Change search
Refine search result
1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Benselfelt, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Nordenström, Malin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ion-induced assemblies of highly anisotropic nanoparticles are governed by ion-ion correlation and specific ion effects2019In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, no 8, p. 3514-3520Article in journal (Refereed)
    Abstract [en]

    Ion-induced assemblies of highly anisotropic nanoparticles can be explained by a model consisting of ion-ion correlation and specific ion effects: dispersion interactions, metal-ligand complexes, and local acidic environments. Films of cellulose nanofibrils and montmorillonite clay were treated with different ions, and their subsequent equilibrium swelling in water was related to important parameters of the model in order to investigate the relative importance of the mechanisms. Ion-ion correlation was shown to be the fundamental attraction, supplemented by dispersion interaction for polarizable ions such as Ca2+ and Ba2+, or metal-ligand complexes for ions such as Cu2+, Al3+ and Fe3+. Ions that form strong complexes induce local acidic environments that also contribute to the assembly. These findings are summarized in a comprehensive semi-quantitative model and are important for the design of nanomaterials and for understanding biological systems where specific ions are involved.

  • 2. Björk, Per
    et al.
    Herland, Anna
    Hamedi, Mahiar
    Inganäs, Olle
    Biomolecular nanowires decorated by organic electronic polymers2010In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 20, no 12Article in journal (Refereed)
    Abstract [en]

    We demonstrate the shaping and forming of organic electronic polymers into designer nanostructures using biomacromolecules. In order to create nanowires, nanohelixes and assemblies of these, we coordinate semiconducting or metallic polymers to biomolecular polymers in the form of DNA and misfolded proteins. Optoelectronic and electrochemical devices utilizing these shaped materials are discussed.

  • 3. Edberg, Jesper
    et al.
    Malti, Abdellah
    Granberg, Hjalmar
    Hamedi, Mahiar
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Crispin, Xavier
    Engquist, Isak
    Berggren, Magnus
    Electrochemical circuits from 'cut and stick' PEDOT: PSS-nanocellulose composite2017In: Flexible and Printed Electronics, ISSN 2058-8585, Vol. 2, no 4, article id 045010Article in journal (Refereed)
    Abstract [en]

    We report a flexible self-standing adhesive composite made from PEDOT:PSS and nanofibrillated cellulose. The material exhibits good combined mechanical and electrical characteristics (an elastic modulus of 4.4 MPa, and an electrical conductivity of 30 S cm(-1)). The inherent self-adhesiveness of the material enables it to be laminated and delaminated repeatedly to form and reconfigure devices and circuits. This modular property opens the door for a plethora of applications where reconfigurability and ease-of-manufacturing are of prime importance. We also demonstrate a paper composite with ionic conductivity and combine the two materials to construct electrochemical devices, namely transistors, capacitors and diodes with high values of transconductance, charge storage capacity and current rectification. We have further used these devices to construct digital circuits such as NOT, NAND and NORlogic.

  • 4.
    Hajian, Alireza
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH.
    Lindström, Stefan B.
    Linköping University.
    Pettersson, Torbjörn
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH.
    Hamedi, Mahiar M.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH.
    Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials2017In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, no 3, p. 1439-1447Article in journal (Refereed)
    Abstract [en]

    This work aims at understanding the excellent ability of nanocelluloses to disperse carbon nanomaterials (CNs) in aqueous media to form long-term stable colloidal dispersions without the need for chemical functionalization of the CNs or the use of surfactant. These dispersions are useful for composites with high CN content when seeking water-based, efficient, and green pathways for their preparation. To establish a comprehensive understanding of such dispersion mechanism, colloidal characterization of the dispersions has been combined with surface adhesion measurements using colloidal probe atomic force microscopy (AFM) in aqueous media. AFM results based on model surfaces of graphene and nanocellulose further suggest that there is an association between the nanocellulose and the CN. This association is caused by fluctuations of the counterions on the surface of the nanocellulose inducing dipoles in the sp2carbon lattice surface of the CNs. Furthermore, the charges on the nanocellulose will induce an electrostatic stabilization of the nanocellulose–CN complexes that prevents aggregation. On the basis of this understanding, nanocelluloses with high surface charge density were used to disperse and stabilize carbon nanotubes (CNTs) and reduced graphene oxide particles in water, so that further increases in the dispersion limit of CNTs could be obtained. The dispersion limit reached the value of 75 wt % CNTs and resulted in high electrical conductivity (515 S/cm) and high modulus (14 GPa) of the CNT composite nanopapers.

  • 5.
    Hajian, Alireza
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Berglund, Lars. A
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns2019In: Advanced Electronic Materials, ISSN 2199-160X, Vol. 5, no 3, article id 1800924Article in journal (Refereed)
    Abstract [en]

    This work presents a route to fabricate micropatterned conductive structures where the conductors are monolithically integrated with nanocellulose-based paper. To fabricate conductive features, microstructures are patterned on filter papers using wax-printing, followed by vacuum filtration of carbon nanotubes (CNTs) or silver nanowires (AgNWs) dispersed in aqueous cellulose nanofibrils (CNFs). These patterns are then laminated onto a pure CNF substrate (both in gel-state) and dried to form cellulose nanopapers with integrated conductive micropatterns. Resolutions of the conductive features are shown down to 400 µm wide, 250 nm thick, and with conductivity values of 115 ± 5 S cm −1 for the CNF–CNT and 3770 ± 230 S cm −1 for the CNF–AgNW micropatterns. The nanopaper and the conductive patterns both constitute random fibrous networks, and they display similar ductility and swelling behavior in water. Thus, the integrated conductive micropatterns can withstand folding, as well as wetting cycles. This stability of the micropatterns makes them useful in various devices based on nanocellulose substrates. As an example, an electroanalytical nanopaper device that operates in wet conditions is demonstrated.

  • 6.
    Hamedi, Mahiar
    et al.
    Linköping University, Sweden.
    Elfwing, Anders
    Gabrielsson, Roger
    Inganäs, Olle
    Electronic polymers and DNA self-assembled in nanowire transistors2013In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 9, no 3, p. 363-8Article in journal (Refereed)
    Abstract [en]

    Aqueous self-assembly of DNA and molecular electronic materials can lead to the creation of innumerable copies of identical devices, and inherently programmed complex nanocircuits. Here self-assembly of a water soluble and highly conducting polymer PEDOT-S with DNA in aqueous conditions is shown. Orientation and assembly of the conducting DNA/PEDOT-S complex into electrochemical DNA nanowire transistors is demonstrated.

  • 7.
    Hamedi, Mahiar
    et al.
    Linköping University, Sweden.
    Forchheimer, Robert
    Inganas, Olle
    Towards woven logic from organic electronic fibres2007In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 6, no 5, p. 357-362Article in journal (Refereed)
    Abstract [en]

    The use of organic polymers for electronic functions is mainly motivated by the low-end applications, where low cost rather than advanced performance is a driving force. Materials and processing methods must allow for cheap production. Printing of electronics using inkjets1 or classical printing methods has considerable potential to deliver this. Another technology that has been around for millennia is weaving using fibres. Integration of electronic functions within fabrics, with production methods fully compatible with textiles, is therefore of current interest, to enhance performance and extend functions of textiles2. Standard polymer field-effect transistors require well defined insulator thickness and high voltage3, so they have limited suitability for electronic textiles. Here we report a novel approach through the construction of wire electrochemical transistor (WECT) devices, and show that textile monofilaments with 10–100 m diameters can be coated with continuous thin films of the conducting polythiophene poly(3,4-ethylenedioxythiophene), and used to create micro-scale WECTs on single fibres. We also demonstrate inverters and multiplexers for digital logic. This opens an avenue for three-dimensional polymer micro-electronics, where large-scale circuits can be designed and integrated directly into the three-dimensional structure of woven fibres.

  • 8. Hamedi, Mahiar
    et al.
    Herland, Anna
    Karlsson, Roger H.
    Inganäs, Olle
    Electrochemical Devices Made from Conducting Nanowire Networks Self-Assembled from Amyloid Fibrils and Alkoxysulfonate PEDOT2008In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 8, no 6, p. 1736-1740Article in journal (Refereed)
    Abstract [en]

    Proteins offer an almost infinite number of functions and geometries for building nanostructures. Here we have focused on amyloid fibrillar proteins as a nanowire template and shown that these fibrils can be coated with the highly conducting polymer alkoxysulfonate PEDOT through molecular self-assembly in water. Transmission electron microscopy and atomic force microscopy show that the coated fibers have a diameter around 15 nm and a length/thickness aspect ratio >1:1000. We have further shown that networks of the conducting nanowires are electrically and electrochemically active by constructing fully functional electrochemical transistors with nanowire networks, operating at low voltages between 0 and 0.5 V.

  • 9.
    Hamedi, Mahiar
    et al.
    Linköping University.
    Herlogsson, Lars
    Crispin, Xavier
    Marcilla, Rebeca
    Berggren, Magnus
    Inganäs, Olle
    Fiber-Embedded Electrolyte-Gated Field-Effect Transistors for e-Textiles2009In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 21, no 5, p. 573-577Article in journal (Refereed)
    Abstract [en]

    Electrolyte-gate organic field-effect transistors embedded at the junction of textile microfibers are demonstrated. The fiber transistor operates below I V and delivers large current densities. The transience of the organic thin-film transistor’s current and the impedance spectroscopy measurements reveal that the channel is formed in two steps.

  • 10.
    Hamedi, Mahiar
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Karabulut, Erdem
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Marais, Andrew
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Herland, Anna
    Nyström, Gustav
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanocellulose Aerogels Functionalized by Rapid Layer-by-Layer Assembly for High Charge Storage and Beyond2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 46, p. 12038-12042Article in journal (Refereed)
    Abstract [en]

    Step by step: A robust and rapid method for the layer-by-layer assembly of polymers and nanoparticles on strong and elastic aerogels has been developed. Thin films of biomolecules, conducting polymers, and carbon nanotubes were assembled, which resulted in aerogels with a number of functions, including a high charge-storage capacity.

  • 11.
    Hamedi, Mahiar M.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hajian, Alireza
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Fall, Andreas B.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Håkansson, Karl
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Salajkova, Michaela
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Highly Conducting, Strong Nanocomposites Based on Nanocellulose-Assisted Aqueous Dispersions of Single-Wall Carbon Nanotubes2014In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 8, no 3, p. 2467-2476Article in journal (Refereed)
    Abstract [en]

    It is challenging to obtain high-quality dispersions of single-wall nanotubes (SWNTs) in composite matrix materials, in order to reach the full potential of mechanical and electronic properties. The most widely used matrix materials are polymers, and the route to achieving high quality dispersions of SWNT is mainly chemical functionalization of the SWNT. This leads to increased cost, a loss of strength and lower conductivity. In addition full potential of colloidal self-assembly cannot be fully exploited in a polymer matrix. This may limit the possibilities for assembly of highly ordered structural nanocomposites. Here we show that nanofibrillated cellulose (NFC) can act as an excellent aqueous dispersion agent for as-prepared SWNTs, making possible low-cost exfoliation and purification of SWNTs with dispersion limits exceeding 40 wt %. The NFC:SWNT dispersion may also offer a cheap and sustainable alternative for molecular self-assembly of advanced composites. We demonstrate semitransparent conductive films, aerogels and anisotropic microscale fibers with nanoscale composite structure. The NFC:SWNT nanopaper shows increased strength at 3 wt % SWNT, reaching a modulus of 133 GPa, and a strength of 307 MPa. The anisotropic microfiber composites have maximum conductivities above 200 S cm(-1) and current densities reaching 1400 A cm(-2).

  • 12. Hamedi, Mahiar
    et al.
    Tvingstedt, Kristofer
    Karlsson, Roger H
    Asberg, Peter
    Inganäs, Olle
    Bridging dimensions in organic electronics: assembly of electroactive polymer nanodevices from fluids2009In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 9, no 2, p. 631-635Article in journal (Refereed)
    Abstract [en]

    Processing and patterning of electroactive materials from solvents is a hallmark of flexible organic electronics, and commercial applications based on these properties are now emerging. Printing and ink-jetting are today preferred technologies for patterning, but these limit the formation of nanodevices, as they give structures way above the micrometer lateral dimension. There is therefore a great need for cheap, large area patterning of nanodevices and methods for top-down registration of these. Here we demonstrate large area patterning of connected micro/nanolines and nanotransistors from the conducting polymer PEDOT, assembled from fluids. We thereby simultaneously solve problems of large area nanopatterning, and nanoregistration.

  • 13.
    Hamedi, Mahiar
    et al.
    Linköping University, Sweden.
    Wigenius, Jens
    Tai, Feng-I
    Björk, Per
    Aili, Daniel
    Polypeptide-guided assembly of conducting polymer nanocomposites2010In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 2, no 10, p. 2058-2061Article in journal (Refereed)
    Abstract [en]

    A strategy for fabrication of electroactive nanocomposites with nanoscale organization, based on self-assembly, is reported. Gold nanoparticles are assembled by a polypeptide folding-dependent bridging. The polypeptides are further utilized to recruit and associate with a water soluble conducting polymer. The polymer is homogenously incorporated into the nanocomposite, forming conducting pathways which make the composite material highly conducting.

  • 14.
    Hamedi, Mahiar
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Nyström, Gustav
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Marais, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Karabulut, Erdem
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Cui, Yi
    Stanford Univ, Stanford, CA 94305 USA..
    Soft, compressible and fully Interdigitated 3D energy storage devices built by layer-by-layer assembly inside aerogels2015In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 249Article in journal (Other academic)
  • 15. Karlsson, Roger H
    et al.
    Herland, Anna
    Hamedi, Mahiar
    Wigenius, Jens A
    Åslund, Andreas
    Liu, Xianjie
    Fahlman, Mats
    Inganäs, Olle
    Konradsson, Peter
    Iron-Catalyzed Polymerization of Alkoxysulfonate-Functionalized 3,4-Ethylenedioxythiophene Gives Water-Soluble Poly(3,4-ethylenedioxythiophene) of High Conductivity2009In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 21, no 9, p. 1815-1821Article in journal (Refereed)
    Abstract [en]

    Chemical polymerization of a 3,4-ethylenedioxythiophene derivative bearing a sulfonate group (EDOTS) is reported. The polymer, PEDOT-S, is fully water-soluble and has been produced by polymerizing EDOT-S in water, using Na2S2O8 and a catalytic amount of FeCl 3. Elemental analysis and XPS measurements indicate that PEDOT-S is a material with a substantial degree of self-doping, but also contains free sulfate ions as charge-balancing counterions of the oxidized polymer. Apart from selfdoping PEDOT-S, the side chains enable full water solubility of the material; DLS studies show an average cluster size of only 2 nm. Importantly, the solvation properties of the PEDOT-S are reflected in spin-coated films, which show a surface roughness of 1.2 nm and good conductivity (12 S/cm) in ambient conditions. The electro-optical properties of this material are shown with cyclic voltammetry and spectroelectrochemical experiment reveals an electrochromic contrast (̃48% at λmax ) 606 nm).

  • 16. Khan, Z. U.
    et al.
    Edberg, J.
    Hamedi, Mahiar M.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gabrielsson, R.
    Granberg, H.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Engquist, I.
    Berggren, M.
    Crispin, X.
    Thermoelectric Polymers and their Elastic Aerogels2016In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095Article in journal (Refereed)
    Abstract [en]

    Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin.

  • 17. Lan, Wen-Jie
    et al.
    Zou, Xu U.
    Hamedi, Mahiar
    Hu, Jinbo
    Parolo, Claudio
    Maxwell, E. Jane
    Bühlmann, Philippe
    Whitesides, George M.
    Paper-Based Potentiometric Ion Sensing2014In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 86, no 19, p. 9548-9553Article in journal (Refereed)
    Abstract [en]

    This paper describes the design and fabrication of ion-sensing electrochemical paper-based analytical devices (EPADs) in which a miniaturized paper reference electrode is integrated with a small ion-selective paper electrode (ISPE) for potentiometric measurements. Ion-sensing EPADs use printed wax barriers to define electrochemical sample and reference zones. Single-layer EPADs for sensing of chloride ions include wax-defined sample and reference zones that each incorporate a Ag/AgCl electrode. In EPADs developed for other electrolytes (potassium, sodium, and calcium ions), a PVC-based ion-selective membrane is added to separate the sample zone from a paper indicator electrode. After the addition of a small volume (less than 10 μL) of sample and reference solutions to different zones, ion-sensing EPADs exhibit a linear response, over 3 orders of magnitude, in ranges of electrolyte concentrations that are relevant to a variety of applications, with a slope close to the theoretical value (59.2/z mV). Ion-selective EPADs provide a portable, inexpensive, and disposable way of measuring concentrations of electrolyte ions in aqueous solutions.

  • 18. Müller, C.
    et al.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Lund, A.
    Moth-Poulsen, K.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    From Single Molecules to Thin Film Electronics, Nanofibers, e-Textiles and Power Cables: Bridging Length Scales with Organic Semiconductors2019In: Advanced Materials, article id 1807286Article in journal (Refereed)
    Abstract [en]

    Organic semiconductors are the centerpiece of several vibrant research fields from single-molecule to organic electronics, and they are finding increasing use in bioelectronics and even classical polymer technology. The versatile chemistry and broad range of electronic functionalities of conjugated materials enable the bridging of length scales 15 orders of magnitude apart, ranging from a single nanometer (10 −9 m) to the size of continents (10 6 m). This work provides a taste of the diverse applications that can be realized with organic semiconductors. The reader will embark on a journey from single molecular junctions to thin film organic electronics, supramolecular assemblies, biomaterials such as amyloid fibrils and nanofibrillated cellulose, conducting fibers and yarns for e-textiles, and finally to power cables that shuffle power across thousands of kilometers.

  • 19. Müller, Christian
    et al.
    Hamedi, Mahiar
    SLU, Sweden.
    Karlsson, Roger
    Jansson, Ronnie
    Marcilla, Rebeca
    Hedhammar, My
    Inganäs, Olle
    Woven electrochemical transistors on silk fibers.2011In: Advanced materials, ISSN 0935-9648, Vol. 23, no 7, p. 898-901Article in journal (Refereed)
    Abstract [en]

    Woven electrochemical transistors on silk fibers from the silkworm Bombyx mori are demonstrated. This is achieved with carefully chosen electrolyte chemistry: electrically conducting silk fibers are produced by dyeing silk fibers with a conjugated polyelectrolyte and gating is accomplished by use of an electrolyte mixture composed of imidazolium-based ionic liquids.

  • 20. Müller, Christian
    et al.
    Jansson, Ronnie
    Elfwing, Anders
    Askarieh, Glareh
    Karlsson, Roger
    Hamedi, Mahiar
    Linköping University, Sweden.
    Rising, Anna
    Johansson, Jan
    Inganäs, Olle
    Hedhammar, My
    Functionalisation of recombinant spider silk with conjugated polyelectrolytes2011In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 21, no 9Article in journal (Refereed)
    Abstract [en]

    Conjugated polyelectrolytes are demonstrated to permit facile staining of recombinant spider silk fibres. We find that the polyelectrolyte concentration and pH of the staining solution as well as the incubation temperature strongly influence the efficiency of this self-assembly process, which appears to be principally mediated through favourable electrostatic interactions. Thus, depending on the choice of staining conditions as well as the polyelectrolyte, electrically conductive or photoluminescent recombinant silk fibres could be produced. In addition, staining of natural Bombyx mori silk is established, which emphasises the versatility of the here advanced approach to functionalise silk-based materials.

  • 21.
    Tian, Weiqian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    VahidMohammadi, Armin
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Tekn Ringen 56, S-10044 Stockholm, Sweden..
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Beidaghi, Majid
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, article id 1902977Article in journal (Refereed)
    Abstract [en]

    The family of two-dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal-like electrical conductivity and surface-functional-group-enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti3C2Tx) nanocomposites with one-dimensional (1D) cellulose nanofibrils (CNFs) from their stable colloidal dispersions is reported. The high aspect ratio of CNF (width of approximate to 3.5 nm and length reaching tens of micrometers) and their special interactions with MXene enable nanocomposites with high mechanical strength without sacrificing electrochemical performance. CNF loading up to 20%, for example, shows a remarkably high mechanical strength of 341 MPa (an order of magnitude higher than pristine MXene films of 29 MPa) while still maintaining a high capacitance of 298 F g(-1) and a high conductivity of 295 S cm(-1). It is also demonstrated that MXene/CNF hybrid dispersions can be used as inks to print flexible micro-supercapacitors with precise dimensions. This work paves the way for fabrication of robust multifunctional MXene nanocomposites for printed and lightweight structural devices.

  • 22.
    Tian, Weiqian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    VahidMohammadi, Armin
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Beidaghi, Majid
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Layer-by-layer assembly of pillared MXene multilayers for high volumetric energy storage and beyond2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 23.
    Wang, Zhen
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Hamedi, Mahiar
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    3D interdigitated energy storage devices built inside aerogels using layer by layer assembly2017In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 24.
    Wang, Zhen
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Malti, Abdellah
    KTH.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Tu, D.
    Tian, Weiqian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Copper-Plated Paper for High-Performance Lithium-Ion Batteries2018In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 14, no 48, article id 1803313Article in journal (Refereed)
    Abstract [en]

    Paper is emerging as a promising flexible, high surface-area substrate for various new applications such as printed electronics, energy storage, and paper-based diagnostics. Many applications, however, require paper that reaches metallic conductivity levels, ideally at low cost. Here, an aqueous electroless copper-plating method is presented, which forms a conducting thin film of fused copper nanoparticles on the surface of the cellulose fibers. This paper can be used as a current collector for anodes of lithium-ion batteries. Owing to the porous structure and the large surface area of cellulose fibers, the copper-plated paper-based half-cell of the lithium-ion battery exhibits excellent rate performance and cycling stability, and even outperforms commercially available planar copper foil-based anode at ultra-high charge/discharge rates of 100 C and 200 C. This mechanically robust metallic-paper composite has promising applications as the current collector for light-weight, flexible, and foldable paper-based 3D Li-ion battery anodes.

  • 25.
    Wang, Zhen
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Tian, Weiqian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Marais, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Tybrandt, Klas
    Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden.;Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, Wallenberg Wood Sci Ctr, S-60174 Norrkoping, Sweden..
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Layer-by-Layer Assembly of High-Performance Electroactive Composites Using a Multiple Charged Small Molecule2019In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 35, no 32, p. 10367-10373Article in journal (Refereed)
    Abstract [en]

    Layer-by-layer (LbL) assembly is a versatile tool for fabricating multilayers with tailorable nanostructures. LbL, however, generally relies on polyelectrolytes, which are mostly insulating and induce large interlayer distances. We demonstrate a method in which we replace polyelectrolytes with the smallest unit capable of LbL self-assembly: a molecule with multiple positive charges, tris(3-aminopropyl)amine (TAPA), to fabricate LbL films with negatively charged single-walled carbon nanotubes (CNTs). TAPA introduces less defects during the LbL build-up and results in more efficient assembly of films with denser micromorphology. Twenty bilayers of TAPA/CNT showed a low sheet resistance of 11 k Omega, a high transparency of 91% at 500 nm, and a high electronic conductivity of 1100 S/m on planar substrates. We also fabricated LbL films on porous foams with a conductivity of 69 mS/m and used them as electrodes for supercapacitors with a high specific capacitance of 43 F/g at a discharging current density of 1 A/g.

  • 26. Wigenius, Jens
    et al.
    Björk, Per
    Hamedi, Mahiar
    Linköping University, Sweden.
    Aili, Daniel
    Supramolecular assembly of designed α-helical polypeptide-based nanostructures and luminescent conjugated polyelectrolytes2010In: Macromolecular Bioscience, ISSN 1616-5187, E-ISSN 1616-5195, Vol. 10, no 8, p. 836-841Article in journal (Refereed)
    Abstract [en]

    Designed polypeptides with controllable folding properties are utilized as supramolecular templates for fabrication of ordered nanoscale molecular and fibrous assemblies of LCPs. The properties of the LCPs as well as the three dimensional conformation of the polypeptide-scaffold determine how the polymers are arranged in the supramolecular construct, which highly affects the properties of the hybrid material. The ability to control the polypeptide conformation and assembly into fibers provides a promising route for tuning the optical properties of LCPs and for fabrication of complex functional supramolecules with well defined structural properties.

  • 27. Wigenius, Jens
    et al.
    Hamedi, Mahiar
    Inganäs, Olle
    Limits to Nanopatterning of Fluids on Surfaces in Soft Lithography2008In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 18, no 17, p. 2563-2571Article in journal (Refereed)
    Abstract [en]

    Soft lithographic microcontact printing using the residual polydimethylsiloxane (PDMS) found in elastomeric PDMS stamps is demonstrated to lead to unstable prints with sub-micrometer dimensions. The statics and dynamics of the process have been followed with time-resolved atomic force microscopy, imaging ellipsometry, water contact angle measurement, and optical diffraction. It is proposed that this instability places a fundamental limitation on patterning by macromolecular fluids, which is of general relevance to soft lithography and nanoimprint lithography with low viscosity polymers.

1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf