1740Article in journal (Refereed)
    Abstract [en]

    Proteins offer an almost infinite number of functions and geometries for building nanostructures. Here we have focused on amyloid fibrillar proteins as a nanowire template and shown that these fibrils can be coated with the highly conducting polymer alkoxysulfonate PEDOT through molecular self-assembly in water. Transmission electron microscopy and atomic force microscopy show that the coated fibers have a diameter around 15 nm and a length/thickness aspect ratio >1:1000. We have further shown that networks of the conducting nanowires are electrically and electrochemically active by constructing fully functional electrochemical transistors with nanowire networks, operating at low voltages between 0 and 0.5 V.

  • 17.
    Hamedi, Mahiar
    et al.
    Linköping University.
    Herlogsson, Lars
    Crispin, Xavier
    Marcilla, Rebeca
    Berggren, Magnus
    Inganäs, Olle
    Fiber-Embedded Electrolyte-Gated Field-Effect Transistors for e-Textiles2009In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 21, no 5, p. 573-577Article in journal (Refereed)
    Abstract [en]

    Electrolyte-gate organic field-effect transistors embedded at the junction of textile microfibers are demonstrated. The fiber transistor operates below I V and delivers large current densities. The transience of the organic thin-film transistor’s current and the impedance spectroscopy measurements reveal that the channel is formed in two steps.

  • 18.
    Hamedi, Mahiar
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Karabulut, Erdem
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Marais, Andrew
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Herland, Anna
    Nyström, Gustav
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanocellulose Aerogels Functionalized by Rapid Layer-by-Layer Assembly for High Charge Storage and Beyond2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 46, p. 12038-12042Article in journal (Refereed)
    Abstract [en]

    Step by step: A robust and rapid method for the layer-by-layer assembly of polymers and nanoparticles on strong and elastic aerogels has been developed. Thin films of biomolecules, conducting polymers, and carbon nanotubes were assembled, which resulted in aerogels with a number of functions, including a high charge-storage capacity.

  • 19.
    Hamedi, Mahiar M.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hajian, Alireza
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Fall, Andreas B.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Håkansson, Karl
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Salajkova, Michaela
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Highly Conducting, Strong Nanocomposites Based on Nanocellulose-Assisted Aqueous Dispersions of Single-Wall Carbon Nanotubes2014In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 8, no 3, p. 2467-2476Article in journal (Refereed)
    Abstract [en]

    It is challenging to obtain high-quality dispersions of single-wall nanotubes (SWNTs) in composite matrix materials, in order to reach the full potential of mechanical and electronic properties. The most widely used matrix materials are polymers, and the route to achieving high quality dispersions of SWNT is mainly chemical functionalization of the SWNT. This leads to increased cost, a loss of strength and lower conductivity. In addition full potential of colloidal self-assembly cannot be fully exploited in a polymer matrix. This may limit the possibilities for assembly of highly ordered structural nanocomposites. Here we show that nanofibrillated cellulose (NFC) can act as an excellent aqueous dispersion agent for as-prepared SWNTs, making possible low-cost exfoliation and purification of SWNTs with dispersion limits exceeding 40 wt %. The NFC:SWNT dispersion may also offer a cheap and sustainable alternative for molecular self-assembly of advanced composites. We demonstrate semitransparent conductive films, aerogels and anisotropic microscale fibers with nanoscale composite structure. The NFC:SWNT nanopaper shows increased strength at 3 wt % SWNT, reaching a modulus of 133 GPa, and a strength of 307 MPa. The anisotropic microfiber composites have maximum conductivities above 200 S cm(-1) and current densities reaching 1400 A cm(-2).

  • 20.
    Hamedi, Mahiar Max
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Herland, Anna
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems. Karolinska Inst, Dept Neurosci, Swedish Med Nanosci Ctr, S-17177 Stockholm, Sweden..
    Zhang, Fengling
    Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden..
    Pei, Qibing
    Univ Calif Los Angeles, Dept Mat Sci & Engn, Henry Samueli Sch Engn & Appl Sci, Los Angeles, CA 90095 USA..
    Organic Polymer Electronics - A Special Issue in Honor of Prof. Olle Inganas2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, no 22, article id 1901940Article in journal (Refereed)
  • 21. Hamedi, Mahiar
    et al.
    Tvingstedt, Kristofer
    Karlsson, Roger H
    Asberg, Peter
    Inganäs, Olle
    Bridging dimensions in organic electronics: assembly of electroactive polymer nanodevices from fluids2009In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 9, no 2, p. 631-635Article in journal (Refereed)
    Abstract [en]

    Processing and patterning of electroactive materials from solvents is a hallmark of flexible organic electronics, and commercial applications based on these properties are now emerging. Printing and ink-jetting are today preferred technologies for patterning, but these limit the formation of nanodevices, as they give structures way above the micrometer lateral dimension. There is therefore a great need for cheap, large area patterning of nanodevices and methods for top-down registration of these. Here we demonstrate large area patterning of connected micro/nanolines and nanotransistors from the conducting polymer PEDOT, assembled from fluids. We thereby simultaneously solve problems of large area nanopatterning, and nanoregistration.

  • 22.
    Hamedi, Mahiar
    et al.
    Linköping University, Sweden.
    Wigenius, Jens
    Tai, Feng-I
    Björk, Per
    Aili, Daniel
    Polypeptide-guided assembly of conducting polymer nanocomposites2010In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 2, no 10, p. 2058-2061Article in journal (Refereed)
    Abstract [en]

    A strategy for fabrication of electroactive nanocomposites with nanoscale organization, based on self-assembly, is reported. Gold nanoparticles are assembled by a polypeptide folding-dependent bridging. The polypeptides are further utilized to recruit and associate with a water soluble conducting polymer. The polymer is homogenously incorporated into the nanocomposite, forming conducting pathways which make the composite material highly conducting.

  • 23.
    Hamedi, Mahiar
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Nyström, Gustav
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Marais, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Karabulut, Erdem
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Cui, Yi
    Stanford Univ, Stanford, CA 94305 USA..
    Soft, compressible and fully Interdigitated 3D energy storage devices built by layer-by-layer assembly inside aerogels2015In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 249Article in journal (Other academic)
  • 24.
    Hanze, Martin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Khaliliazar, Shirin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Reu, Pedro
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Toldrà Filella, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Toward Continuous Molecular Testing Using Gold-Coated Threads as Multi-Target Electrochemical Biosensors2023In: Biosensors, ISSN 2079-6374, Vol. 13, no 9, article id 844Article in journal (Refereed)
    Abstract [en]

    Analytical systems based on isothermal nucleic acid amplification tests (NAATs) paired with electroanalytical detection enable cost-effective, sensitive, and specific digital pathogen detection for various in situ applications such as point-of-care medical diagnostics, food safety monitoring, and environmental surveillance. Self-assembled monolayers (SAMs) on gold surfaces are reliable platforms for electroanalytical DNA biosensors. However, the lack of automation and scalability often limits traditional chip-based systems. To address these challenges, we propose a continuous thread-based device that enables multiple electrochemical readings on a functionalized working electrode Au thread with a single connection point. We demonstrate the possibility of rolling the thread on a spool, which enables easy manipulation in a roll-to-roll architecture for high-throughput applications. As a proof of concept, we have demonstrated the detection of recombinase polymerase amplification (RPA) isothermally amplified DNA from the two toxic microalgae species Ostreopsis cf. ovata and Ostreopsis cf. siamensis by performing a sandwich hybridization assay (SHA) with electrochemical readout.

  • 25. Karlsson, Roger H
    et al.
    Herland, Anna
    Hamedi, Mahiar
    Wigenius, Jens A
    Åslund, Andreas
    Liu, Xianjie
    Fahlman, Mats
    Inganäs, Olle
    Konradsson, Peter
    Iron-Catalyzed Polymerization of Alkoxysulfonate-Functionalized 3,4-Ethylenedioxythiophene Gives Water-Soluble Poly(3,4-ethylenedioxythiophene) of High Conductivity2009In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 21, no 9, p. 1815-1821Article in journal (Refereed)
    Abstract [en]

    Chemical polymerization of a 3,4-ethylenedioxythiophene derivative bearing a sulfonate group (EDOTS) is reported. The polymer, PEDOT-S, is fully water-soluble and has been produced by polymerizing EDOT-S in water, using Na2S2O8 and a catalytic amount of FeCl 3. Elemental analysis and XPS measurements indicate that PEDOT-S is a material with a substantial degree of self-doping, but also contains free sulfate ions as charge-balancing counterions of the oxidized polymer. Apart from selfdoping PEDOT-S, the side chains enable full water solubility of the material; DLS studies show an average cluster size of only 2 nm. Importantly, the solvation properties of the PEDOT-S are reflected in spin-coated films, which show a surface roughness of 1.2 nm and good conductivity (12 S/cm) in ambient conditions. The electro-optical properties of this material are shown with cyclic voltammetry and spectroelectrochemical experiment reveals an electrochromic contrast (̃48% at λmax ) 606 nm).

  • 26.
    Khaliliazar, Shirin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Chondrogiannis, Georgios
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Electroanalytical Paper based Nucleic Acid Amplification Tests with Integrated Thread ElectrodesArticle in journal (Refereed)
  • 27.
    Khaliliazar, Shirin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Piper, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Chondrogiannis, Georgios
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hanze, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Herland, Anna
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Electrochemical Detection of Genomic DNA Utilizing Recombinase Polymerase Amplification and Stem-Loop Probe2020In: ACS Omega, E-ISSN 2470-1343, Vol. 5, no 21, p. 12103-12109Article in journal (Refereed)
    Abstract [en]

    Nucleic acid tests integrated into digital point-of-care (POC) diagnostic systems have great potential for the future of health care. However, current methods of DNA amplification and detection require bulky and expensive equipment, many steps, and long process times, which complicate their integration into POC devices. We have combined an isothermal DNA amplification method, recombinase polymerase amplification, with an electrochemical stem-loop (S-L) probe DNA detection technique. By combining these methods, we have created a system that is able to specifically amplify and detect as few as 10 copies/mu L Staphylococcus epidermidis DNA with a total time to result of 70-75 min.

  • 28.
    Khaliliazar, Shirin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Toldrà, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Chondrogiannis, Georgios
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Electroanalytical Paper-Based Nucleic Acid Amplification Biosensors with Integrated Thread Electrodes2021In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 93, no 42, p. 14187-14195Article in journal (Refereed)
    Abstract [en]

    Nucleic acid amplification tests (NAATs) are very sensitive and specific methods, but they mainly rely on centralized laboratories and therefore are not suitable for point-of-care testing. Here, we present a 3D microfluidic paper-based electrochemical NAAT. These devices use off-the-shelf gold plasma-coated threads to integrate electroanalytical readouts using ex situ self-assembled monolayer formation on the threads prior to assembling into the paper device. They further include a sandwich hybridization assay with sample incubation, rinsing, and detection steps all integrated using movable stacks of filter papers to allow time-sequenced reactions. The devices use glass fiber substrates for storing recombinase polymerase amplification reagents and conducting the isothermal amplification. We used the paper-based device for the detection of the toxic microalgae Ostreopsis cf. ovata. The NAAT, completed in 95 min, attained a limit of detection of 0.06 pM target synthetic DNA and was able to detect 1 ng/mu L O. cf. ovata genomic DNA with negligible cross-reactivity from a closely related microalgae species. We think that the integration of thread electrodes within paper-based devices paves the way for digital one-time use NAATs and numerous other advanced electroanalytical paper- or textile-based devices.

  • 29.
    Khaliliazar, Shirin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Öberg Månsson, Ingrid
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Piper, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Reu, Pedro
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Woven Electroanalytical Biosensor for Nucleic AcidAmplification Tests2021In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 10, no 11, p. 2100034-Article in journal (Refereed)
    Abstract [en]

    Fiber-based biosensors enable a new approach in analytical diagnosticdevices. The majority of textile-based biosensors, however, rely oncolorimetric detection. Here a woven biosensor that integrates microfluidicsstructures in combination with an electroanalytical readout based on athiol-self-assembled monolayer (SAM) for Nucleic Acid Amplification Testing,NAATs is shown. Two types of fiber-based electrodes are systematicallycharacterized: pure gold microwires (bond wire) and off-the-shelf plasmagold-coated polyester multifilament threads to evaluate their potential to formSAMs on their surface and their electrochemical performance in woven textile.A woven electrochemical DNA (E-DNA) sensor using a SAM-based stem-loopprobe-modified gold microwire is fabricated. These sensors can specificallydetect unpurified, isothermally amplified genomic DNA of Staphylococcusepidermidis (10 copies/μL) by recombinase polymerase amplification (RPA).This work demonstrates that textile-based biosensors have the potential forintegrating and being employed as automated, sample-to-answer analyticaldevices for point-of-care (POC) diagnostics.

    Download full text (pdf)
    fulltext
  • 30. Khan, Z. U.
    et al.
    Edberg, J.
    Hamedi, Mahiar M.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gabrielsson, R.
    Granberg, H.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Engquist, I.
    Berggren, M.
    Crispin, X.
    Thermoelectric Polymers and their Elastic Aerogels2016In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095Article in journal (Refereed)
    Abstract [en]

    Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin.

  • 31. Lan, Wen-Jie
    et al.
    Zou, Xu U.
    Hamedi, Mahiar
    Hu, Jinbo
    Parolo, Claudio
    Maxwell, E. Jane
    Bühlmann, Philippe
    Whitesides, George M.
    Paper-Based Potentiometric Ion Sensing2014In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 86, no 19, p. 9548-9553Article in journal (Refereed)
    Abstract [en]

    This paper describes the design and fabrication of ion-sensing electrochemical paper-based analytical devices (EPADs) in which a miniaturized paper reference electrode is integrated with a small ion-selective paper electrode (ISPE) for potentiometric measurements. Ion-sensing EPADs use printed wax barriers to define electrochemical sample and reference zones. Single-layer EPADs for sensing of chloride ions include wax-defined sample and reference zones that each incorporate a Ag/AgCl electrode. In EPADs developed for other electrolytes (potassium, sodium, and calcium ions), a PVC-based ion-selective membrane is added to separate the sample zone from a paper indicator electrode. After the addition of a small volume (less than 10 μL) of sample and reference solutions to different zones, ion-sensing EPADs exhibit a linear response, over 3 orders of magnitude, in ranges of electrolyte concentrations that are relevant to a variety of applications, with a slope close to the theoretical value (59.2/z mV). Ion-selective EPADs provide a portable, inexpensive, and disposable way of measuring concentrations of electrolyte ions in aqueous solutions.

  • 32.
    Lund, Anja
    et al.
    Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden..
    van der Velden, Natascha M.
    Delft Univ Technol, Fac Ind Design Engn, NL-2600 AA Delft, Netherlands..
    Persson, Nils-Krister
    Univ Boras, Smart Text, S-50190 Boras, Sweden.;Univ Boras, Swedish Sch Text, S-50190 Boras, Sweden..
    Hamedi, Mahiar M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Mueller, Christian
    Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden..
    Electrically conducting fibres for e-textiles: An open playground for conjugated polymers and carbon nanomaterials2018In: Materials science & engineering. R, Reports, ISSN 0927-796X, E-ISSN 1879-212X, Vol. 126, p. 1-29Article, review/survey (Refereed)
    Abstract [en]

    Conducting fibres and yams promise to become an essential part of the next generation of wearable electronics that seamlessly integrate electronic function into one of the most versatile and most widely used form of materials: textiles. This review explores the many types of conducting fibres and yarns that can be realised with conjugated polymers and carbon materials, including carbon black, carbon nanotubes and graphene. We discuss how the interplay of materials properties and the chosen processing technique lead to fibres with a wide range of electrical and mechanical properties. Depending on the choice of conjugated polymer, carbon nanotube, graphene, polymer blend, or nanocomposite the electrical conductivity can vary from less than 10(-3) to more than 10(3) S cm(-1), accompanied by an increase in Young's modulus from 10 s of MPa to 100 s of GPa. Further, we discuss how conducting fibres can be integrated into electronic textiles (e-textiles) through e.g. weaving and knitting. Then, we provide an overview of some of the envisaged functionalities, such as sensing, data processing and storage, as well as energy harvesting e.g. by using the piezoelectric, thermoelectric, triboelectric or photovoltaic effect. Finally, we critically discuss sustainability aspects such as the supply of materials, their toxicity, the embodied energy of fibre and textile production and recyclability, which currently are not adequately considered but must be taken into account to ready carbon based conducting fibres for truly practical e-textile applications.

  • 33.
    Maddalena, Lorenza
    et al.
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus, I-15121 Alessandria, Italy..
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Gomez, Julio
    AVANZARE Innovac Tecnol SL, Navarrete 26370, La Rioja, Spain..
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Fina, Alberto
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus, I-15121 Alessandria, Italy..
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carosio, Federico
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus, I-15121 Alessandria, Italy..
    Polyelectrolyte-Assisted Dispersions of Reduced Graphite Oxide Nanoplates in Water and Their Gas-Barrier Application2021In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 13, no 36, p. 43301-43313Article in journal (Refereed)
    Abstract [en]

    Dispersion of graphene and related materials in water is needed to enable sustainable processing of these 2D materials. In this work, we demonstrate the capability of branched polyethylenimine (BPEI) and polyacrylic acid (PAA) to stabilize reduced graphite oxide (rGO) dispersions in water. Atomic force microscopy colloidal probe measurements were carried out to investigate the interaction mechanisms between rGO and the polyelectrolytes (PEs). Our results show that for positive PEs, the interaction appears electrostatic, originating from the weak negative charge of graphene in water. For negative PEs, however, van der Waals forces may result in the formation of a PE shell on rGO. The PE-stabilized rGO dispersions were then used for the preparation of coatings to enhance gas barrier properties of polyethylene terephthalate films using the layer-by-layer self-assembly. Ten bilayers of rGO(BPEI)/rGO(PAA) resulted in coatings with excellent barrier properties as demonstrated by oxygen transmission rates below detection limits [<0.005 cm(3)/(m(2) day atm)]. The observed excellent performance is ascribed to both the high density of the deposited coating and its efficient stratification. These results can enable the design of highly efficient gas barrier solutions for demanding applications, including oxygen-sensitive pharmaceutical products or flexible electronic devices.

  • 34.
    Melianas, Armantas
    et al.
    Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, United States; Exponent, 149 Commonwealth Dr, Menlo Park, 94025, CA, United States.
    Kang, Mina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    VahidMohammadi, Armin
    A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, 19104, PA, United States.
    Quill, Tyler James
    Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, United States.
    Tian, Weiqian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Gogotsi, Yury
    A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, 19104, PA, United States.
    Salleo, Alberto
    Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, United States.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    High-Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene2022In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 32, no 12, p. 2109970-, article id 2109970Article in journal (Refereed)
    Abstract [en]

    Synaptic devices with linear high-speed switching can accelerate learning in artificial neural networks (ANNs) embodied in hardware. Conventional resistive memories however suffer from high write noise and asymmetric conductance tuning, preventing parallel programming of ANN arrays. Electrochemical random-access memories (ECRAMs), where resistive switching occurs by ion insertion into a redox-active channel, aim to address these challenges due to their linear switching and low noise. ECRAMs using 2D materials and metal oxides however suffer from slow ion kinetics, whereas organic ECRAMs enable high-speed operation but face challenges toward on-chip integration due to poor temperature stability of polymers. Here, ECRAMs using 2D titanium carbide (Ti3C2Tx) MXene that combine the high speed of organics and the integration compatibility of inorganic materials in a single high-performance device are demonstrated. These ECRAMs combine the speed, linearity, write noise, switching energy, and endurance metrics essential for parallel acceleration of ANNs, and importantly, they are stable after heat treatment needed for back-end-of-line integration with Si electronics. The high speed and performance of these ECRAMs introduces MXenes, a large family of 2D carbides and nitrides with more than 30 stoichiometric compositions synthesized to date, as promising candidates for devices operating at the nexus of electrochemistry and electronics.

  • 35. Müller, C.
    et al.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Lund, A.
    Moth-Poulsen, K.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    From Single Molecules to Thin Film Electronics, Nanofibers, e-Textiles and Power Cables: Bridging Length Scales with Organic Semiconductors2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, article id 1807286Article in journal (Refereed)
    Abstract [en]

    Organic semiconductors are the centerpiece of several vibrant research fields from single-molecule to organic electronics, and they are finding increasing use in bioelectronics and even classical polymer technology. The versatile chemistry and broad range of electronic functionalities of conjugated materials enable the bridging of length scales 15 orders of magnitude apart, ranging from a single nanometer (10 −9 m) to the size of continents (10 6 m). This work provides a taste of the diverse applications that can be realized with organic semiconductors. The reader will embark on a journey from single molecular junctions to thin film organic electronics, supramolecular assemblies, biomaterials such as amyloid fibrils and nanofibrillated cellulose, conducting fibers and yarns for e-textiles, and finally to power cables that shuffle power across thousands of kilometers.

  • 36. Müller, Christian
    et al.
    Hamedi, Mahiar
    SLU, Sweden.
    Karlsson, Roger
    Jansson, Ronnie
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
    Marcilla, Rebeca
    Hedhammar, My
    Inganäs, Olle
    Woven electrochemical transistors on silk fibers.2011In: Advanced materials, ISSN 0935-9648, Vol. 23, no 7, p. 898-901Article in journal (Refereed)
    Abstract [en]

    Woven electrochemical transistors on silk fibers from the silkworm Bombyx mori are demonstrated. This is achieved with carefully chosen electrolyte chemistry: electrically conducting silk fibers are produced by dyeing silk fibers with a conjugated polyelectrolyte and gating is accomplished by use of an electrolyte mixture composed of imidazolium-based ionic liquids.

  • 37. Müller, Christian
    et al.
    Jansson, Ronnie
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
    Elfwing, Anders
    Askarieh, Glareh
    Karlsson, Roger
    Hamedi, Mahiar
    Linköping University, Sweden.
    Rising, Anna
    Johansson, Jan
    Inganäs, Olle
    Hedhammar, My
    Functionalisation of recombinant spider silk with conjugated polyelectrolytes2011In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 21, no 9Article in journal (Refereed)
    Abstract [en]

    Conjugated polyelectrolytes are demonstrated to permit facile staining of recombinant spider silk fibres. We find that the polyelectrolyte concentration and pH of the staining solution as well as the incubation temperature strongly influence the efficiency of this self-assembly process, which appears to be principally mediated through favourable electrostatic interactions. Thus, depending on the choice of staining conditions as well as the polyelectrolyte, electrically conductive or photoluminescent recombinant silk fibres could be produced. In addition, staining of natural Bombyx mori silk is established, which emphasises the versatility of the here advanced approach to functionalise silk-based materials.

  • 38.
    Ouyang, Liangqi
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Buchmann, Sebastian
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Musumeci, Chiara
    Laboratory of Organic Electronics, ITN, Linköping University, Campus Norrköping, SE 60221, Sweden.
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Khaliliazar, Shirin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Tian, Weiqian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Li, Hailong
    Fysikum, Stockhohlm University, Roslagstullsbacken 21, Stockholm, Sweden.
    Herland, Anna
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Rapid prototyping of heterostructured organic microelectronics using wax printing, filtration, and transfer2021In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 9, no 41, p. 14596-14605Article in journal (Refereed)
    Download full text (pdf)
    data set
  • 39.
    Piper, Andrew
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Öberg Månsson, Ingrid
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Khaliliazar, Shirin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Landin, Roman
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hamedi, Mahiar Max
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    A disposable, wearable, flexible, stitched textile electrochemical biosensing platform2021In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 194, article id 113604Article in journal (Refereed)
    Abstract [en]

    Wearable sensors are a fast growing and exciting research area, the success of smart watches are a great example of the utility and demand for wearable sensing systems. The current state of the art routinely uses expensive and bulky equipment designed for long term use. There is a need for cheap and disposable wearable sensors to make single use measurements, primarily in the area of biomarker detection. Herein we report the ability to make cheap (0.22 USD/sensor), disposable, wearable sensors by stitching conductive gold coated threads into fabrics. These threads are easily functionalised with thiolate self-assembled monolayers which can be designed for the detection of a broad range of different biomarkers. This all textile sensing platform is ideally suited to be scaled up and has the added advantage of being stretchable with insignificant effect on the electrochemistry of the devices. As a proof of principle, the devices have been functionalised with a continuous glucose sensing system which was able to detect glucose in human sweat across the clinically relevant range (0.1-0.6 mM). The sensors have a sensitivity of 126 +/- 14 nA/mM of glucose and a limit of detection of 301 +/- 2 nM. This makes them ideally suited for biomarker detection in point-of-care sensing applications.

  • 40.
    Subramaniyam, Chandrasekar M.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Kang, Mina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Li, Jian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Mohammadi, Armin Vahid
    Department of Materials Science and Engineering, A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania, USA.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Additive-free red phosphorus/Ti3C2TxMXene nanocomposite anodes for metal-ion batteries2022In: Energy Advances, E-ISSN 2753-1457, no 12, p. 999-1008Article in journal (Refereed)
    Abstract [en]

    Herein, we report on scalable, environmentally benign, and additive-free, high-performance anodes for alkali-metal-ion batteries (MIBs, where M = Li+, Na+, K+). The intercalators in these anodes are the red phosphorus (RP) nanoparticles of uniform size (~40 nm), which are dispersible and blend with water-dispersed Ti3C2Tx MXene, forming a highly viscous aqueous slurry to fabricate additive-free nanocomposite electrodes. We further enhanced their performance using a very low weight percentage of various carbonaceous nanomaterials. Our RP-MWCNT/MXene nanocomposite anodes exhibited enhanced ion transport and low charge transfer resistance, delivering specific capacities of 1293.7 mA h g-1 at 500 mA g-1 and 263.3 mA h g-1 at 2600 mA g-1 for 10 000 cycles in Li+ cells, 371.6 mA h g-1 at 500 mA g-1 in Na+ cells, and 732.8 mA h g-1 at 50 mA g-1 in K+ cells. Our work shows a path towards fabricating nanoarchitectured electrodes using sustainable materials to eliminate inert polymer binders, toxic processing solvents, and rare earth elements from the battery fabrication process for next-generation alkali-metal-ion batteries.

  • 41.
    Tian, Weiqian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Vahid Mohammadi, Armin
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Beidaghi, Majid
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Hamedi, Mahiar M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Layer-by-layer self-assembly of pillared two-dimensional multilayers2019In: Nature Communications, E-ISSN 2041-1723, Vol. 10, article id 2558Article in journal (Refereed)
    Abstract [en]

    We report Layer-by-Layer (LbL) self-assembly of pillared two-dimensional (2D) multilayers, from water, onto a wide range of substrates. This LbL method uses a small molecule, tris(2-aminoethyl) amine (TAEA), and a colloidal dispersion of Ti3C2Tx MXene to LbL self-assemble (MXene/TAEA)(n )multilayers, where n denotes the number of bilayers. Assembly with TAEA results in highly ordered (MXene/TAEA)(n) multilayers where the TAEA expands the interlayer spacing of MXene flakes by only similar to 1 angstrom and reinforces the interconnection between them. The TAEA-pillared MXene multilayers show the highest electronic conductivity of 7.3 x10(4) S m(-1) compared with all reported MXene multilayers fabricated by LbL technique. The (MXene/ TAEA)(n) multilayers could be used as electrodes for flexible all-solid-state supercapacitors delivering a high volumetric capacitance of 583 F cm(-3) and high energy and power densities of 3.0 Wh L-1 and 4400 W L-1, respectively. This strategy enables large-scale fabrication of highly conductive pillared MXene multilayers, and potentially fabrication of other 2D heterostructures.

  • 42.
    Tian, Weiqian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    VahidMohammadi, Armin
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Tekn Ringen 56, S-10044 Stockholm, Sweden..
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Beidaghi, Majid
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, article id 1902977Article in journal (Refereed)
    Abstract [en]

    The family of two-dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal-like electrical conductivity and surface-functional-group-enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti3C2Tx) nanocomposites with one-dimensional (1D) cellulose nanofibrils (CNFs) from their stable colloidal dispersions is reported. The high aspect ratio of CNF (width of approximate to 3.5 nm and length reaching tens of micrometers) and their special interactions with MXene enable nanocomposites with high mechanical strength without sacrificing electrochemical performance. CNF loading up to 20%, for example, shows a remarkably high mechanical strength of 341 MPa (an order of magnitude higher than pristine MXene films of 29 MPa) while still maintaining a high capacitance of 298 F g(-1) and a high conductivity of 295 S cm(-1). It is also demonstrated that MXene/CNF hybrid dispersions can be used as inks to print flexible micro-supercapacitors with precise dimensions. This work paves the way for fabrication of robust multifunctional MXene nanocomposites for printed and lightweight structural devices.

  • 43.
    Tian, Weiqian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    VahidMohammadi, Armin
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Beidaghi, Majid
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Layer-by-layer assembly of pillared MXene multilayers for high volumetric energy storage and beyond2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 44.
    Toldrà Filella, Anna
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Ainla, Alar
    International Iberian Nanotechnology Laboratory, Braga, 4715-330, Portugal.
    Khaliliazar, Shirin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Landin, Roman
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Chondrogiannis, Georgios
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hanze, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Reu, Pedro
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Portable electroanalytical nucleic acid amplification tests using printed circuit boards and open-source electronics2022In: The Analyst, ISSN 0003-2654, E-ISSN 1364-5528, Vol. 147, no 19, p. 4249-4256Article in journal (Refereed)
    Abstract [en]

    The realization of electrochemical nucleic acid amplification tests (NAATs) at the point of care (POC) is highly desirable, but it remains a challenge given their high cost and lack of true portability/miniaturization. Here we show that mass-produced, industrial standardized, printed circuit boards (PCBs) can be repurposed to act as near-zero cost electrodes for self-assembled monolayer-based DNA biosensing, and further integration with a custom-designed and low-cost portable potentiostat. To show the analytical capability of this system, we developed a NAAT using isothermal recombinase polymerase amplification, bypassing the need of thermal cyclers, followed by an electrochemical readout relying on a sandwich hybridization assay. We used our sensor and device for analytical detection of the toxic microalgae Ostreopsis cf. ovata as a proof of concept. This work shows the potential of PCBs and open-source electronics to be used as powerful POC DNA biosensors at a low-cost. 

  • 45.
    Toldrà Filella, Anna
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Chondrogiannis, Georgios
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    3D paper microfluidic devices for enzyme‐linked assays, and itsapplication to DNA analysisManuscript (preprint) (Other academic)
  • 46.
    Toldrà Filella, Anna
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Chondrogiannis, Georgios
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    A 3D paper microfluidic device for enzyme-linked assays: Application to DNA analysis2023In: Biotechnology Journal, ISSN 1860-6768, E-ISSN 1860-7314, Vol. 18, no 9, article id 2300143Article in journal (Refereed)
    Abstract [en]

    A paper microfluidic device capable of conducting enzyme-linked assays is presented: a microfluidic enzyme-linked paper analytical device (μEL-PAD). The system exploits a wash-free sandwich coupling to form beads/analyte/enzyme complexes, which are subsequently added to the vertical flow device composed of wax-printed paper, waxed nitrocellulose membrane and absorbent/barrier layers. The nitrocellulose retains the bead complexes without disrupting the flow, enabling for an efficient washing step. The entrapped complexes then interact with the chromogenic substrate stored on the detection paper, generating a color change on it, quantified with an open-source smartphone software. This is a universal paper-based technology suitable for high-sensitivity quantification of many analytes, such as proteins or nucleic acids, with different enzyme-linked formats. Here, the potential of the μEL-PAD is demonstrated to detect DNA from Staphylococcus epidermidis. After generation of isothermally amplified genomic DNA from bacteria, Biotin/FITC-labeled products were analyzed with the μEL-PAD, exploiting streptavidin-coated beads and antiFITC-horseradish peroxidase. The μEL-PAD achieved a limit of detection (LOD) and quantification <10 genome copies/μL, these being at least 70- and 1000-fold lower, respectively, than a traditional lateral flow assay (LFA) exploiting immobilized streptavidin and antiFITC-gold nanoparticles. It is envisaged that the device will be a good option for low-cost, simple, quantitative, and sensitive paper-based point-of-care testing.

  • 47.
    Wang, Zhen
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Hamedi, Mahiar
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    3D interdigitated energy storage devices built inside aerogels using layer by layer assembly2017In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 48.
    Wang, Zhen
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Heasman, Patrick
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden.
    Rostami, Jowan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Linares, Mathieu
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden.
    Li, Hailong
    Department of Physics, AlbaNova University Center, Stockholm University, Stockholm, 10691, Sweden.
    Iakunkov, Artem
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Sellman, Farhiya Alex
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Östmans, Rebecca
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar Max
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Zozoulenko, Igor
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden; Wallenberg Wood Science Center, Linköping University, 60174, Norrköping, Sweden.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Dynamic Networks of Cellulose Nanofibrils Enable Highly Conductive and Strong Polymer Gel Electrolytes for Lithium-Ion Batteries2023In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 33, no 30, article id 2212806Article in journal (Refereed)
    Abstract [en]

    Tunable dynamic networks of cellulose nanofibrils (CNFs) are utilized to prepare high-performance polymer gel electrolytes. By swelling an anisotropically dewatered, but never dried, CNF gel in acidic salt solutions, a highly sparse network is constructed with a fraction of CNFs as low as 0.9%, taking advantage of the very high aspect ratio and the ultra-thin thickness of the CNFs (micrometers long and 2–4 nm thick). These CNF networks expose high interfacial areas and can accommodate massive amounts of the ionic conductive liquid polyethylene glycol-based electrolyte into strong homogeneous gel electrolytes. In addition to the reinforced mechanical properties, the presence of the CNFs simultaneously enhances the ionic conductivity due to their excellent strong water-binding capacity according to computational simulations. This strategy renders the electrolyte a room-temperature ionic conductivity of 0.61 ± 0.12 mS cm−1 which is one of the highest among polymer gel electrolytes. The electrolyte shows superior performances as a separator for lithium iron phosphate half-cells in high specific capacity (161 mAh g−1 at 0.1C), excellent rate capability (5C), and cycling stability (94% capacity retention after 300 cycles at 1C) at 60 °C, as well as stable room temperature cycling performance and considerably improved safety compared with commercial liquid electrolyte systems.

  • 49.
    Wang, Zhen
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Malti, Abdellah
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Tu, D.
    Tian, Weiqian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Copper-Plated Paper for High-Performance Lithium-Ion Batteries2018In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 14, no 48, article id 1803313Article in journal (Refereed)
    Abstract [en]

    Paper is emerging as a promising flexible, high surface-area substrate for various new applications such as printed electronics, energy storage, and paper-based diagnostics. Many applications, however, require paper that reaches metallic conductivity levels, ideally at low cost. Here, an aqueous electroless copper-plating method is presented, which forms a conducting thin film of fused copper nanoparticles on the surface of the cellulose fibers. This paper can be used as a current collector for anodes of lithium-ion batteries. Owing to the porous structure and the large surface area of cellulose fibers, the copper-plated paper-based half-cell of the lithium-ion battery exhibits excellent rate performance and cycling stability, and even outperforms commercially available planar copper foil-based anode at ultra-high charge/discharge rates of 100 C and 200 C. This mechanically robust metallic-paper composite has promising applications as the current collector for light-weight, flexible, and foldable paper-based 3D Li-ion battery anodes.

  • 50.
    Wang, Zhen
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Li, Hailong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar Max
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Layer-by-Layer Assembly of Strong Thin Films with High Lithium Ion Conductance for Batteries and Beyond2021In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 17, no 32, p. 2100954-, article id 2100954Article in journal (Refereed)
    Abstract [en]

    Polyethylene oxide (PEO) is one of the most widely used polymeric ion conductors which has the potential for a wide range of applications in energy storage. The enhancement of ionic conductivity of PEO-based electrolytes is generally achieved by sacrificing the mechanical properties. Using layer-by-layer (LbL) self-assembly with a nanoscale precision, mechanically strong and self-healable PEO/polyacrylic acid composite thin films with a high Li+ conductivity of 2.3 ± 0.8 × 10−4 S cm−1 at 30 °C, and a strength of 3.7 MPa is prepared. These values make the LbL composite among the best recorded multifunctional solid electrolytes. The electrolyte thin film withstands at least 1000 cycles of striping/plating of Li at 0.05 mA cm−2. It is further shown that the LbL thin films can be used as separators for Li-ion batteries to deliver a capacity of 116 mAh g−1 at 0.1 C in an all-LbL-assembled lithium iron phosphate/lithium titanate battery. Finally, it is demonstrated that the thin films can be used as ion-conducting substrates for flexible electrochemical devices, including micro supercapacitors and electrochemical transistors.

12 1 - 50 of 57
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf